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Abstract—Sensor radar networks enable important new appli-
cations based on accurate localization. They rely on the quality
of range measurements, which serve as observations for infer-
ring a target location. In harsh propagation environments (e.g.,
indoors), such observations can be nonrepresentative of the target
due to noise, multipath, clutter, and non-line-of-sight conditions
leading to target misdetection, false-alarm events, and inaccurate
localization. These conditions can be mitigated by selecting and
processing a subset of representative observations. We introduce
blind techniques for the selection of representative observations
gathered by sensor radars operating in harsh environments. A
methodology for the design and analysis of sensor radar networks
is developed, taking into account the aforementioned impairments
and observation selection. Results are obtained for noncoherent
ultra-wideband sensor radars in a typical indoor environment
(with obstructions, multipath, and clutter) to enable a clear un-
derstanding of how observation selection improves the localization
accuracy.

Index Terms—Diversity techniques, network localization, per-
formance evaluation, representative observations, sensor radars.

I. INTRODUCTION

LOCATION INFERENCE is essential for important new
applications (e.g., in safety, imaging, military, and lo-

gistic sectors). Localization algorithms estimate the position
of objects based on prior knowledge and on observations
(measurements) gathered by a network of sensors deployed in
the environment. In range-based localization, sensors provide
range measurements whose reliability depends on the intrinsic
properties of the network, such as the sensor positions and
wireless medium [1]. From this perspective, localization ac-
curacy and resource utilization may benefit from selecting and
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processing a subset of reliable observations instead of the entire
set. This calls for observation selection techniques enabling
high-accuracy localization with low complexity.

Range is determined from signals directly conveyed between
objects (in unknown positions) and anchors (in known posi-
tions) or from signals emitted by anchors and backscattered
by objects depending on their radar cross section (RCS):1 The
former is referred to as localization of active objects (tags),
whereas the latter is referred to as localization of passive objects
(targets). Typically, classification of localization systems uses
the term “active” to indicate that the system emits a signal
designed for target detection and localization, e.g., active radar,
and the term “passive” to indicate that the system exploits
signals emitted by other sources of opportunity, e.g., passive
radar [2]–[5]. Hereafter, sensor radar (also known as multistatic
radar) is referred to as a network of active radars in a monostatic
or a bistatic configuration [6]–[9].2

Accurate localization via sensor radars is challenging in
wireless environments with multipath, clutter, and signal ob-
structions (for example, caused by furniture and walls in indoor
scenarios). These conditions can cause observations (e.g., range
measurements) that are nonrepresentative of the target object
(i.e., nonrepresentative outliers [10]) with a heavy impact on
the localization accuracy. These conditions can be mitigated by
using signals with large bandwidth, exploiting prior knowledge,
and selecting representative observations [11]–[17].

Previous works on selection techniques for sensor radars aim
to improve localization accuracy or to reduce signal processing
complexity by choosing a subset of active sensors. In [18], the
subset of active antennas employed in the localization process
is minimized by selecting only those that fulfill the required
performance. In [19] and [20], an approach based on Kalman
filter for global and local node selection is proposed to increase
geolocation accuracy in a distributed network of sensors. The
node selection relies on a combinatorial optimization frame-
work and on the use of the Cramér–Rao bound, which requires
prior knowledge of the target position and signal-to-noise ratio
(SNR) for each transmitter–target–receiver link.

Sensor radars based on ultra-wideband (UWB) signals
[21]–[23] can provide accurate localization in harsh propa-
gation environments due to their ability to resolve multipath

1The RCS indicates how detectable a target is by measuring the power den-
sity it reflects with respect to the incident one, in relation to target orientation,
material, and size.

2A radar is monostatic or bistatic when the transmitter and the receiver are
colocated or dislocated, respectively.
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and penetrate obstacles. Specifically, UWB signals provide fine
delay resolution, which enables precise time-of-arrival (TOA)
measurements for ranging [24]–[31]. However, the accuracy
and reliability of range-based localization typically degrade
in wireless environments with multipath, clutter, line-of-sight
(LOS) blockage, and excess propagation delays through mate-
rials [32]–[39]. Sensor radars exploiting the characteristics of
UWB signals are presented in [40]–[47].

Ranging accuracy in sensor radars depends on the capability
of exploiting prior knowledge, noise filtering, clutter mitiga-
tion, and TOA estimation. A variety of range error models have
been adopted in the literature [48].

The fundamental questions for the design of target lo-
calization techniques via sensor radars are the following:
(i) What are the intrinsic properties of the sensor radar network
dominating its performance in a given operation environment?
(ii) How does the quality of the measurements impact the lo-
calization accuracy? (iii) How to conceive the network setting,
waveform processing, and localization algorithm to mitigate
propagation impairments? The answers to these questions en-
able the design of sensor radars exploiting the intrinsic prop-
erties of the network for a new level of localization accuracy,
even in harsh propagation environments.

Our approach consists in exploiting diversity and selection
of measurements to enhance the performance of sensor radars
in harsh propagation environments with non-LOS (NLOS)
conditions.3 The goal of this work is to provide insights into
how the network intrinsic properties, the waveform processing,
and the localization algorithm affect detection and localization
capabilities of sensor radars, as well as to demonstrate that
proper techniques for selecting a subset of observations can im-
prove the localization accuracy, despite the lower complexity.

In this paper, we propose techniques that are blind to both
channel knowledge and propagation environment for selecting
representative observations. Such blind techniques rely on in-
dicators obtained from noncoherent reception and sub-Nyquist
sampling of waveforms. We develop a methodology for the
design and analysis of sensor radar by jointly considering
network intrinsic properties and signal processing techniques.
The key contributions of this paper can be summarized as
follows:

• introduction of blind techniques for the selection of rep-
resentative observations in sensor radars;

• development of a methodology for the design and analysis
of sensor radars by jointly considering (i) network setting,
(ii) propagation environment, (iii) waveform processing,
(iv) observation selection, and (v) localization algorithm;

• quantification of the localization accuracy improvement
provided by observation selection techniques.

The performance evaluation accounts for all the channel
impairments such as multipath, clutter, and LOS/NLOS prop-
agation. To understand the key benefits of selecting repre-
sentative observations, we consider all the relevant aspects of
the sensor radar and the propagation environments, neglecting

3Diversity is a well-known concept used in wireless communications to
improve the performance, particularly in fading channels (see, e.g., [49]–[53]).

Fig. 1. Example of a sensor radar configuration with one transmitter at pn and
|S| − 1 receivers at p1,p2, . . . ,pn−1,pn+1,pn+2, . . . ,p|S|; the target
is at p.

synchronization errors and other secondary aspects that are
beyond the scope of this study. Instead of considering a specific
range error model, we simulate the entire signal processing
chain starting from the received waveforms. As a case study,
we consider UWB sensor radars in a typical indoor environment
(with LOS and NLOS conditions, clutter, and multipath).

The remainder of this paper is organized as follows.
Section II describes the sensor radar network. Section III
introduces the collection and selection of representative ob-
servations. Section IV defines indicators and features for the
observation selection. Section V presents the techniques for
the processing of the received waveforms. Section VI provides
results for a case study, and finally, Section VII gives our
conclusions.

II. SENSOR RADAR NETWORK

We now describe the network setting and the propagation
environment for the analysis of sensor radars.

A. Network Setting

Refer to a network of sensors with index set S and cardinality
|S|, where the sensor indexed by s ∈ S is in position ps. The
radar configuration is defined by an index subset T ⊂ S of
|T | transmitters and an index subset R ⊂ S of |R| receivers.
The ith transmitter (i ∈ T ) and the jth receiver (j ∈ R) are
at pi and pj , respectively. Such a radar configuration defines
an index set P of transmitter–receiver pairs with cardinality
|P| = |T | × |R|. Specifically, each pair (i, j) ∈ P is composed
of the ith transmitter emitting a signal and the jth receiver
collecting the received signal after backscattering by the target
object and wireless propagation. Fig. 1 shows an example of
sensor radar with P = {(n, 1), (n, 2), . . . , (n, n− 1), (n, n+
1), . . . , (n, |S|)}. By processing the received signal for each
pair, the TOA is estimated, and the transmitter-to-target-to-
receiver distance (signal path length) is determined.

For a target object in position p and a radar (i, j) ∈ P , the
signal path length is given by

dij(p) = di(p) + dj(p) = τij(p)c (1)
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where di(p) and dj(p) are the ith transmitter-to-target and
target-to-jth receiver distances, respectively, c is the speed of
light, and τij(p) is the TOA at the jth receiver for a signal
emitted by the ith transmitter and backscattered by the target.4

The transmitter–receiver pair forms a monostatic or a bistatic
radar whether the transmitter and the receiver are colocated
(pi = pj) or not (pi �= pj).5 In a bistatic radar, each single
signal transmission causes the reception of at least two signal
replicas in free-space propagation: the direct signal via the
transmitter-to-receiver path and the reflected signal via the
transmitter-to-target-to-receiver path [8]. Thus, a temporal sep-
aration between the two signal replicas is necessary to ensure
their resolvability, which results in a minimum resolvable delay
for the radar. In a monostatic radar, the same antenna is used
for transmission and reception. Thus, a switching time between
the transmission and reception phases is present, which results
in a blind range for the radar. In the following, τmin denotes
either the minimum resolvable delay and the blind range for the
bistatic or monostatic case, respectively [7].

The TOA τij(p) can be determined and the target detected
by the radar (i, j) ∈ P if

dij(p) ≥ d�ij (2)

where d�ij = ‖pi − pj‖+ τminc. Then, the target position can
be determined by a localization algorithm that processes the
observation vector τ̂P(p) with elements τ̂ij(p) representing the
estimated TOA for all the radars (i, j) ∈ P .

The detection and localization capabilities of a sensor radar
network depend on its intrinsic properties, the receiver sensi-
tivity, and the received SNRs. Specifically, the received SNR
γij(p) for the radar (i, j) ∈ P and target at p is given by

γij(p) =
PR,ij(p)

PRFN0
(3)

where PR,ij(p) is the received power referred to a pulse
repetition frequency (PRF) PRF, and N0 is the one-sided
power spectral density (PSD) of the noise. Target detection and
TOA estimation benefit from gathering the energy of multiple
backscattered signals. This gathering occurs by processing re-
ceived signals collected from the transmission of Np signals.

A minimum received SNR γ� must be guaranteed to fulfill
detection requirements. From (3), this requirement corresponds
to a minimum received power P �

R as6

PR,ij(p) ≥ P �
R. (4)

4It is known that the target position p is given by the intersection of isorange
contours (the TOA estimates define circumference or ellipses in the monostatic
and the bistatic case, respectively) [7]. In general, isorange contours have more
points of intersection leading to ambiguities in target location in nonideal
conditions.

5Note that bistatic pairs might require accurate phase and time synchroniza-
tion between the transmitter and the receiver [7].

6The locus of points satisfying the minimum SNR requirement, in a bidi-
mensional scenario with free-space propagation, corresponds to that inside a
circumference (namely, maximum circumference) for monostatic radars and
that inside a Cassini oval (namely, maximum Cassini oval) for bistatic radars
[8]. In NLOS conditions, the area covered is irregular and depends on the
obstructions of signal propagation.

B. Propagation Environment

The power received in a band [fL, fU] from the ith transmitter-
to-target-to-jth receiver path is given by

PR,ij(p) =

fU∫
fL

Rij(f,p)df (5)

where Rij(f,p) is the one-sided PSD of the received signal.
In free-space propagation (i.e., LOS conditions), the signal is

attenuated due to the path loss. In obstructed propagation (i.e.,
NLOS conditions), in addition to the path loss, the signal is
also attenuated and time-delayed by obstructions depending on
the material characteristics such as the relative permittivity and
attenuation coefficient. The obstruction loss Lij(f,p) accounts
for such effects on the received signal PSD. In a general case,
the received signal PSD is affected by path loss and obstruction
loss as

Rij(f,p) =

◦
Rij(f,p)

Lij(f,p)
(6)

where
◦
Rij(f,p) is the received signal PSD in LOS conditions.

In the case of UWB signals, the path loss is modeled ac-
cording to the IEEE 802.15.4a standard [54]. In particular, the
one-sided PSD of the signal received for the radar (i, j) ∈ P
and target at p in the absence of signal obstructions is given by

◦
Rij(f,p) =

Ti(f) ηi (f,Θi) ηj (f,Θj) Σ (f,Θi,Θj)

(4π)3
(

f0d0

c

)2

�βij(p)
(

f
f0

)2κ+2 (7)

where Ti(f) is the transmitted signal PSD that feeds the
transmitting antenna; d0 is the reference distance and f0 the
center frequency; ηi(f,Θi) and ηj(f,Θj) are the transmitting
and receiving antenna efficiencies, respectively; Θi and Θj are
the solid angles between ith transmitter–target and target–jth
receiver, respectively; Σ(f,Θi,Θj) is the RCS of the target;
and �ij(p) = di(p)dj(p)/d0

2. The path-loss exponents β and
κ provide the path-loss dependence on distance and frequency,
respectively. In a typical indoor environment, the presence of
walls determines an NLOS condition with obstruction loss (in
decibels) given by [55]

10 log10 Lij(f,p) =

Wij(p)∑
w=1

n
(w)
ij (p)X(w)(f) (8)

where Wij(p) is the number of wall types met by the signal

(incident and scattered), n(w)
ij (p) is the number of walls of type

w, and X(w)(f) is the frequency-dependent loss induced by a
wall of type w. Therefore, the total loss is the sum of path loss
and obstruction loss located along the propagation paths. Note
that Lij(f,p) = 1 in free-space propagation.

Together with the obstruction loss, the presence of obstacles
and walls obstructing the signal path results in an excess delay
for the TOA, which causes a positive bias on the TOA estimate.
For example, a set of measurements was performed to charac-
terize the excess delay on UWB signals due to the presence of
concrete walls in a typical office building [38], showing that
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Fig. 2. Sensing and processing in sensor radar networks for localization with observation selection.

the TOA estimate bias is βij(p) � Δ/c, where Δ is the total
thickness of the wall.

The accuracy of target location inference relies on the quality
of TOA estimates composing the observation vector τ̂P(p),
which depends on the intrinsic properties of the sensor radar. The
processing of signals received in LOS conditions might result
in imperfect TOA estimation τ̂ij(p); therefore, in an imperfect
signal path-length estimation, d̂ij(p) = τ̂ij(p)c, due to non-
ideal propagation (e.g., multipath, clutter, and noise). The pro-
cessing of signals received in NLOS conditions might result in
inaccurate TOA estimates due to excess delay and obstruction
loss. Therefore, in NLOS conditions, the TOA estimates are
more likely nonrepresentative observations of the target. Hence,
given an observation vector obtained from diverse radars in the
sensor radar network, the localization accuracy can be enhanced
by processing a subset of representative observations of the
target. Section V will present the processing techniques for the
selection of representative observations in sensor radars.

III. OBSERVATION COLLECTION AND SELECTION

The range estimates serve as inputs of localization algorithms
to determine the target position. Specifically, from the set P
of transmitter–receiver pairs, a vector τ̂P(p) of Nobs = |P| =
|T | × |R| observations collected in diverse spatiotemporal con-
ditions is obtained for a target at p. In inference theory, the
presence of nonrepresentative and biased observations (also
known as nonrepresentative outliers [10]) leads to inaccurate
parameter estimation. Therefore, range estimates related to
multipath, clutter, and signal obstructions degrade the accuracy
of position estimation. We propose low-complexity techniques
to select a subset τ̂Psel

(p) of L = |Psel| ≤ Nobs elements of
the observation vector that contains representative observations
for the target position estimation. Such selection techniques
are based on signal features that can be extracted in blind
conditions (i.e., without prior information).

Fig. 2 shows the block scheme for target localization starting
from the set of received signals vP(t) = {vij(t) : (i, j) ∈ P}.
For each signal after prefiltering and clutter removal rij(t), a
feature h(rij) is extracted. Then, a subset of cardinality L ≤
Nobs of vectors rPsel

(t) is selected based on such a feature. The
TOA estimator at each receiver determines τ̂ij for the signal
rij(t) if selected, i.e., (i, j) ∈ Psel.

The target position is inferred based on the set of selected
observations τ̂Psel

(p) ⊆ τ̂P(p). Such a set of observations is
processed by a Bayesian or a non-Bayesian localization algo-
rithm. The choice of the localization algorithm is driven by the
tradeoff between performance (such as localization error and
outage) and complexity (such as computational complexity and
message passing), as well as by prior knowledge of the environ-
ment. In this paper, no information on the bias introduced by

obstructions, residual clutter after nonideal removal, nor TOA
statistical distribution is available for position estimation. In
such a blind case, a least squares (LS) estimator can be adopted,
which is expressed as7

p̂ = argmin
p̃

∑
(i,j)∈Psel

|τ̂ij(p)− τij(p̃)|2 . (9)

The choice of the processing techniques for the received
signals impacts the quality of observations and the accuracy of
location inference. The signal processing techniques considered
in this paper, which consist of received waveform prefiltering
and clutter removal, as well as TOA estimation, will be de-
scribed in Section V.

We now determine the localization complexity in the pres-
ence of observation selection, i.e., C(L,Nobs), where L is the
number of selected observations, and Nobs is the total number
of available observations. Such complexity is given only by that
of the localization algorithm when all observations available are
used (L = Nobs), whereas it also depends on the complexity of
feature evaluation and observation selection when a subset of
the available observations is used.

The estimation of the target position via the LS algorithm
based on range measurements is an NP-hard problem with an
exponential complexity on the number of observations O(Nm)
[56]. In the following, C�(N) denotes the complexity of the lo-
calization algorithm as a function of the number N of processed
observations, which is N = L with selection of representative
observations and N = Nobs without selection. Therefore, the
complexity for target localization without (L = Nobs) and with
(L < Nobs) subset selection of representative observations is
given by

C(L,Nobs) =

{
C�(Nobs), L = Nobs

C�(L) + Cf(Nobs) + Cs(Nobs), L < Nobs

(10)

where Cf(Nobs) is the complexity of feature evaluation, and
Cs(Nobs) is the complexity of the sorting algorithm based
on feature h(P). The term Cs(Nobs) depends on the sorting
algorithm used and is asymptotically quadratic in a worst-case
analysis Cs(N) = O(N2) [57]. When the term Cf(Nobs) is a
linear function with the number of observations, i.e., O(Nobs),
the comparison between the computational complexity of local-
ization, with and without observation selection, depends on the
complexity of the localization algorithm C�(N). For example,
C�(Nobs) = O(Nm

obs) in the case of a localization algorithm
with complexity exponential on the number of observations. In
such a case, the selection of representative observations enables
significant savings in complexity with m ≥ 2. A typical value
for algorithms operating matrix inversion is m = 3.

7The specific algorithm for localization is not the main focus of this paper.
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IV. OBSERVATION SELECTION METHODS

We now introduce blind and low-complexity techniques that
exploit diversity and provide selection of observations to al-
leviate harsh propagation impairments and improve localiza-
tion performance. The choice of the feature is crucial for the
sensor radar’s ability to select observations that are represen-
tative for target location inference. Therefore, such a choice
has to be based on the relation between the feature h(rij)
and the range error eij = c|τ̂ij(p)− τij(p)|. Consider a deci-

sion vector εij = [ε
(0)
ij , ε

(1)
ij , . . . , ε

(Nb−1)
ij ] of Nb signal indicator

samples for the pair (i, j) ∈ P (e.g., with an energy detector
(ED), ε(q)ij is related to the energy of samples within the qth time
interval), then h(rij) = h(εij). Since the range error depends
on the true TOA, the ideal selection would be based on the cen-
trality of ε(q)ij distribution with respect to τij(p). Unfortunately,
the true TOA is not known in a blind context. We now consider
features related to the amplitude and temporal distribution of
the decision vector εij for selecting the observations that are
most likely representative of the target (i.e., less affected by
multipath, noise, and obstruction loss).

To evaluate the temporal dispersion of εij over the ob-
servation time, we first normalize the qth element (with q =
0, 1, . . . , Nb − 1), within the each decision vector, as

fij(q) =
ε
(q)
ij∑Nb−1

k=0 ε
(k)
ij

(11)

where fij(q) represents the sampling probability that the true
TOA belongs to the qth time interval given the vector εij .8

Define the cumulative distribution function, the first moment,
and the nth central moment of fij(q), respectively, as

Fij(x) =
∑
q≤x

fij(q) (12)

μij =

Nb−1∑
q=0

qfij(q) (13)

μ
(n)
ij =

Nb−1∑
q=0

(q − μij)
nfij(q). (14)

From (12)–(14), the temporal dispersion of the signal indi-
cator samples can be evaluated by considering variance σ2

ij ,
interquartile range IQRij , kurtosis κij , and skewness χij , which
are, respectively, given by

σ2
ij = μ

(2)
ij (15)

IQRij = F−1
ij (0.75)− F−1

ij (0.25) (16)

κij =
μ
(4)
ij(

μ
(2)
ij

)2 (17)

χij =
μ
(3)
ij(√
μ
(2)
ij

)3 . (18)

8Note that, in the absence of prior knowledge, we consider the true TOA
included in the maximum element of εij with highest probability.

To evaluate the amplitude dispersion of εij , consider the max-
imum value Mij , sample variance s2ij , sample range rij , and
sample skewness cij , which are, respectively, given by

Mij = max
q

ε
(q)
ij (19)

s2ij =
1
Nb

Nb−1∑
q=0

[
ε
(q)
ij −

(
1
Nb

Nb−1∑
k=0

ε
(k)
ij

)]2

(20)

rij =

∣∣∣∣max
q

ε
(q)
ij −min

q
ε
(q)
ij

∣∣∣∣ (21)

cij =

∑Nb−1
q=0

[
ε
(q)
ij − 1

Nb

(∑Nb−1
k=0 ε

(q)
ij

)]3
Nb

(
s2ij

) 3
2

. (22)

The relation between a feature h(εij) ∈ {σ2
ij , IQRij , κij ,

χij , s
2
ij ,Mij , rij , cij} and the range error eij can be evaluated

through the correlation ρ(h(εij), eij). Such correlation is de-
termined via both the Spearman and the Pearson correlation
coefficients, which indicates whether a monotone relation be-
tween the two variables exists [58]. Specifically, the Pearson
correlation coefficient for N observations of two variables x
and y is given by

ρ(x, y) =

∑N
i=1(xi − x)(yi − y)√∑N

i=1(xi − x)2
√∑N

j=1(yj − y)2
(23)

where xi and yi, with i = 1, . . . , N , are observations of x
and y, respectively, and x and y are the average values of
the observation sample {xi}Ni=1 and {yi}Ni=1, respectively. The
Spearman correlation coefficient is determined similarly to (23)
by using the ranked variables in place of the original ones.9

Both correlation coefficients take values in [−1,1], where the
value ρ(h(εij), eij) = 0 indicates that the two variables are un-
correlated, whereas positive or negative values indicate that any
monotone relation between the two variables is nondecreasing
or nonincreasing, respectively. The statistical significance of
such correlation coefficients can be tested based on the sample
size and the resulting correlation values providing a p-value,
where p represents the probability of obtaining the same corre-
lation coefficient with two independent variables [59].

Consider, for example, the cases h(εij) = σ2
ij , h(εij) = χij ,

and h(εij) = cij . Specifically, low or high values of the vari-
ance σ2

ij are obtained with narrow or wide sampling distribution
of the time interval containing the true TOA, respectively. There-
fore, lower values of σ2

ij are expected for large values of SNR
corresponding to smaller range errors. Differently, positive or
negative values of skewness χij are obtained when the sampling
distribution is right-side or left-side tailed, respectively. In parti-
cular, positive values are due to the shape of the channel impulse
response, whose right-side tail is given by the delay spread of
the channel. The channel impulse response guides the shape of
fij(q) for large SNR values, whereas it has a lower impact for

9Ranking is performed by sorting the observations in ascending order and
associating them with the corresponding ordinal number.
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Fig. 3. TOA estimation based on energy detection for the radar (i, j) ∈ P .

small SNR values. Therefore, higher values of χij are expected
for smaller range errors. Finally, low or high values of sample
skewness are obtained when there are many or few elements
with large values within the decision vector εij , respectively.
Large-value indicator samples are more likely to be associated
with the target for large SNR values, when the energy due to
the target is easily discernible from the noise floor. Therefore,
higher values of cij are expected for smaller range errors.

The observations τ̂P(p) are sorted based on the features
h(εP) in increasing or decreasing order, depending on whether
the relation between h(εij) and eij is monotonically non-
increasing or nondecreasing, respectively.10 Then, the subset
τ̂Psel

(p) of L = |Psel| ≤ Nobs selected observations is com-
posed by the first L sorted observations and further processed
by the localization algorithm.

From (10), the comparison between the computational com-
plexity of localization with and without observation selection
depends on the complexity of the localization algorithm C�(N).
Note that the term Cf(Nobs) is a linear function with the number
of observations O(Nobs) for all the aforementioned features,
except for the IQRij that requires function inversion. Therefore,
the selection of representative observations enables significant
savings in complexity when m ≥ 2.

The extraction of the aforementioned features will be de-
tailed in the following for a case of wide usage based on sub-
Nyquist processing with energy detection.

V. OBSERVATION PROCESSING

We now describe the signal preprocessing techniques and
TOA estimation.

A. Prefiltering and Clutter Removal

The out-of-band noise can be mitigated by means of a
bandpass zonal filter (BPZF), which consists of a bandpass
filter having the same center frequency and bandwidth of the
transmitted signal. The output of the BPZF, corresponding to
the transmission of Np pulses, is given by

ṽij(t) =

Np−1∑
p=0

Lp−1∑
l=0

α
(l)
ij s

(
t− pTg − τ

(l)
ij

)
+ wij(t) (24)

where s(t) is the output of the BPZF corresponding to a single
pulse at its input, Lp is the number of received multipath com-

10The features h(εP ) are calculated based on the vector εP , that contains
all the decision vectors εij with (i, j) ∈ P .

ponents due to target backscattering (with the lth component
having gain α

(l)
ij and delay τ

(l)
ij ), and Tg � 1/PRF. The term

wij(t) includes the filtered components of noise and clutter.
There are various techniques for clutter removal, based on the

operation environment. In case of static clutter, two classical
techniques are the empty-room technique and the frame-to-
frame technique. The empty-room technique consists of a setup
phase where a signal, namely, reference signal, is received
and recorded at each radar in the absence of a target object
[60]. Such a reference signal is recorded offline from a high
number of transmitted pulses, and therefore, it includes the
time-invariant clutter. Then, the reference signal is subtracted
from the signal received in the presence of target objects to
mitigate static clutter. The frame-to-frame technique exploits
the amplitude and phase variations of backscattered signals due
to the target mobility for discerning the time-invariant clutter
from the moving target [42]. In the case of nonstatic clutter,
both clutter removal techniques present a residual clutter in the
waveforms at the input of the TOA estimator.

B. TOA and Position Estimation

A variety of TOA estimators is present in the literature;
those based on energy detection received attention because they
are based on noncoherent signal reception and sub-Nyquist
sampling. In particular, with energy detection, the TOA esti-
mates are determined based on energy values collected in time
intervals (energy bins) [31].

The signal at the input of the TOA estimator, after prefiltering
and clutter removal, is given by

rij(t) =

Np−1∑
p=0

Lp−1∑
l=0

α
(l)
ij s

(
t− pTg − τ

(l)
ij

)
+ nij(t) (25)

where nij(t) includes the filtered noise and the residual clutter.
Fig. 3 shows the TOA estimator based on energy detection

and decision by comparing each energy bin averaged over mul-
tiple received pulses with a threshold. The TOA estimator uses
a temporal part of the signal rij(t) with duration Tg, including
only one received pulse to avoid ambiguous TOA estimations,
and then, it accumulates over Np transmitted pulses. The goal

is to determine d̂ij(p) from the estimate τ̂
(1)
ij .11 In the absence

of prior information, we consider the true τij(p) uniformly

11Note that after perfect clutter removal, multipath propagation in (25)
accounts for the paths scattered by the target, and these paths arrive at the
receiver after reflections.
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distributed in the interval [0, Ta], where the maximum possible
delay Ta depends on the propagation environment. The PRF is
chosen to satisfy Tg > Ta.

The ED is composed of a square-law device followed by an
integrate and dump (I&D) block with dwell time Tdwell. Then,
the ED provides a vector of Nb = �Tg/Tdwell� energy bins. The
qth energy bin for the pth received waveform of the radar (i, j)
is given by12

ε
(p,q)
ij =

(q+1)Tdwell+pTg∫
qTdwell+pTg

r2ij(t) dt (26)

with p = 0, 1, . . . , Np − 1, and q = 0, 1, . . . , Nb − 1.
A decision vector based on energy bins (namely, the energy

vector) is obtained as εij = [ε
(0)
ij , ε

(1)
ij , . . . , ε

(Nb−1)
ij ], where the

qth element ε(q)ij is determined, for example, by averaging over
the Np received signals [31], i.e.,

ε
(q)
ij =

1
Np

Np−1∑
p=0

ε
(p,q)
ij . (27)

The TOA estimation is made by comparing each element ε(q)ij

with a threshold ξij . From such a comparison, the decision is
taken on the bin inside which the true TOA is detected. The
choice of the threshold ξij is crucial for the TOA estimation,
as well as for the level of misdetection and false alarms. In this
paper, the threshold is designed based on a constant false-alarm
approach, i.e., the threshold ξij is chosen to obtain a constant
probability of the event that an only-noise energy bin is above
the threshold.13 For the radar (i, j) ∈ P and target at p, the
estimated TOA τ̂ij(p) is chosen as the central value of the
corresponding dwell interval for the first element of the energy
vector above the threshold ξij .

The amplitude and temporal distributions of the elements ε(q)ij

depend on the true TOA τij(p) and the received SNR γij(p),
which are affected by propagation conditions (i.e., noise, path
loss, and obstruction loss). Fig. 4 shows three examples of
energy vectors ε

(q)
ij as a function of q for different signal path

lengths and total thickness of the crossed walls. Note that the
true TOA τij(p), which is dependent on both signal path length

and obstructions, guides the centrality of distribution of ε
(q)
ij ,

whereas the SNR, which is dependent on path loss and obstruc-
tion loss, guides the amplitude and temporal dispersion of ε(q)ij .
Decisions provided by comparison with a threshold in the case
of disperse distribution of energy bins are more vulnerable to
nonrepresentative elements of the observation vector. Hence,
τ̂ij(p) is most likely due to a nonrepresentative observation

12Remember that the collection of energy from successive received wave-
forms increases the performance of the TOA estimator.

13We refer to only-noise bins as those with energy due only to noise. Note
that this threshold represents an optimal solution in additive white Gaussian
noise channels. Alternatively, in [61], a simple criterion to determine a thresh-
old based on the evaluation of early detection probability and noise power
knowledge is proposed for multipath channels.

Fig. 4. Energy vectors for different values of signal path-length dij(p) and to-
tal wall thickness Δ. Energy values are normalized to the maximum of the
vector in (a). Results are obtained with an ED setting and channel model used
in the case study (see Section VI).

of the target when the values ε
(q)
ij have a flat distribution with

values close to the noise floor.

VI. CASE STUDY

We now present a case study for a network of UWB sensor
radars that operates in an indoor environment and that exploits
the selection of representative observations. The performance
metrics, the operation environment, the signal processing tech-
niques, and the numerical results are described in the following
subsections.

A. Performance Metrics

The localization performance is evaluated in terms of local-
ization error and localization error outage (LEO). The local-
ization error is defined as the Euclidean distance between the
estimated position p̂ and the true position p of the target, as
given by

e(p) = ‖p̂− p‖. (28)

The LEO is defined as the probability that the localization error
is above a maximum tolerable value eth, as given by

PLEO = P {e(p) > eth} = Ep

{
1(eth,+∞) {‖p̂− p‖}

}
(29)

where 1B{x} � 1 if x ∈ B and 0, otherwise.14

14
P{·} denotes probability and Ex{·} denotes the statistical expectation

averaged over the random variable (RV) x.
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Fig. 5. Operation environment with sensor radars and walls. Sensor position
coordinates are p1 = (1, 2), p2 = (0.5, 5), p3 = (2, 8), p4 = (3, 3), p5 =
(6, 6), p6 = (7, 3.5), p7 = (9.2, 4), p8 = (9.5, 8), p9 = (8, 8), p10 =
(3, 6.5), p11 = (5, 8.5), and p12 = (8, 1.8), in meters.

B. Operation Environment

1) Scenario: Fig. 5 shows the operation environment of
10 m × 10 m with walls, in which NS = |S| = 12 UWB sen-
sors are placed. Results are compared with those obtained in the
absence of walls. In the operation environment, the maximum
TOA value is Ta = 94.2 ns (corresponding to the TOA of a
signal traveling over a distance of twice a diagonal line). The
network of sensor radars varies its configuration during the lo-
calization process. Specifically, we consider NS − 1 multistatic
configurations with a single transmitter and multiple receivers.
At the nth configuration, there is one transmitter at pn and the
NS − n receivers in positions {pn+1,pn+2, . . . ,pNS

}. In re-
ciprocal channels, the choice of these multistatic configurations
ensures diverse propagation paths for received signals rij(t)
with a single observation per sensor pair. The total number
of observations is Nobs = NS(NS − 1)/2 (i.e., Nobs = 66 for
NS = 12).

The impulse radio UWB sensor radars transmit a sequence
of root-raised-cosine pulses compliant with the European lower
band with PRF = 5 MHz. The antennas are omnidirectional,
and the one-sided noise PSD is N0 = −200 dBW/Hz (e.g.,
noise figure F = 6 dB and antenna noise temperature 290 K).

2) Multipath and Clutter: Multipath propagation for the
direct signal (from transmitter to target) and backscattered
signal (from target to receiver) are modeled according to IEEE
802.15.4a [54] for a residential LOS environment. The NLOS
conditions caused by walls generate obstruction loss and excess
delay, which are taken into account as described in Section II-B.
For each TOA estimation, the presence of 100 clutter objects
uniformly distributed in the operation environment is consid-
ered. Such clutter is static, with RCS for each object obtained
as a realization of a Swerling type-V RCS (i.e., a Chi-squared
RV with four degrees of freedom).

3) Target: A Swerling type-III RCS Σ is considered for
the target, which models a human body with random RCS
distributed as a Chi-squared RV with four degrees of freedom,

constant during a scan (i.e., the transmission of Np pulses
necessary for the TOA estimation process), and independent
from scan to scan [7]. The average RCS is E{Σ} = 1 m2, which
is typical for the human body [62].

C. Signal Processing and Localization Algorithm

The energy vector εij for each radar (i, j) ∈ Psel is obtained
via an ED with dwell time Tdwell = 2 ns and observation
time Tg = 200 ns. Then, a TOA estimate τ̂ij(p) is determined
through comparison with a threshold ξij , which is chosen to
obtain a constant probability of the event that an only-noise en-
ergy bin is above the threshold. Therefore, P{ε > ξij} = 10−3

when ε is an only-noise bin (e.g., corresponding to an absence
of the target). The static clutter is mitigated via an empty-
room algorithm with reference signal obtained by averaging
100 received waveforms in an absence of the target [42].

We evaluate the performance of the sensor radar network
when L observations are selected based on the eight differ-
ent features presented in Section V, i.e., h(εij) ∈ {σ2

ij , IQRij ,

κij , χij , s
2
ij ,Mij , rij , cij} for (i, j) ∈ Psel. To evaluate the ben-

efits offered by selecting representative observations using the
proposed features, a case in which L observations are ran-
domly chosen is also presented for comparison. In addition,
a nonblind case is presented as a benchmark, where the L
energy vectors are chosen as those leading to the minimum
range errors by using h(εij) = eij = c|τ̂ij(p)− τij(p)|. There,
localization is performed based on the selected observations for
1000 target positions uniformly distributed in the environment
in Fig. 5 with and without walls.

D. Numerical Results

We now present results related to the choice of observation
selection features and to the localization accuracy.

1) Observation Selection Features: Figs. 6 and 7 show the
variance σij and kurtosis κij , respectively, for two bistatic
radars in the network (transmitter indexed by i = 6 and re-
ceiver indexed by j = 10 or 12). One thousand target positions
uniformly distributed in the environment with walls are consid-
ered. It can be observed how the feature varies with the signal
propagation conditions (i.e., target in LOS or NLOS conditions
with both transmitter and receiver). In particular, Fig. 6 shows
that high values of variance σij are obtained when the tar-
get is in LOS conditions with both transmitter and receiver
[i.e., Fig. 6(b)] or in light NLOS conditions [i.e., Fig. 6(a)].15

Fig. 7 shows that high values of kurtosis can be obtained not
only in LOS and light NLOS conditions but under heavy NLOS
conditions as well (e.g., for targets in the bottom-right corner of
the environment). These results indicate that using the variance
as feature enables a more accurate selection of representative
observations than using the kurtosis. Therefore, we expect a
correlation |ρ(σij , eij)| higher than |ρ(κij , eij)|.

To understand the ability of the features proposed in
Section IV to indicate representative observations, Fig. 8 shows

15We refer to light or heavy NLOS conditions when one or more walls are
present in the signal propagation path, respectively.
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Fig. 6. Color map of variance σ2
ij with i = 6 and j = 10, 12, for 1000 target

positions uniformly distributed in the environment. The value of σ2
ij is normal-

ized to the maximum value in the environment.

the Spearman and Pearson correlations between each feature
h(εij) and the range error eij . The nonblind case with h(εij) =
eij used as a benchmark is also presented. Correlation is ob-
tained by considering a data set of 1000 ×Nobs energy vectors
(i.e., one energy vector per transmitter–receiver pair, for each
of the 1000 uniformly distributed target positions). We verified
that the p-value is lower than 10−5 for all the features according
to both Spearman and Pearson’s correlations, which indicates
that the correlation is statistically significant [59]. Specifically,
low or high values of |ρ(h(εij), eij)| indicate a weak or strong
capability of selecting representative observations using the
feature h(εij), respectively. The positive or negative sign of
ρ(h(εij), eij) indicates that the lower values of h(εij) are most
likely to provide smaller or larger range errors, respectively.
Therefore, the subset of representative observations leading to
the lower or higher values of h(εij) is selected if the sign of
ρ(h(εij), eij) is positive or negative, respectively. Note that the
correlation for the feature h(εij) = σ2

ij is 0.38 with Pearson’s
method and 0.44 with Spearman’s method; the correlation
for the feature h(εij) = χij is −0.71 with Pearson’s method

Fig. 7. Color map of kurtosis κ2
ij with i = 6 and j = 10, 12, for 1000 target

positions uniformly distributed in the environment. The value of κ2
ij is normal-

ized to the maximum value in the environment.

and −0.64 with Spearman’s method; and the correlation for
the feature h(εij) = cij is −0.71 with Pearson’s method and
−0.90 with Spearman’s method. Therefore, the selection of
representative observations leading to the lower variance, the
higher skewness, or high sample skewness most likely provides
small range errors.

Based on these results, we evaluate the effects of observation
selection on the localization performance for these three fea-
tures, which present large values of correlation together with
linear computational complexity.

2) Localization Performance: Fig. 9 shows the LEO at eth=
1 m as a function of the number of selected observations L for
h(εij) = σ2

ij , κij , and Mij . To better understand the importance
of the observation selection features on localization accuracy,
the results are also obtained by considering a random selection
of the L observations. The nonblind case h(εij) = eij serves
as a benchmark. In the absence of walls (LOS conditions),
all selection features provide a LEO that decreases with the
number of selected observations. This is expected from the
absence of obstruction loss and excess delay. However, note
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Fig. 8. Pearson and Spearman correlation coefficients between each considered feature and the range error. Green and red regions represent index values of
either strong or weak correlation, respectively. The red line represents the case of uncorrelation between the two variables.

Fig. 9. LEO as a function of L = 1, 2, . . . , Nobs for eth = 1 m, with (solid)
and without (dashed) walls, for the cases (A)h(εij) = σ2

ij , (B)h(εij) =

κij , and (C)h(εij) = Mij . Case (D) represents the random choice of L
observations. Case (E) refers to the nonblind case h(εij) = eij .

that L = 5 observations, even randomly chosen, are sufficient
to have a localization error ep(p) < 1 m in 80% of cases
despite that only L = 5 TOA estimates out of 66 are processed.
This significantly reduces localization complexity, which is a
quadratic function of the number of estimates that are pro-
cessed. The worse performance levels for L < 5 are mainly due
to ambiguities (e.g., ghost targets [7]) given by the intersection
of L isorange contours (ellipses in two dimensions) leading to
more than a single point in the absence of prior information
(e.g., information on the environment). In the presence of walls
(NLOS conditions), the LEO presents a minimum for all the
selection features with L = 5 or 6. Here, the effect of selection
is clear since in the case with L = 5, the localization error is
ep(p) < 1 m in 20% of cases for random observation choice
and in 77%, 80%, and 76% of cases for h(εij) = σ2

ij , χij , and
cij , respectively. Note also that the localization error is ep(p) <
1 m in only 7% of cases when no selection is performed (i.e.,
all the L = Nobs = 66 observations are processed). Therefore,
the performance improvement offered by the proposed method
for this selection of representative observations is remarkable.

Fig. 10 shows the LEO as a function of eth for L = 5 selected
observations using the features considered in Fig. 9. In the

absence of walls [ see Fig. 10(a)], the localization error in 80%
of cases is below 0.08 m for the nonblind case h(εij) = eij ,
0.98 m for h(εij) = σ2

ij , 0.72 m for h(εij) = χij , 0.74 m for
h(εij) = cij , and 0.84 m for the random observation selection.
Note that the random choice shows similar performance to the
other selection techniques in the absence of obstructions. This
is due to the fact that range measurements almost have the same
representativeness in the absence of obstruction loss and excess
delay. In the presence of walls [see Fig. 10(b)], the localization
error in 80% of cases is below 0.42 m for the nonblind case
h(εij) = eij , 1.1 m for h(εij) = σ2

ij , 0.96 m for h(εij) = kij ,
and 1 m for h(εij) = cij . Note that the localization error is
above 3 m in 49% of cases when the subset of observations
is randomly selected. This highlights that, together with com-
plexity reduction, the processing of a small subset of properly
selected representative observations significantly improves the
localization performance. It is remarkable that proper observa-
tion selection can provide localization performance close to that
in the absence of walls.

VII. CONCLUSION

The intrinsic properties of sensor radar networks and the
representativeness of their observations determine the localiza-
tion accuracy, particularly in harsh propagation environments.
Blind methods for observation selection have been proposed
based on features extracted from the received waveforms.
Our methodology inspects the network setting, propagation
environment, waveform processing, observation selection, and
localization algorithm in the absence of prior information. It
shows the importance of selecting representative observations
for localization accuracy in non-light-of-sight conditions, par-
ticularly by adopting the appropriate selection features. In fact,
in addition to a reduction in the overall localization complexity,
observation selection significantly improves the performance in
the presence of obstacles. The localization performance of a
network of ultra-wideband sensor radars operating in an indoor
environment with multipath, clutter, and obstructions has been
determined based on the proposed methods for observation se-
lection and signal processing. Results show that, in the presence
of obstructions due to walls, the proposed selection methods
strongly improve the localization accuracy. For example, the
localization error outage at 1 m improves from 93% without
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Fig. 10. LEO as a function of eth, with L = 5 and Nobs = 66, for the cases (A)h(εij) = σ2
ij , (B)h(εij) = κij , (C)h(εij) = Mij . Case (D) represents the

random choice of L observations. Case (E) refers to the nonblind cases, where h(εij) = e2ij .

observation selection to 23% with the proposed observation
selection method.
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