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MIMO Networks: The Effects of Interference
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Abstract—Multiple-input multiple-output (MIMO) systems are
being considered as one of the key enabling technologies for future
wireless networks. However, the decrease in capacity due to the
presence of interferers in MIMO networks is not well understood.
In this paper, we develop an analytical framework to characterize
the capacity of MIMO communication systems in the presence of
multiple MIMO co-channel interferers and noise. We consider the
situation in which transmitters have no channel state information,
and all links undergo Rayleigh fading. We first generalize the de-
terminant representation of hypergeometric functions with matrix
arguments to the case when the argument matrices have eigen-
values of arbitrary multiplicity. This enables the derivation of the
distribution of the eigenvalues of Gaussian quadratic forms and
Wishart matrices with arbitrary correlation, with application to
both single-user and multiuser MIMO systems. In particular, we
derive the ergodic mutual information for MIMO systems in the
presence of multiple MIMO interferers. Our analysis is valid for
any number of interferers, each with arbitrary number of antennas
having possibly unequal power levels. This framework, therefore,
accommodates the study of distributed MIMO systems and ac-
counts for different spatial positions of the MIMO interferers.

Index Terms—Eigenvalues distribution, Gaussian quadratic
forms, hypergeometric functions of matrix arguments, interfer-
ence, multiple-input multiple-output (MIMO), Wishart matrices.

I. INTRODUCTION

T HE use of multiple transmitting and receiving antennas
can provide high spectral efficiency and link reliability

for point-to-point communication in fading environments [1],
[2]. The analysis of capacity for multiple-input multiple-output
(MIMO) channels in [3] suggested practical receiver structures
to obtain such spectral efficiency. Since then, many studies have
been devoted to the analysis of MIMO systems, starting from the
ergodic [4] and outage [5] capacity for uncorrelated fading to the
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case where correlation is present at one of the two sides (either
at the transmitter or at the receiver) or at both sides [6]–[8]. The
effect of time correlation is studied in [9].

Only a few papers, by using simulation or approximations,
have studied the capacity of MIMO systems in the presence
of co-channel interference. In particular, a simulation study is
presented in [10] for cellular systems, assuming up to three
transmit and three receive antennas. The simulations showed
that co-channel interference can seriously degrade the overall
capacity when MIMO links are used in cellular networks. In
[11] and [12] it is studied whether, in a MIMO multiuser sce-
nario, it is always convenient to use all transmitting antennas. It
was found that for some values of signal-to-noise ratio (SNR)
and signal-to-interference ratio (SIR), allocating all power into
a single transmitting antenna, rather than dividing the power
equally among independent streams from the different antennas,
would lead to a higher overall system mutual information. The
study in [11], [12] adopts simulation to evaluate the capacity of
MIMO systems in the presence of co-channel interference, and
the difficulties in the evaluations limited the results to a sce-
nario with two MIMO users employing at most two antenna el-
ements. In [13] the replica method is used to obtain approximate
moments of the capacity for MIMO systems with large number
of antenna elements including the presence of interference. The
approximation requires iterative numerical methods to solve a
system of non-linear equations, and its accuracy has to be veri-
fied by computer simulations. A multiuser MIMO system with
specific receiver structures is analyzed for the interference-lim-
ited case in [14] and [15].

The MIMO capacity at high and low SNR for interfer-
ence-limited scenarios is addressed in [16] and [17]. A
worst-case analysis for MIMO capacity with channel state
information (CSI) both at the transmitter and receiver, condi-
tioned on the channel matrix, can be found in [18]. Asymptotic
results for the Rician channel in the presence of interference
can be found in [19].

In this paper, we develop a framework to analyze the er-
godic capacity of MIMO systems in the presence of multiple
MIMO co-channel interferers and additive white Gaussian noise
(AWGN). We consider rich scattering environments in which
transmitters have no CSI, the receiver has perfect CSI, and all
links undergo frequency flat Rayleigh fading. The key contribu-
tions of the paper are as follows.

• Generalization of the determinant representation of hy-
pergeometric functions with matrix arguments to the case
where matrices in the arguments have eigenvalues with ar-
bitrary multiplicity.

• Derivation, using the generalized representation, of the
joint probability distribution function (pdf) of the eigen-
values of complex Gaussian quadratic forms and Wishart
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matrices, with arbitrary multiplicities for the eigenvalues
of the associated covariance matrix.

• Derivation of the ergodic capacity of single-user MIMO
systems that accounts for arbitrary power levels and arbi-
trary correlation across the transmitting antenna elements,
or arbitrary correlation at the receiver side.

• Derivation of capacity expressions for MIMO systems in
the presence of multiple MIMO interferers, valid for any
number of interferers, each with arbitrary number of an-
tennas having possibly unequal power levels.

The paper is organized as follows. In Section II, we introduce
the system model for multiuser MIMO setting, relating the er-
godic capacity of MIMO systems in the presence of multiple
MIMO interferers to that of single-user MIMO systems with
no interference. General results on hypergeometric functions of
matrix arguments are given in Section III. The joint probability
density function (pdf) of eigenvalues for Gaussian quadratic
forms and Wishart matrices with arbitrary correlation is given
in Section IV. In Section V, we give a unified expression for the
capacity of single-user MIMO systems that accounts for arbi-
trary correlation at one side. Numerical results for MIMO relay
networks and multiuser MIMO are presented in Section VI, and
conclusions are given in Section VII.

Throughout the paper vectors and matrices are indicated by
bold, and denote the determinant of matrix , and

is the th element of . Expectation operator is denoted
by , and in particular denotes expectation with re-
spect to the random variable . The superscript denotes con-
jugation and transposition, is the identity matrix (in particular

refers to the identity matrix), is the trace
of and is used for the direct sum of matrices defined as

[20].

II. SYSTEM MODELS

We consider a network scenario as shown in Fig. 1, where a
MIMO- link, with and denoting the num-
bers of transmitting and receiving antennas, respectively, is sub-
ject to MIMO co-channel interferers from other links, each
with arbitrary number of antennas. The -dimensional equiv-
alent lowpass signal , after matched filtering and sampling, at
the output of the receiving antennas can be written as

(1)

where denote the complex transmitted vectors
with dimensions , respectively. Subscript
0 is used for the desired signal, while subscripts are
for the interferers. The additive noise is an -dimensional
random vector with zero-mean independent and identically dis-
tributed (i.i.d.) circularly symmetric complex Gaussian entries,
each with independent real and imaginary parts having variance

, so that . The power transmitted from the
th user is .
The matrices in (1) denote the channel matrices of size

with complex elements describing the gain
of the radio channel between the th transmitting antenna of the

Fig. 1. MIMO network.

th MIMO interferers and the th receiving antenna of the de-
sired link. In particular, is the matrix describing the channel
of the desired link (see Fig. 1).

When considering statistical variations of the channel, the
channel gains must be described as random variables (r.v.s).
In particular, we assume uncorrelated MIMO Rayleigh fading
channels for which the entries of are i.i.d. circularly sym-
metric complex Gaussian r.v.s with zero-mean and variance
one, i.e., . With this normalization, rep-
resents the short-term average received power per antenna
element from user , which depends on the transmit power,
path-loss, and shadowing between transmitter and the (inter-
fered) receiver. Thus, the are in general different.

Conditioned to the channel matrices , the mutual in-
formation between the received vector, , and the desired trans-
mitted vector, , is

(2)

where denotes differential entropy [21].
Here we consider the scenario in which the receiver has per-

fect CSI, and all the transmitters have no CSI. Note that the
term CSI includes the information about the channels associ-
ated with all other MIMO interfering users. In this case, since
the users do not know what is the interference seen at the re-
ceiver (if any), a reasonable strategy is that each user transmits
circularly symmetric Gaussian vector signals with zero mean
and i.i.d. elements. Thus, the transmit power per antenna ele-
ment of the th user is . Note that this model includes
the case in which the power levels of the individual antennas
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are different: it suffices to decompose a transmitter into virtual
subtransmitters, each with the proper power level.

Hence, conditioned on all channel matrices in (1),
both and are circularly symmetric Gaussian. Since the
differential entropy of a Gaussian vector is proportional to the
logarithm of the determinant of its covariance matrix, we obtain
the conditional mutual information

(3)

where and respectively denote the covariance
matrices of and , conditioned on the channel gains

. By expanding the covariance matrices using (1), the
conditional mutual information of a MIMO link in the presence
of multiple MIMO interferers, with CSI only at the receiver, is
then given by

(4)

where the matrix is

the matrix is

and the covariance matrices are

(5)

and

(6)

with

(7)

For random channel matrices the mutual information in (4) is
the difference between random variables of the form

where the elements of are i.i.d. complex Gaussian
and is a covariance matrix. The statistics of such random
variables have been investigated in [6]–[8], assuming that the
eigenvalues of were distinct. However, in the scenario under
analysis these results cannot be used directly, since in (4) each
eigenvalue of and has multiplicity .

We consider the ergodic mutual information as a performance
measure: taking the expectation of (4) with respect to the distri-
bution of , we get

(8)

where
denotes the ergodic mutual information of a single-user
MIMO- Rayleigh fading channel with unit noise

variance per receiving antenna and channel covariance matrix
at the transmitter.
Note that the “building block” is

simple to evaluate when the covariance matrix is proportional
to an identity matrix, which corresponds to a typical interfer-
ence-free case with equal transmit power among all transmitting
antennas (see, e.g., [4]). In contrast, in the presence of interfer-
ence, the covariance matrix is of the type indicated in (5) and (6),
where the power levels of the different users are in general dif-
ferent. Note that even when the power for the th user is equally
spread over the antennas, the matrices in (5) and (6) are
generally not proportional to identity matrices and their eigen-
values have multiplicities greater than one. Therefore, studying
MIMO systems in the presence of multiple MIMO co-channel
interferers requires the characterization of in
a general setting in which the covariance matrix has eigen-
values of arbitrary multiplicities.

To this aim, we derive in the next sections simple expressions
for the hypergeometric functions of matrix arguments with not
necessarily distinct eigenvalues; then, we obtain the joint pdf of
the eigenvalues of central Wishart matrices as well as that of
Gaussian quadratic forms with arbitrary covariance matrix.

III. HYPERGEOMETRIC FUNCTIONS WITH MATRIX ARGUMENTS

HAVING ARBITRARY EIGENVALUES

Hypergeometric functions with matrix arguments have been
used extensively in multivariate statistical analysis, especially
in problems related to the distribution of random matrices [22],
[23]. These functions are defined in terms of a series of zonal
polynomials, and, as such, they are functions only of the eigen-
values (or latent roots) of the argument matrices [22], [23].

Definition 1: The hypergeometric functions of two Hermitian
( ) matrices and are defined by [22]

(9)

where is a symmetric homogeneous polynomial of
degree in the eigenvalues of its argument, called zonal
polynomial, the sum is over all partitions of , i.e.,

with
, and the generalized hypergeometric

coefficient is given by with
.

We remark that zonal polynomials are symmetric polyno-
mials in the eigenvalues of the matrix argument. Therefore, hy-
pergeometric functions are only functions of the eigenvalues of
their matrix arguments. In other words, without loss of gen-
erality we can replace and with the diagonal matrices

and , where and are
the eigenvalues of and , respectively. Clearly the order of

and is unimportant.
It is quite evident that these functions expressed as a series of

zonal polynomials are in general very difficult to manage and
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the form of (9) is not tractable for further analysis. Fortunately,
when the eigenvalues of and are all distinct, a simpler ex-
pression in terms of determinants of matrices whose elements
are hypergeometric functions of scalar arguments can be ob-
tained as follows [24, Lemma 3]:

Lemma 1: Let and
with and .

Then we have

(10)

where
and the th element of the matrix is de-

fined in terms of hypergeometric functions of scalar arguments
as follows

(11)

where , and .
Important particular cases are

(12)

and

(13)

where the th elements of and are given by and
, respectively.

These expressions have recently been used to study the dis-
tribution of Gaussian quadratic forms, to express the pdf of the
eigenvalues of Wishart matrices, and to analyze the informa-
tion-theoretic capacity and error rates of communication sys-
tems involving multiple antennas [5]–[8], [25]–[31]. However,
it is important to underline that Lemma 1 requires the eigen-
values of the matrices to be all distinct.

Here, we generalize Lemma 1 to include the case where the
eigenvalues are not necessarily distinct. To this aim we first need
the following lemma.

Lemma 2: Let be defined over as
follows:

...
...

...

(14)

where , and the functions have deriva-
tives of orders at least throughout
neighborhoods of the points .

Then, the continuous extension of the
function to those points in with
coincident arguments is obtained
by removing the zero factors from the denominator in (14),
replacing the columns of the matrix in (14) corresponding
to the coincident arguments with the successive derivatives

, and then dividing by a scaling
factor .

For example, for , this procedure gives
(15) shown at the bottom of the page. More generally, a sim-
ilar expression is valid if there are more groups of coinciding
arguments: in this case, for each group of coincident arguments

the correspondent columns of the matrix
in (14) are to be replaced by , with a
scaling factor .

Proof: See Appendix I.

With Lemma 2 we can now generalize (10), (12), and (13).

Lemma 3: Let and
with and

. Then we
have1

(16)

1From here on, we will use the same symbols for the functions (10), (12),
(13), and their continuous extension.

...
...

...
... (15)
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where the elements of are

elsewhere.
(17)

That is, the matrix is the same as that appearing in (12) except
that the columns corresponding to the coincident eigenvalues
are .

Proof: The proof is immediate by direct application of
Lemma 2 with .

Lemma 3 can be directly extended to more groups of coin-
cident eigenvalues. In general, the rule is that each eigenvalue

of multiplicity gives rise to columns
in the matrix of (16),

with the proper scaling factor .
Using Lemma 3 with and results in the

following corollary, valid for the case where some eigenvalues
are equal to zero.

Corollary 1: Let and
with and

. Then we have

(18)

where the elements of are as follows

elsewhere
(19)

We can apply a similar methodology to derive the general
expression for , as in the following Lemma.

Lemma 4: Let and
with and

. Then
we have

(20)

where and the matrix has elements
as shown in (21) at the bottom of the page. In other words, the
matrix is the same as that appearing in (13), except that the

columns corresponding to the coincident eigenvalues are
.

Proof: For the proof we apply Lemma 2 with
, whose th derivative is

.

Lemma 4 can be further generalized to more groups of co-
incident eigenvalues: each eigenvalue of multiplicity
gives rise to columns

in the matrix of (20),
and to a factor .

Using Lemma 4 with and results in
the following corollary.

Corollary 2: Let and
with and

. Then we have that
(20) holds, with

elsewhere.
(22)

In other words, the matrix has, in this case, the last columns
with elements .

Finally, we give the result for the .

Lemma 5: Let and
with and

. Then
we have

(23)

where the matrix has elements as follows

(24)

for , and

elsewhere. In (23) the constant is

Proof: See Appendix I.

IV. GAUSSIAN QUADRATIC FORMS WITH COVARIANCE MATRIX

HAVING EIGENVALUES OF ARBITRARY MULTIPLICITY

We now derive the joint pdf of the eigenvalues for Gaussian
quadratic forms and central Wishart matrices with arbitrary one-
sided correlation matrix.

elsewhere.
(21)
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Lemma 6: Let be a complex Gaussian random
matrix with circularly symmetric zero-mean, unit variance, i.i.d.
entries and let be an positive definite matrix. The
joint pdf of the (real) non-zero ordered eigenvalues

of the quadratic form
is given by

(25)

where is the Vander-
monde matrix with elements ,

(26)

and are the distinct eigenvalues of
, with corresponding multiplicities such that

.

The matrix has elements

(27)

where , denotes the
unique integer such that

and

Proof: See Appendix I.

Note that Lemma 6 gives, in a compact form, the general joint
distribution for the eigenvalues of a central Wishart ,
and central pseudo-Wishart or quadratic form , with
arbitrary one-sided correlation matrix with not-necessarily dis-
tinct eigenvalues.

In fact, Lemma 6 can be used for both and
; in particular, for we have in

(25), while for the second row in (27) disappears and
in (26).

Moreover, using Lemma 6 and the results in [32] and [33]
we can also derive the marginal distribution of individual eigen-
values or an arbitrary subset of the eigenvalues.

V. ERGODIC MUTUAL INFORMATION OF A SINGLE-USER

MIMO SYSTEM

In this section we provide a unified analysis of the ergodic
mutual information of a single-user MIMO system with arbi-
trary power levels among the transmitting antenna elements or
arbitrary correlation at the receiver, admitting covariance ma-
trices with not-necessarily distinct eigenvalues.

Let us consider the function

(28)

where is a generic positive definite matrix and is
a random matrix with circularly symmetric zero-mean,
unit variance complex Gaussian i.i.d. entries.

Now, consider a single-user MIMO- Rayleigh
fading channel with denoting the transmit
and receive correlation matrices, respectively,
having diagonal elements equal to one. Assume the transmit
vector is zero-mean complex Gaussian, with arbitrary (but
fixed) covariance matrix so that

. Then, the function (28) can be used to express the
ergodic mutual information in the following cases [6]–[8].

1) The MIMO- channel with no correlation at the
receiver , covariance matrix at the transmitter
side , and transmit covariance matrix .
In this case, the mutual information is
with . If also , we have

and therefore .
2) The MIMO- channel with no correlation at the

transmitter , covariance matrix at the receiver
side , and equal power allocation .
In this case the capacity is with

, giving , in ac-
cordance to [6, Theorem 1].

In both cases, represents the SNR per receiving an-
tenna.

By indicating with and with
the joint pdf of the (real) ordered non-zero eigenvalues

of the random matrix
, we can write:

(29)

where the multiple integral is over the domain
and .

The nested integral in (29) can be evaluated using the results
from previous sections and Appendix II, leading to the following
theorem.

Theorem 1: The ergodic mutual information of a MIMO
Rayleigh fading channel with CSI at the receiver only and
one-sided correlation matrix having eigenvalues of arbitrary
multiplicities described in (28) is given by

(30)

In the previous equation , the matrix has
elements shown in (31) at the bottom of the next page and

are defined as in Lemma 6, where
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Fig. 2. Ergodic mutual information for single-user MIMO systems as a function of SNR over Rayleigh uncorrelated fading with � � � and � � �. Half of
the antennas with power (normalized) ���, the others with ���, i.e., with transmitted power levels (normalized) equal to ����� ���� ���� ���� ��
�� � � ��.

are the distinct eigenvalues of , with corresponding
multiplicities .

Proof: In Section IV it is shown that the joint pdf of the
ordered eigenvalues of can be written as (25), where the
elements of are real functions of .
Thus, by using Appendix II, the multiple integral in (29) reduces
to (30).

Note that the integral in (31) can be evaluated easily with stan-
dard numerical techniques; however, the integral can be further
simplified, using the identities ,
and ,
where is the incomplete Gamma function.

Theorem 1 gives, in a unified way, the exact mutual informa-
tion for MIMO systems, encompassing the cases of
and with arbitrary correlation at the transmitter or the
receiver, avoiding the need for Monte Carlo evaluation. The ap-
plication of the results in Sections III–V enables a unified anal-
ysis for MIMO systems, which allow the generalization of er-
godic and outage capacity [6]–[8], [29], for optimum combining
multiple antenna systems [26], [27], for MIMO-MMSE systems
[28], for MIMO relay networks [34], [35], as well as for mul-
tiuser MIMO systems and for distributed MIMO systems, ac-
counting arbitrary covariance matrices. For example, after the
first derivation of the hypergeometric functions of matrices with
nondistinct eigenvalues in [36], other applications to multiple
antenna systems have appeared in [32], [37]–[40].

VI. NUMERICAL RESULTS

Let us first apply Theorem 1 to the analysis of a single-user
MIMO system with unequal power levels among the transmit-
ting antennas. Fig. 2 shows the ergodic mutual information2 of a
MIMO- Rayleigh channel, where the relative transmitted
power levels are . The
particular cases and are equivalent to the equal
power levels over 6 and 3 transmitting antennas, respectively.
This figure shows how the capacity decreases as increases
from 0 to 1, with a behavior in accordance to analysis based on
majorization theory [41].

As another example of application, we evaluate the perfor-
mance of MIMO relay networks in Rayleigh fading [34],
[35]. For such networks the network capacity is upper
bounded by [35, (5)], which can be easily put in the form

, and evaluated in closed
form by Theorem 1. In Fig. 3 we report the exact as ob-
tained from Theorem 1, compared to the Jensen’s inequality
[35, Theorem 1]. The figure has been obtained for a source
node with four antennas, five relays each equipped with two
antennas, as a function of the total equivalent SNR here de-
fined as . We assume, for the 5 relays, that the
received power is distributed proportionally to the weights

2For the numerical results we use the base-� of logarithm in all formulas,
giving a mutual information in bits/s/Hz.

(31)
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Fig. 3. Upper bounds on the network capacity for MIMO relay networks. Source with four antennas, five relays with two antennas each, power levels per relay
proportional to ��� �� �� ��� ���.

. It can observed that the results based on the
Jensen’s inequality can be overly optimistic.

As a third example of application we evaluate, using (8)
together with Theorem 1, the exact expression of the ergodic
mutual information of MIMO systems in the presence of
multiple MIMO interferers in Rayleigh fading. In partic-
ular, the eigenvalues to be used in Theorem 1 are given by

, allowing an easy analysis for
several scenarios. We define the average SNR per receiving
antenna as giving , and the SIR
as 3 Fig. 4 shows the ergodic mutual infor-
mation for a MIMO-(6,6) system as a function of the SIR, in the
presence of one MIMO co-channel interferer having equal
power transmitting antennas. It can be noted that the capacity
decreases with the increase in the number of interfering antenna
elements, tending to the curve obtained by using the Gaussian
approximation.4 Despite the fact that the received vector in
(1) is Gaussian conditioned on the channel matrices, and that
the elements of are Gaussian, approximating the cumula-
tive interference as a spatially white complex Gaussian vector
is pessimistic for analyzing MIMO systems in the presence
of interference, unless the number of transmitting antenna of
the interferer is large compared with that of the desired user.
This is because the Gaussian approximation implicitly assumes
that the receiver does not exploit the CSI of the interferers
(single-user receiver), whereas the exact capacity accounts for
the knowledge of all CSI at the receiver. In the same figure

3We recall that, with our normalization on the channel gains, the mean re-
ceived power from user � is � , and our definition of account for the total
interference power.

4With Gaussian approximation the performance is evaluated as if interference
were absent, except the overall noise power is set to � � � , giving a
signal-to-interference-plus-noise ratio � � � � .

we also report, using circles, the capacity of a single-user
MIMO- for . It can be observed
that the capacity of the MIMO- in the presence of

interfering antenna elements approaches, asymptotically
for large interference power, to a floor given by the capacity of
a single-user MIMO- system. This behavior
can be thought of as using degrees of freedom (DoF) at
the receiver to null the interference in a small SIR regime. On
the other hand, when the capacity approaches to
zero for small SIR. This is due to the limited DoF at the receiver
(related to the number of receiving antenna elements)
that prevents mitigating all interfering signals (one from each
antenna elements) while, at the same time, processing the
useful parallel streams, as previously observed for multiple
antenna systems with optimum combining [2], [26], [27].

Finally, in Fig. 5 we consider a MIMO- system in
the presence of one and two MIMO interferers in the network,
each equipped with the same number of antennas as for the de-
sired user. We clearly see here two different regions: for small
SIR the interference effect is dominant, and it is better for all
users to employ the minimum number of transmitting antennas
(i.e., MIMO- for all users), so as to allow the receiver to
mitigate the interfering signals. On the contrary, for large SIR
the channel tends to that of a single-user MIMO system and it
is better to employ the maximum number of transmitting an-
tennas. In the same figure we also report the capacity for inter-
ference-free channels, which represents the asymptotes of the
four curves, as well as the Gaussian approximation, which in-
correctly indicates that it is always better to use the largest pos-
sible number of transmitting antennas.

It can be also verified that, in a network where all nodes
are using the same MIMO- systems, larger values of
achieve higher mutual information, for all values of SIR and
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Fig. 4. Ergodic mutual information for MIMO-��� �� as a function of SIR in the presence of one MIMO co-channel interferer with� � �� �� �� �� ��. The SNR
is set to 10 dB. The Gaussian approximation of the interference is also shown. Diamond: capacity of a single-user MIMO-�����. Circles: capacity of a single-user
MIMO-��� � � � � (only for � � �� �� �).

Fig. 5. Ergodic mutual information as a function of the signal-to-total interference ratio. MIMO system with � � � receiving antenna, � �� dB. The
Gaussian approximation of the interference is also shown. Scenario with one and two interferers, each with the same number of transmitting antennas as the desired
user. Cases of 3, 4, 5, and 6 transmitting antennas. Circles: capacity of single-user MIMO-�� �� �.

SNR. Note, however, that increasing the number of antennas and
users, correlation may arise in the channel matrices.

VII. CONCLUSION

We have studied MIMO communication systems in the pres-
ence of multiple MIMO interferers and noise. To this aim, we
first generalized the determinant representations for hypergeo-
metric functions with matrix arguments to the case where the

eigenvalues of the argument matrices have arbitrary multiplici-
ties. Then, we derived a unified formula for the joint pdf of the
eigenvalues for central Wishart matrices and Gaussian quadratic
forms, allowing arbitrary multiplicities for the covariance ma-
trix eigenvalues. These new results enable the analysis of many
scenarios involving MIMO systems. For example, we derived a
unified expression for the ergodic mutual information of MIMO
Rayleigh fading channels, which applies to transmit or receive
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correlation matrices with eigenvalues of arbitrary multiplicities.
We have shown how to apply the new expressions to MIMO net-
works, deriving in closed form the ergodic mutual information
of MIMO systems in the presence of multiple MIMO interferers.

APPENDIX I
PROOFS

A. Proof of Lemma 2

For ease of notation and without loss of generality, we con-
sider the case of , where the application of the lemma
leads to (15). For the proof we proceed by induction. First, the
result in (15) is obvious for , since in this case (15) coin-
cides with (14). Then, we must show that if (15) is true for any

then it is also true for . So, assuming that (15) holds for
, we must find

In this regard, note that, with the
product in (15) contains exactly factors
with value . Thus, by rewriting
we have (32) shown at the bottom of the page. We can now apply
the Taylor expansion to the functions

(33)

where denotes the omitted terms of order . We also know
from basic algebra that, seen as a function of a column with the
others fixed, the determinant is a linear function of the entries
in the given column, as is clear for example from the Laplace
expansion. Therefore, we have (34) shown at the bottom of the
page.

In (33), the determinants for are zero since
there are coincident columns. Hence, in the limit for only
the term of grade remains.

By simplifying and reordering the first columns of the
matrix in (34), with a cyclic permutation having sign equal to

, we finally have (35) shown at the bottom of the page
which is again in the form of (15). This concludes the proof by
induction of Lemma 2 for .

The extension to different and more groups of coincident
arguments is straightforward.

B. Proof of Lemma 5

The derivatives of the hypergeometric function of scalar ar-
guments can be expressed as

...
...

... (32)

...
...

...

(34)

...
...

...

(35)
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Using this result in Lemma 2 and (10) with

gives Lemma 5.

C. Proof of Lemma 6

Here, based on Section III, we prove Lemma 6 concerning
the eigenvalues distribution of Gaussian quadratic forms. The
problem is related to the distribution of random matrices of the
form , where is a Gaussian matrix
with uncorrelated entries and is a positive definite
matrix that represents the covariance matrix of the channel. The
eigenvalues distribution has been studied for the two possible
cases and in [6] and [7], assuming a covariance
matrix with distinct eigenvalues (i.e., unit multiplicity). We
here generalize the results to matrices with arbitrary eigen-
value multiplicities.

Let us first recall the distributions for the case of covariance
matrix with distinct eigenvalues.

1) Correlation on the Shortest Side—Distinct Eigenvalues:
The case has been analyzed in [6], where it is shown that
the joint pdf of the (real) ordered eigenvalues

of is

(36)

where are the distinct eigenvalues of is the
Vandermonde matrix with elements and

where is a matrix with elements .
2) Correlation on the Largest Side—Distinct Eigenvalues:

We briefly derive the joint pdf for the eigenvalues of when
has all distinct eigenvalues and , based on the results

in Section III. Note that this case has been analyzed also in [7]
by following a different approach.

First we recall that, given a random matrix with
and pdf

(37)

the pdf of the quadratic form

(38)

where the matrix is positive definite, is given by [42],
[43]

(39)

Then, the joint pdf of the (real) ordered eigenvalues
of is given by using the results in [22, (93)] as

(40)

where

(41)

Note that in (40) the two matrices and are of dimensions
and , respectively. Hence, in (40) we evaluate

where is obtained by adding
zero eigenvalues to [7].

Differently from the previous literature, we can now directly
use Corollary 1 and get immediately the joint pdf of the ordered
eigenvalues of the matrix when as:

(42)

where are the eigenvalues of , and are of multiplicity
one. is the Vandermonde matrix, and the
matrix has elements as follows:

(43)

That is, the matrix is

...
...

...
...

...

...
(44)

3) Generalization to Covariance Matrix With Arbitrary
Eigenvalues: Note that (36) and (42) are only valid for covari-
ance matrices with all distinct eigenvalues (multiplicity one).
Hence, we must now generalize these expressions to the case of
interest, i.e., eigenvalues with arbitrary multiplicities. This
step is possible by using Lemma 2.

In fact, we note that in both (36) and (42) we have a ratio of
the form

(45)

By using Lemma 2, for each eigenvalue with multiplicity we
must replace the rows of with their successive deriva-
tives with respect to the eigenvalue, and divide by ,
obtaining
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...

...

...

(46)

where the row vector is the th derivative of the row
in (36) or (44). The th element of is so de-

rived to be

(47)

The relation between the row index, , and the derivative
order, , can be established by introducing the function
indicating the eigenvalue to be used
in row of the matrix in the RHS of (46). It is easy to verify
that is the unique integer such that

Then, the derivative order for the row is , where

Thus, the generic element of the matrix in the RHS of (46)
is . By combining (36), (42), and (46) we have
Lemma 6.

APPENDIX II
AN IDENTITY ON MULTIPLE INTEGRALS

INVOLVING DETERMINANTS

Theorem 2: Given an arbitrary matrix ( ) with th
elements , an arbitrary ( ) matrix , with
elements

and two arbitrary functions and the following identity
holds:

(48)

where the multiple integral is over the domain

and the function is defined by

if
if

(49)

Proof: As this theorem is an extension of [6, Theorem 3],
it is sufficient for the proof to follow the same steps reported
there.
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