
216 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 9, NO. 2, MARCH 2015

A Mathematical Model for Wideband Ranging
Stefania Bartoletti, Student Member, IEEE, Wenhan Dai, Student Member, IEEE,

Andrea Conti, Senior Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Wideband ranging is essential for numerous
emerging applications that rely on accurate location awareness.
The quality of range information, which depends on network
intrinsic properties and signal processing techniques, affects the
localization accuracy. A popular class of ranging techniques is
based on energy detection owing to its low-complexity implemen-
tation. This paper establishes a tractable model for the range
information as a function of wireless environment, signal features,
and energy detection techniques. Such a model serves as a corner-
stone for the design and analysis of wideband ranging systems.
Based on the proposed model, we develop practical soft-decision
and hard-decision algorithms. A case study for ranging and local-
ization systems operating in a wireless environment is presented.
Sample-level simulations validate our theoretical results.

Index Terms—Network localization, wideband ranging, energy
detection, range likelihood, TOA estimation.

I. INTRODUCTION

W IDEBAND RANGING is a key enabler for emerging
applications, such as logistic, safety, security, and mili-

tary, relying on accurate location awareness [1]–[9]. The local-
ization accuracy of navigation and radar systems is affected by
the quality of range information [10]–[19]. Range information
such as range likelihood or range estimate can be extracted from
the received signals for soft-decision or hard-decision localiza-
tion, respectively [20]–[22]. The quality of range information
depends on network intrinsic properties and signal processing
techniques [23]–[29].
The design and analysis of ranging systems require models

for describing range information as a function of the propaga-
tion environment, signal features, and detection techniques. A
popular class of ranging techniques is based on energy detec-
tion, which determines the absence or presence of signals based
on the level of energy collected over certain observation inter-
vals [30]. The energy detectors (EDs) have been employed in
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many contexts, including range estimation in positioning sys-
tems [31]–[33], spectrum sensing in cognitive radios [34]–[36],
and carrier sensing in network access protocols [37]–[39] owing
to their low-complexity implementation. Energy detection was
introduced in [30] to detect unknown deterministic signals in ad-
ditive white Gaussian noise (AWGN) channels. More recently,
the analysis has been extended to detection of random signals in
AWGN channels [40]–[43], random signals in flat fading chan-
nels [44]–[46], and deterministic signals in the presence of in-
terference [47]–[49].
Classical ranging techniques based on energy detection pro-

vide hard-decision range estimates that are consonant with the
time-of-arrival (TOA) of the received signals. The lack of ac-
curate models for range estimates in wireless propagation envi-
ronments1 coerces the design of EDs to consider simplified as-
sumptions such as AWGN channels. Such assumptions do not
account for multipath fading or obstructed propagation, leading
to inaccurate ranging in wireless environments.
In this paper, we derive a mathematical model that describes

the range information by providing range likelihood and range
estimate for soft-decision and hard-decision localization, re-
spectively. The goal is to establish a range information model
that accounts for the wireless environment and signal features
to facilitate the design and analysis of optimal EDs. The key
contributions of the paper are as follows:
• Derivation of a range information model for design and
analysis of wideband ranging systems based on energy de-
tection;

• Development of low-complexity ranging algorithms with
optimal EDs for soft-decision and hard-decision localiza-
tion;

• Quantification of the benefits to location awareness pro-
vided by the proposed range information model in wireless
environments.

The remainder of the paper is organized as follows.
Section II presents the ranging system and the energy samples
distribution. The range information model for soft-decision
and hard-decision algorithms is developed in Section III.
Section IV presents a tractable range information model for
wideband systems. Section V provides guidelines for the design
of ED for location-aware networks based on the proposed
models. Section VI describes a case study for ranging and
localization. Finally, conclusions are given in Section VII.
Notation: For a random variable (RV) , the ,

and denote its realization, distribution function, and
cumulative distribution function (CDF), respectively. Let

1The range estimate is often modeled as a Gaussian random variable
[50]–[53].
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Fig. 1. Soft-decision and hard-decision energy detection system.

denote a Gaussian distributed RV with mean
and variance . Let and denote the probability

distribution function (PDF) and CDF of a standard Gaussian
RV, respectively. The symbol denotes the largest integer
less than or equal to . Let be the all-zero vector. The notation

denotes the complement of an event .

II. RANGING SYSTEM

This section describes the energy detection principle and for-
mulates the statistical model for the energy samples at the ED’s
output.

A. Energy Detection

Consider a ranging system composed of a transmitter at posi-
tion that emits copies of a signal with repetition pe-
riod , and a receiver at position .2 The aim of the ranging
system is to detect the signal and to estimate its TOA
with respect to a reference time from the received signal
based on observations each with duration .3 The refer-
ence time can be the time at which the signal was transmitted
(e.g., TOA-based localization or radar systems) or be the time
shared among several receivers (e.g., time difference-of-arrival
(TDOA)-based localization systems).
For ranging techniques based on energy detection, energy

samples (namely energy bins) are collected, one for each dwell
time . After band-pass filtering for noise reduction (and
clutter mitigation in case of radar networks), the received wave-
forms are non-coherently accumulated for soft-decision and
hard-decision processing as illustrated in Fig. 1. The received
signal can be written as

(1)

where is the received probe signal after propagating
through a wireless channel with impulse response and

is the thermal noise component. The received probe signal

2Several techniques are available in the literature to estimate the repetition
period of a signal when it is unknown, see e.g., [54].

3Range and TOA are used interchangeably throughout this paper since the
former is a bijective function of the latter.

is a sequence of channel responses to the transmitted signal
replicas, the first of which can be written as

(2)

The received signal is first sampled by an analog-to-digital
(A/D) converter with sampling period . At the sampling
instant , with
and , the sample of the received signal is
given by

(3)

where and . After A/D con-
version, waveform samples are processed by a quadrature inte-
grate and dump (QID) block that squares and integrates them
over a dwell time to obtain energy bins.
The energy bin corresponding to the observation is given
by

(4)

where is the number of signal samples per
bin. The energy bins obtained from each observation interval
are processed by an averaging (AVG) block over the obser-
vations as

(5)

resulting in a vector of energy bins . The
vector of energy bins at the output of the ED is used as input for
soft-decision or hard-decision processing.
The detection of the signal and the estimation of its TOA
are based on the energy bin vector . Classical approaches

follow the Bayesian hypothesis testing, involving the compar-
ison of the energy bins with a threshold. Such a threshold is
often chosen to achieve a constant false-alarm rate resulting in
a certain misdetection rate.
Typically, ranging is based on hard-decision algorithms

which provide the TOA estimate from the observed energy
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bins. If the distribution function of energy bins is known, then
soft-decision algorithms can be conceived providing a poste-
rior PDF of the TOA estimates. Models for soft-decision and
hard-decision algorithms, which will be provided in Section III,
depend on the distribution of the energy samples given in the
following.

B. Energy Samples
Each element of the vector is an instantiation of the RV

(6)

where

(7)

is the sample average, in , of the energy bins. In particular,
and are independent random samples of the re-

ceived probe signal and of the thermal noise, respectively. Note
that depends on the transmitted signal, thermal noise, true
TOA , wireless channel, and ED parameters. Let
where and are the vectors of parameters representing
the wireless channel and the ED, respectively. The normalized
bin conditioned on is distributed as a noncentral
chi-squared RV with degrees of freedom, i.e.,

(8)

where is the noncentrality parameter, which depends on ,
given by [30]

(9)

with denoting the instantiation of the RV and de-
noting the variance of the zero-mean thermal noise. Therefore,

(10a)

(10b)
where is themodified Bessel function of the first kind with
order denotes the lower incomplete Gamma function,
and denotes the Gamma function [55].
Remark 1: In practice, the noise variance can be estimated

by observing the energy bins in an absence of the transmitted
signal and each depends on thewireless channel instantiation.
Therefore, the derivation of the range estimation error distribu-
tion requires averaging the conditional energy bin distribution
over all possible wireless channel instantiations [20].

III. RANGE INFORMATION MODEL

This section offers the range information model by providing
the range likelihood and the range estimate, as well as the range
error.

A. Range Likelihood
The range likelihood function is determined from the obser-

vation in (5) and the distribution of for each energy bin, as
shown in Fig. 1. The RVs ’s are independent and non-identi-
cally distributed with noncentrality parameter depending on .
The range likelihood function for a given bins observation can
be written as

(11)

Remark 2: The range likelihood function can be used for both
soft-decision and hard-decision localization. For soft-decision
localization, a localization algorithm can directly process the
likelihood functions obtained from one or more receivers to de-
termine the position of a node. For hard-decision localization, a
localization algorithm first obtains the TOA estimate by seeking
a maximum of the range likelihood function, and then processes
such estimates from one or more receivers to determine the po-
sition of a node.

B. Range Estimate
A widely used approach for ranging is based on hard-deci-

sion algorithms that aim to determine the index of the first bin
containing a portion of the transmitted signal energy. Therefore,
the index can be thought as the instantiation of a discrete RV
taking value in the set .
Let the TOA estimate be the instantiation of the RV

with PDF .4 The RV depends on since is chosen
from the interval . Consider a bijective func-
tion , e.g., the TOA estimate is chosen to be the center
of the interval as . Therefore, the distribution
function of the TOA estimate is determined by the dis-
tribution function of . The depends on since
the RV is a function of both the wireless channel and the ED.
Various hard-decision algorithms have been proposed in the

literature [12], [20], [56]. This paper analyzes the most pop-
ular hard-decision algorithms: threshold crossing search (TCS),
maximum bin search (MBS), jump back and search forward
(JBSF), and serial backward search (SBS) algorithms. These
algorithms involve the comparison of each bin value with a
corresponding threshold. Let the threshold crossing event be

where is the threshold for the
bin for . The probability mass function (PMF) of the
selected bin index conditioned on and can be written as5ℙ ℙ (12)

where the event andℙ (13)

Remark 3: In general, a different threshold can be used for
each bin index when it is important to account for the variation
among the energy samples.
1) Threshold Crossing Search: The TCS algorithm first

searches for each bin value that crosses a threshold for all

4Range estimate and TOA estimate will be used interchangeably owing to the
bijective relation between the two.

5For brevity, will be used to denote .
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. The algorithm then selects, if occurs, the bin index
as the smallest for which . Mathematically,

(14)

The PMF of the selected bin index conditioned on and is
given by (11) with event6

(15)

This leads to (16) shown at the bottom of the page. The choice of
the thresholds ’s affects the accuracy of the TOA estimation,
as well as the detection rate and the false-alarm rate.
2) Maximum Bin Search: The MBS algorithm first searches

for the maximum value among all the bins with index .
The algorithm then selects, if occurs, the bin index as the
for which for all . Mathematically,

(17)

The PMF of the selected bin index conditioned on and is
given by (11) with event

(18)

6The index set is defined as
and its complement over as . The

set is empty for .

This leads to (19) shown at the bottom of the page, with
. Note that MBS with thresholds

corresponds to MBS unconditioned on (i.e., selecting the
maximum bin even when none of the bins crosses its threshold).
In such a case, (19) degenerates to the PMF of the selected bin
index for MBS unconditioned on , which is given by

3) Jump Back and Search Forward: The JBSF algorithm
first identifies the index corresponding to the maximum bin
value, jumps back to the bin with smallest index in , and
searches forward for each bin value that crosses a threshold
for all .7 The algorithm then selects, if occurs,
the bin index as the smallest for which or as if
none of them crosses the threshold. Mathematically,

(20)

The PMF of the selected bin index conditioned on and is
given by (11) with events

(21a)
(21b)
(21c)

7Here denotes the window length. For example, the window length
can be chosen according to the channel delay spread and the transmitted signal.

(16)

(19)

(23)

(26)
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Fig. 2. Example PMF of the selected bin index for the TCS (top left), MBS (top right), JBSF with (bottom left), and SBS (bottom right) algorithms with
ns, , and dB. The first bin containing the transmitted signal has index .

In particular,

(22a)
(22b)

This leads to (23) shown at the bottom of previous page.8 Note
that JBSF with corresponds to MBS. In such a case,
(23) degenerates to (19).
4) Serial Backward Search: The SBS algorithm first identi-

fies the index corresponding to the maximum bin value, and
searches backward for each bin value that crosses a threshold
for all . The algorithm then selects, if occurs,

the bin index as the smallest for which for all
or as if none of them crosses the threshold.

Mathematically,

(24)

The PMF of the selected bin index conditioned on and is
given by (11) with the events as in (21). In particular,

(25a)

(25b)

This leads to (26) shown at the bottom of the previous page,
with

for
for

and .
To illustrate how the hard-decision algorithms operate, con-

sider a simple case of bins (i.e., ) with
a vector of bin instantiations and a vector of thresholds given by

Note that the threshold crossing event is true (bins with index
1, 2, 4, and 6 cross the corresponding thresholds) and the al-
gorithms select a bin index according to (14), (17), (20), and
(24). In particular, , and for TCS, MBS, JBSF with

, and SBS, respectively.
Remark 4: Recall that the PMF for hard-de-

cision algorithms derived above are conditioned on the
threshold crossing event and . Expressions for the
joint PMF of and conditioned on can be obtained
by . The distribu-
tion of the selected bin index for numerous other
hard-decision algorithms can be derived following a similar
approach.
Fig. 2 shows examples of PMF for the TCS, MBS,

JBSF with , and SBS algorithms with ns,
, and dB, according to the IEEE 802.

15.4a standard for indoor propagation [57]. It can be observed
that the PMF derived based on the proposed range information
model are in agreement with those obtained through sample-
level simulations (i.e., simulating the wireless channel and the
ED operation). In particular, theory and simulations show the
same bin index for which the PMF reaches its maximum value.

C. Range Error
We now determine the distribution of the TOA estimation

error, which depends on the particular hard-decision algorithm.

8The product is equal to 1 and the sum is equal to 0 if evaluated over an empty
index set.
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The TOA estimation error is an instantiation of
the RV , and thus

For a given belongs to a finite set
, where represents a finite set of TOA estimate. In

the absence of a prior information on the true TOA, can be
modeled as a uniform RV over the interval , where is
the maximum possible TOA that depends on the wireless envi-
ronment.9 Therefore,

(27)
where

for
otherwise

(28)

with . For specific hard-decision al-
gorithms, (28) can be evaluated by substituting the PDF and
CDF of given respectively by (10a) and (10b) into the spe-
cific conditional PMF derived in Section III.B and taking
the expectation over the vector of noncentrality parameters

.
Remark 5: The distribution of the TOA estimate requires

both the evaluation of cumbersome expressions and the expec-
tation over all the channel parameters. This calls for a tractable
range information model.

IV. TRACTABLE RANGE INFORMATION MODEL

The design of soft-decision and hard-decision algorithms de-
mands tractable expressions for the range information model,
which can be obtained by simplifying and .
First, recall that the chi-squared RV converges in distribution to
a Gaussian RV as the number of degrees of freedom increases
[58]–[60]. Therefore in (8) converges in distribution
as

(29)

and consequently

(30)

(31)

The above approximation depends on and is accurate
for or . Note that the above distributions
depend on the instantiation of the wireless channel through
in . However, the knowledge of the exact channel instantiation
is typically not available.
We seek to further simplify the range information model by

considering distributions that depend on channel statistics rather
than channel instantiations, i.e., on instead of ,

9This results in with, in general, . When
the wireless environment is not known, can be chosen as .

where represents the channel statistics. Recall that the sample
average in (7) depends on through and on

through . Therefore we approximate with
in which is replaced with a deterministic quantity that
depends on as10

(32)

The choice of is motivated by the following lemma.
Lemma 1: The sample average con-

verges almost surely to 0 if and only if .
Proof: First note that

Therefore, as increases, converges to
almost surely by the strong law of large numbers [61]–[63].
Thus, converges almost surely to if and only if

.
Lemma 1 suggests

(33)

implying that the noncentrality parameter for can be
written as , where

(34)

Remark 6: The dependence on wireless channel instantia-
tions can be removed by substituting each noncentrality param-
eter , which depends on , with its expected value , which
depends on , in all of the above distributions.
The impulse response of a wideband wireless channel at time
is commonly described by [64]–[68]

(35)

where is the number of multipath components, and
and are the amplitude gain and the arrival time of the th
path, respectively.11 For a resolvable multipath channel, i.e.,
the path interarrival time intrinsic to the wireless environment
is larger than the temporal duration of the transmitted signal,

in (34) can be written as

(36)

Therefore, the calculation of requires the averaging with re-
spect to the channel nuisance parameters ’s and ’s in .

10A possible choice is , where is the th order
moment of , which is consistent in terms of the unit measure of and

. Also, is monotonically increasing in by Lyapunov’s in-
equality.

11The , and are considered time-invariant over an observa-
tion time.
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The complexity of such calculation depends on the joint distri-
bution of ’s, and ’s. However, the resolution of the ED
is limited by the dwell time . Therefore, the statistics of the
energy bins can be determined by considering a tapped-delay-
line model [68]–[72]. In particular, can be replaced by

, where is a deterministic number
of path, with deterministic, and is the ap-
proximate dispersion of the channel.12 This results in

(37)

Substituting (37) in (34), the expected value of the noncen-
trality parameter for the bin becomes

(38)

Using (38) instead of in all the above distributions, one can
obtain the tractable range information model that depends only
on instead of . For instance, can be approximated by
with conditional CDF given by

(39)

which is obtained from (31) by replacing with .
Fig. 3 shows the CDF of the energy bin for different numbers
of observations and dwell times with received signal-to-noise
ratio (SNR) per pulse dB according to the IEEE
802.15.4a standard for indoor residential line-of-sight (LOS)
environments [57]. More details about the scenario will be
provided in Section VI.B where the case study is presented.
It can be observed that the theoretical CDF of the bin value
(39) accurately describes the empirical CDF obtained by
sample-level simulations.
Using the results in this section, tractable expressions of the

distribution of the TOA estimation error can be derived for hard-
decision algorithms. In particular, substituting the PDF andCDF
of given respectively by (10a) and (10b) into the conditional
PMF in Section III.B for specific hard-decision algo-
rithms, and replacing each with , (28) is simplified into
a tractable form.
Remark 7: The parameters ’s depend on through , the

statistics of , and . The ’s depend on through and
, which further depends on , and .

V. DESIGN OF THE ENERGY DETECTOR

This section aims to present the design of energy detection al-
gorithms based on the proposed range information model. Such
a model enables us to determine ED parameters (e.g., the choice
of the thresholds, window length, and dwell time) according to
different optimization criteria and constraints.

12For example, can be chosen as the dwell time, the inverse of the band-
width, or the average interarrival time of the paths.

Fig. 3. Example CDF of the energy bin value for different values of and
with dB: (1) ns; (2) ns;

(3) ns; (4) ns. Simulation results are
shown in symbols and theoretical results according to (39) are shown in solid
lines.

The design of ED commonly involves the probability of de-
tection and that of false-alarm. The detection event occurs when,
in a presence of the transmitted signal, the presence of the signal
is correctly detected. The probability of such an event is given
by

(40)

The false-alarm event occurs when, in an absence of the trans-
mitted signal, the presence of the signal is incorrectly detected
due to noise. The probability of such an event is given by

(41)

For a given minimum tolerable level of detection probability
or maximum tolerable level of false-alarm probability ,

constraints on parameters value can be obtained.13
An important metric for ED design is the mean squared error

(MSE) of the TOA estimate. When conditioned on the detection
of the transmitted signal, the MSE of the TOA estimate is given
by

(42)

Recalling that the TOA estimation error belongs to a finite set
, the MSE of the TOA estimate for hard-decision algorithms

can be written as

(43)

The design of an ED minimizing the MSE of the TOA esti-
mate with a guaranteed minimum level of detection probability

13For example, is non-increasing with the threshold and therefore
a minimum value can be determined for a given .
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can be obtained by solving the following constrained optimiza-
tion problem

(44)

Instead of guaranteeing a minimum detection probability, the
design of an ED can minimize the MSE of the TOA estimate
with a guaranteed maximum level of false-alarm probability as

(45)

The design of an ED can also be formulated to maximize the de-
tection probability for a given maximum tolerable MSE

of the TOA estimate, i.e.,

(46)

Alternatively, the ED design can be based on a hybrid objective
function where the optimization problem is formulated to min-
imize a metric involving the MSE of the TOA estimate and a
penalty. The mathematical formulation of such an optimization
problem can be written as

(47)

where

(48)

is the unconditional MSE of the TOA estimate and is a
penalty in an absence of detection.14
The above optimization problems are typical examples for the

design of a ranging system. However, the proposed range infor-
mation model is general and can be used to formulate other opti-
mization problems that arise from energy detection applications.

VI. CASE STUDY
This section defines the performance metrics, describes the

case study scenario, and presents performance results based on
the developed theory and sample-level simulations.

A. Performance Metrics
Performance of the proposed range information model is

evaluated in terms of the PMF accuracy, ranging accuracy, and
localization accuracy defined as follows.
1) PMF Accuracy: The following metrics will be used as

a measure of the distance between the PMF of the se-
lected bin obtained from the proposed range information model
and that obtained through sample-level simulations. Let
be two possible PMF representing a RV taking values on a set
, e.g., one approximate and one exact. The Jensen-Shannon

divergence (JSD) is defined as [73]

(49)

14The penalty can be chosen as a function of the detection probability.

TABLE I
(TOP), (MIDDLE), AND

(BOTTOM) FOR THEORETICAL AND SIMULATED PMF OF THE
SELECTED BIN FOR HARD-DECISION ALGORITHMS

Other important metrics are the root-mean-square error
(RMSE), which is defined as

(50)

and the maximum error, which is defined as

(51)

2) Ranging Accuracy: The ranging accuracy is determined
in terms of CDF of the TOA estimation error and in
terms of RMSE of the TOA estimate . The
CDF and the RMSE are obtained starting from
(27) and (42), respectively.
3) Localization Accuracy: The localization accuracy is de-

termined in terms of the localization error outage (LEO). The
LEO is defined as the probability that the localization error is
above a maximum tolerable value , i.e.,

(52)

where, for a set ,
for
otherwise

and is the absolute value of the localization
error, in which and are the estimated position and the true
position, respectively.

B. Wireless Scenario and Energy Detector Setting
Consider a network of anchors (nodes with known position)

aiming to localize agents (nodes in unknown positions) in an
indoor environment. Specifically, the network is composed of
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Fig. 4. Example CDF of the TOA estimation error for the TCS, MBS, JBSF with , and SBS algorithms with different values of and : (1)
dB; (2) dB; (3) dB; and (4) dB. Theoretical results are shown in solid lines and

simulation results are shown in symbols.

four anchors located at the corners of a square with side length
equal to 10 m. Each anchor emits a sequence of ultra-wide-
band (UWB) root-raised cosine pulses with pulse repetition
period ns. The transmitted power spectral density
is compliant with the emission masks according to the fol-
lowing regulations: (a) Japan (Asia Pacific Telecommunity);
(b) Europe (European Telecommunications Standards Institute)
and Korea (Asia Pacific Telecommunity); (c) USA (Federal
Communication Commission); and (d) China (Asia Pacific

15The value is commonly chosen by accounting only for the randomness of
the noise and discarding that of multipath propagation [74]–[78]. Alternatively,
in [20], a simple criterion to determine a threshold is proposed based on the
probability of early detection and on the knowledge of noise power. In contrast,
the proposed range information model enables us to choose a threshold that
accounts for the randomness of the wireless environments.

16The noise has mean zero and variance where is the band-
width of the transmitted signal that depends on the emission masks.

Telecommunity). The wireless medium follows the IEEE
802.15.4a channel model for UWB indoor residential LOS
environments [57] with ns.
The received signal is processed based on energy detection

with observation time . In the case of hard-deci-
sion algorithms, is considered for illustration.15
The received SNR per pulse is where is the
energy of the received signal pulse and is the one-sided
power spectral density (PSD) of the noise component.16 Un-
less otherwise stated, the results in the following are provided
for an emission mask as defined by the Federal Communication
Commission with bandwidth GHz, a number of bins

, and a dwell time ns. The threshold is chosen
according to (44) as the that minimizes the MSE of the TOA
estimate with a guaranteed minimum level of detection proba-
bility %.
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Fig. 5. RMSE of the TOA estimate as a function of TNR per pulse for different
values of and : (1) dB; (2)

dB; and (3) dB; (4) dB; (5)
dB; and (6) dB. Theoretical results are

shown in solid lines and simulation results are shown in symbols.

C. Performance Results
Table I provides the JSD, RMSE, and maximum error be-

tween the PMF of the selected bin obtained from the pro-
posed range information model (i.e., (16), (19), (23), or (26))
and that obtained through sample-level simulations for TCS,
MBS, JBSF with , and SBS algorithms with different
values of and of . It can be noticed that the proposed model
for is accurate, having a small distance with respect to the
empirical PMF in all the settings.
Fig. 4 shows the CDF of the TOA estimation error (28) for

hard-decision algorithmswith different values of and . Two
different regions can be discerned for the TOA estimation error:
the negative errors (light gray region) due to early detection
caused by the noise, and the positive errors (light blue region)
due to late detection caused by the wireless channel. It can be
observed that the results obtained from the proposed range in-
formation model are in agreement with those obtained through
sample-level simulations in both regions. It is apparent that the
distribution of the TOA estimation error is non Gaussian. Fur-
thermore, the behaviors of the hard-decision algorithms are dif-
ferent in the early detection region, in which the errors are due to
false alarms. This behavior is due to the fact that the threshold is
chosen to minimize the MSE of the TOA estimate with a guar-
anteed minimum level of detection probability. Note that, while
practical systems typically operate with high values, a con-
servative scenario with small values up to 128 is considered
here to strain the proposed range information model.
The absolute error of the TOA estimate for and

dB per pulse is evaluated to be below 3.33 ns (cor-
responding to about 1 m) in 72%, 56%, 73%, and 61% of the
instances for TCS, MBS, JBSF with , and SBS algo-
rithms, respectively. The absolute error of the TOA estimate is
evaluated to be below 5 ns (corresponding to about 1.5 m) in
79%, 79%, 81%, and 80% of the instances for TCS, MBS, JBSF
with , and SBS algorithms, respectively.
Fig. 5 shows the unconditional RMSE of the TOA estimate

for the TCS algorithm as a function of the threshold-to-noise

Fig. 6. RMSE of the TOA estimate as a function of TNR per pulse for
dB, and different emission masks: (1) China; (2) Japan; (3) Eu-

rope/Korea; and (4) USA. Theoretical results are shown in solid lines and sim-
ulation results are shown in symbols.

ratio (TNR) per pulse for different values of
and . The unconditional RMSE is defined as where

is given in (48) with , which is the max-
imum possible MSE. It can be seen that the results obtained
from the proposed range information model are in agreement
with those obtained by sample-level simulations. The accuracy
of the proposed model enables us to determine the optimal TNR
value that minimizes the RMSE, which is important for ED de-
sign. It can also be observed that the minimum RMSE decreases
with for a given . On the other hand, the RMSE varies more
rapidly with TNR as increases, revealing that the determi-
nation of the optimal threshold is critical for large .
Fig. 6 shows the unconditional RMSE of the TOA esti-

mate for the TCS algorithm as a function of the TNR per
pulse for different emission masks, , and

dB. In particular, emission masks that are compliant
with the regulations of the following countries are considered:
(a) China ( GHz); (b) Japan ( GHz); (c)
Europe lower band/Korea ( GHz); and (d) USA (

GHz). It can be observed that the results obtained from
the proposed range information model are in agreement with
those obtained through sample-level simulations for all the
values of the bandwidth. As shown in Fig. 5, the optimal TNR
that minimizes the RMSE can be obtained from the proposed
range information model. Note also that the RMSE varies
more rapidly as the bandwidth increases, revealing that the
determination of the optimal threshold is critical for large .
We now determine the localization accuracy of a network in

which the agent position is determined according to the max-
imum likelihood (ML) criterion. In particular, the ML criterion
selects the agent position that maximizes the product of range
likelihoods, each in the form of (11) as a function of the TOA
corresponding to the relative position between the agent and
each anchor. Fig. 7 shows the LEO as a function of the max-
imum tolerable localization error for soft-decision and hard-de-
cision localization with ns, , and different
values of the SNR per pulse received at 1 m denoted by . For
hard-decision localization the JBSF algorithm with
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Fig. 7. LEO as a function of the maximum tolerable localization error for
soft-decision and hard-decision localization with ns, , and
different values of : (1) soft decision (dashed curves from left to right are for

from 30 to 10 dB); (2) JBSF with ; (3) JBSF with ; and
(4) TCS. Theoretical results are shown in solid lines and simulation results are
shown in symbols.

and 5 as well as the TCS algorithm are considered; the threshold
is chosen according to (44) with %. It can be ob-

served that the LEO obtained from the range information model
is in agreement with that obtained through sample-level simula-
tions. The effect of on the LEO is evident, especially for the
smaller . It can be seen that a localization error smaller than
0.09, 1.45, 1.50, and 1.37 meters can be achieved 95% of the
time for case (1), (2), (3), and (4), respectively, with dB.
Similarly, 0.08, 0.39, 0.39, and 0.40 meters can be achieved
under the same settings with dB. The results show that
soft-decision localization significantly outperforms hard-deci-
sion localization.

VII. CONCLUSION

Amathematical model for the range information is derived as
a function of wireless environment, signal features, and energy
detection techniques. Such a model is tractable and serves as
a cornerstone for the design and analysis of wideband ranging
systems for soft-decision and hard-decision localization. Using
the proposed range information model, we have obtained ex-
plicit expressions for the range likelihood and range estimate,
as well as the distribution of the range estimation error. These
expressions form the basis for the design of the energy detector
according to a variety of optimization criteria and physical con-
straints. A case study of a localization network operating in a
wireless environment is presented and its performance, in terms
of ranging and localization accuracy, is evaluated. The accu-
racy of the analysis is confirmed by sample-level simulations.
The results show that soft-decision localization requiring only
the knowledge of channel statistics can significantly outper-
form hard-decision localization. The proposed range informa-
tion model provides a new perspective on range-based localiza-
tion in wireless environments.
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