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On the Capacity of Spatially Correlated MIMO
Rayleigh-Fading Channels

Marco Chianj Senior Member, IEEBMoe Z. Win, Senior Member, IEEENd Alberto ZanellaMember, IEEE

Abstract—in this paper, we investigate the capacity distribution  presented recently in [9], [10]. For the latter, the complemen-
of spatially correlated, multiple-input-multiple-output (MIMO)  tary cumulative distribution function (CCDF) of the capacity
channels. In particular, we derive a concise closed-form expression (sometimes called capacity outage) was studied by Monte

for the characteristic function (c.f.) of MIMO system capacity . L . .
with arbitrary correlation among the transmitting antennas or ~ C@rl0 simulation in [2]-[4], and the mean capacity was derived

among the receiving antennas in frequency-flat Rayleigh-fading in [11] for uncorrelated MIMO Rayleigh-fading channels. The
environments. Using the exact expression of the c.f., the probability analysis of MIMO systems in block Rayleigh-fading channels
density function (pdf) anc_i the cumulatiV(-_z distribution fUI’]CtiOI’]. is presented in [12], and a Gaussian approxima’[ion to the ca-
(CDF) can be easily obtained, thus enabling the exact evaluation 4ty distribution is investigated in [13]. All of these analyses

of the outage and mean capacity of spatially correlated MIMO . . .
channels. Our results are valid for scenarios with the number of showed that MIMO systems in uncorrelated Rayleigh-fading

transmitting antennas greater than or equal to that of receiving enVirO_n_mentS can potentially provide enormous Shannon
antennas with arbitrary correlation among them. Moreover, the capacities.
results are valid for an arbitrary number of transmitting and re- In many practical situations, however, signal correlation
ceiving antennas in uncorrelated MIMO channels. Itis shown that 5135 the antenna elements exists in realistic environments
the capacity Ioss_ is negligible even with a correlation coeﬁlc_lent due to poor scattering conditions. This has given an impetus
between two adjacent antennas as large a8.5 for exponential ) . ’ . .
correlation model. Finally, we derive an exact expression for the for studying MIMO systems in correlated fading environments.
mean value of the capacity for arbitrary correlation matrices. Toward this end, the effect of signal correlation on MIMO
Index Terms—Eigenvalues distribution, multiple input—multiple _SyStems have been recently studied by Monte Carlo simulation
output (MIMO), multiple antennas, Rayleigh-fading channels, in [14]-[16].
Shannon capacity, Wishart matrices. In this paper, we solve the problem of analytically evaluating
the capacity distribution. More precisely, we derived the char-
acteristic function (c.f.) of the capacity for MIMO Rayleigh-
fading channels in concise closed form with arbitrary correla-
T has been recognized in recent years that the use of mitn among the transmitting elements or among the receiving
tiple transmitting and receiving antennas can potentially prefements. This enables the analytical evaluation of the capacity
vide large spectral efficiency for wireless communications in the terms of probability density function (pdf), cumulative distri-
presence of multipath fading environments [1], [2]. The anabution function (CDF), and CCDF. Using the identities given in
ysis of capacity distribution for multiple-input—multiple-outputhe Appendix, we also derive the exact expression of the mean
(MIMO) channels in [3], [4] suggested practical structures tgalue of the capacity.
obtain large spectral efficiency, leading to the Bell Laboratories In Section I, we present the system model and, in Section llI,
layered space—-time (BLAST) architecture and to space—time investigate the distribution of the eigenvalues of a Wishart
codes [5], [6]. matrix with a given correlation. In Sections IV and V, we pro-
These MIMO systems can be studied from two differentide the exact compact expressions for the c.f. and the mean
perspectives: one concerns performance evaluation in terms/aiue of the capacity, respectively. In Section VI, we show some
error probability of practical systems, the other concerns thesults and, in Section VII, we present a summary and conclu-
evaluation of the information-theoretic (Shannon) capacity. Tltons. Finally, in the Appendix, we derive some useful identities
former can be obtained by simulation [7], [8] or analytically, afor evaluation of multiple integrals.
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The Ng-dimensional signay at the output of the receiving LetA = [\, ..., Ax....]7 denote the nonzero eigenvalues
antennas in flat fading can be written as [2]-[4], [11] of the (Nmin X Npin) matrix W, with Np;,, = min{Nt, Ny}
defined as
y=Hzx+n Q)
H'H  ifNg >N
where z is the Np-dimensional transmitted vector with W = f " * 4)
HH s if Ngr < Nr.

complex components, angd is an Ngr-dimensional vector
with zero-mean independent and identically distributed (i.i.d1;hen the capacity (3) can be written as [2], [11]
complex Gaussian entries with independent real and imaginary '
parts having equal variance. The channel matfipdefined by Numin

_ : Y
o | C—ZlogQ(l—i—N—T)\Z). (5)

A i=1
H= |hy hy - hy, )

SinceH is randomly varying(' is also randomly varying. The

| | | mean value o’ for uncorrelated MIMO Rayleigh-fading chan-
is an( Ny x Nr) random matrix with complex elemengs, ;}  nelsis evaluated in[11], whereas the outage capacity (the CCDF
describing the gain of the radio channel betweenjtherans- 0f C) is investigated by Monte Carlo simulation in [2]-[4].
mitting antenna and théh receiving antenna. We denote the In the following sections, we will derive the c.f. of the ca-
jth column ofH by h;, i.e., theNg-dimensional propagation Pacity given in (5) forH with zero-mean complex Gaussian
vector corresponding to thgh transmitted signal. entries. We consider both cases with and without correlation

For uncorrelated MIMO Rayleigh-fading channels, the ef@mong the antenna elements.

tries of H are i.i.d. Gaussian r.v.'s with zero-mean, indepen-
dent real and imaginary parts with equal variance. When thelll. DISTRIBUTION OF THE EIGENVALUES OF W FOR THE
correlation among the receiving antennas exists, the columns of MIMO RAYLEIGH-FADING CHANNEL
H are independent random vectors, but the elements of eacrp_
column are correlated with the same mean and covariance
trix. For the case of Rayleigh fading, this implies t&gth; } =
0 and correlation matrix indicated &8 = E{h; h}} forj =

et us start by studying the matrb¥ in (4). When the el-
"Bfents ofH are zero-mean complex Gaussid#,is called a
central Wishart matrix. Wishart matrices are of greatimportance
, ) " in multivariate statistical theory [18]-[21]. We will consider the

1, ..., Nr. W'thOUt_ loss Of generallty,Zthe diagonal element§, e related and correlated cases separately in the following.
of 3 can be normalized to, i.e.,E{|h; j|*} = 1, where the ex- Tha contribution of this section is to obtain the expressions for
pectation is with respect to Rayleigh fading. Similarly, correlgpe joint pdf of the eigenvalues in terms of the product of deter-

tion among the transmitting antennas can be considered. In Wi'ﬁ]ants which are useful for analyzing MIMO systems.
case, the rows aoff are independent, but the elements of each

row are correlated with a given covariance matrix (the same er
all rows). ’
In this paper, we consider the scenario in which the trans-We first consider the scenario W|th uncorrelfa\ted fading
mitter has no channel state information (CSI). In this case, es®RONg the antenna elements, a situation that arises when the
antenna transmits an average poWwgn'r; thus the total trans- antenna elements are spaced sufficiently far apart from each

mitted power i€ {z'2z} = P. The capacity of MIMO channels other. - _
when the transmitter has no CSl is given by The distribution of the ordered eigenvalues of a complex

Wishart matrix is studied in [21]. The joint pdf of the ordered

C = log, det <I+ NLHHT) (bitlsiHz) ~ (3) ©lgenvaluesiy = Ao --- 2 Aw,,;, of Wiis [22]
T

The Uncorrelated Case

8

Nmin

ey

wherep is the average signal-to-noise ratio (SNR) per receiviri)a(mh ' ])V _ N

antenna and is the identity matrix [3], [4], [11]. Note that the - K H o~ @i g Nmax—Nomin ﬁn(m — )2 (6)
capacity can be also written in terms of nonzero eigenvalues of e} ! !

the matrix HH', since the determinant df+ A%HHT is the

product of the eigenvalues and the zero eigenvalu#Elf do WhereK is a normalizing constant given by
not contribute to the product.
We now recall that, for any given two matricds(m x p) and K= _ WN"‘*“U\E“*“_D )
B (p x m) withm < p, the(p x p) matrix BA has the samen I (Nias ) N (Vimin)
eigenvalues as thegn x m) matrix AB, counting multiplicity,
together with an additional — m eigenvalues identically equal With
to zero [17, p. 53]. Hence, nonzero eigenvalues of the matrices N
H'H and HH' are identical. Since this is true for every in- [ i (1) = e Noin N =10/2 T (n = i) 8)
stantiationH, the respective nonzero eigenvalues are equal in Pl
Law. This implies that the statistical distribution of the nonzero
eigenvalues ol 'H andHH' are equal. andNpax = max{Ny, Ng}.

i<j
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Denotingz = [z1, x2, --.., TN,..], the pdf in (6) can be It is desirable to obtain a friendlier expression for the joint
written alternatively, in terms of the Vandermonde malfiXz)  pdf of Ay, Ao, ..., AN, thatis useful for analyzing MIMO
defined by systems. In the rest of the section, we derive an alternative ex-

pression for the joint pdf that is amenable to further analysis.
1 1 1 Due to the definitions of zonal polynomial and of hypergeo-
A 1 T2 0 ThNein metric functions of Hermitian matrices [21, eq. (85)] and [21,
Vilz) = : : ' : - (9 eq. (88)], we also have
pp T AT e e ol (A, B) = o[y (Da, D) (12)

Since|V(z)[? = [I;2" (z: — =) [17, p. 29], (6) becomes  whereD 4 and D are diagonal matrices whose diagonal ele-

ments are eigenvalues of tkeand B, respectively. Ler =

KW 5 Nenin s N N 01, 02, ..., oN,,.. ], Withoy > 09 > -+ > on,,, > 0de-
Alar, s ang,) = KVi(2)] H e T : noting the ordered eigenvalues Bf When these eigenvalues
=1

(10) are all distinct,oFy(—X~!, W) can be expressed, using (12)

Note that the expression (10) is valid for arbitravy andNy. fogether with [23, Lemma 3], in terms of determinants of ma-
trices whose elements are hypergeometric functions of scalar

B. The Correlated Case arguments. In particular

Let us now consider a MIMO system in Rayleigh-fading . -1
channels with uncorrelated signals at the transmitting antennas, oo (_2 ’ W) = (Nowin
but with correlated signals at the receiving antennas, character-
ized by a given correlation matri®. A typical example of this Where(y,, is a constant defined as
is a downlink transmission from a base station (BS) to mobile N
station (MS), where the antennas at the BS can be spaced suffi- (N A H (j —1)! (14)
ciently far enough to achieve uncorrelation among them. On the T ’
other hand, it is more difficult to space the antennas far apart
at the mobile terminals due to physical size constraints, a¥d (o) is a Vandermonde matrix given by
consequently correlation arises among the antenna elements in
such scenarios. The dual case of correlation at the transmitter V(o) 2y, (= [o7", .-, U;ri;n]) (15)
will be discussed at the end of this section.

In studying the scenarios with correlation among the réNdF(z, o) is defined by (16) at the bottom of the page.
ceiving antennas, we consider the caég < Ny so that  NOw, by recalling that Fo(y) = ¥ [25], substituting (13)
W = HH' is a full rank (with probabilityl) central Wishart in (11), and expressing the determinants in (11) as product of
matrix. In this case, the joint pdf of the (real) ordered eige,gzigenvalues, we obtain an alternative expression for the joint pdf

|F (2, 0)|

Vi@ Vale)]

i=1

values\; > Ay > --- > Ay, of Wis given in [21] by of A1, A2y ot An,,,, @S
Ao = KIS Moy (W) B -
; ;o N = Ks|E(z, o) - [Vi(z)| - [] )= (17)
W NN T (2 — ) (10) ]1;[1 !
i<i

where Ky, a normalizing constant, depends only on the corre-
whereq Fy(A, B) is known as the hypergeometric function ofation matrixX through its eigenvalues, given by
Hermitian matrix arguments, whose definition is given in [21,

_]\Txnax
eg. (88)] in terms of a series involvirmpnal polynomialsThese Ks=K- (x.. - X (18)
polynomials are in general very difficult to manage, and the T V(o)
form of (11? does not lend itself into a tractable form for fur- 1\te that an equation similar to (13) was used forthg(.; ., .) to analyze
ther anaIyS|s. minimum mean-square error (MMSE) combining in [24, eq. (6)].
05‘0(-1171/01) OEO(_$2/UI) OFQ(_me;n/Ol)
oFo(—z1/02) oFo(=mz2/02) -+ 0Fo(T N /02)
F(z, 0)2 (16)

oFo(—z1/oNn,) oFo(—22/oN,) o 0Fo(—TNm /TN
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andE(z, o) is defined by where the multiple integral is over the domain
67:'_} 67% . eia:i\tf/"_];in Dord:{oo>x1 Zng Z U 2mJVmin ZO}
T =2 — ZNmin
E(z, o) A e 72 e 7z e (19) anddz = dz; dzy - --dzy,, . Now the problem in (22) is the
9= : : : ‘ evaluation of the average of the product of a functjgrn) ap-
= =2 _ “Nuin plied to the different eigenvalues of a Wishart matrix, where the
e "Nmin e TFmineeee TNmin average is taken with respect to eigenvalues distribution. Recall

Note that the new expression for joint pdf involves a produgt]at in both the uncorrelated (10) and correlated (17) cases, the

of determinants, and it will be apparent shortly that the form ?mt pdf's of the ordered eigenvalues Bf are proportional to

(17) lends itself into a tractable form for further analysis. he product of determinants of matncgs. .
It is worth noting that (17) requires a correlation matEx For the uncorrelated MIMO Rayleigh-fading channels, the

with all distinct eigenvalues. The other extreme case is the uer{genvalues distribution is given by (10). Applying Corollary 2

correlated scenario treated in the previous subsection, where'réﬁhe Appendix with

eigenvalues ok are identical. The intermediate cases where &(z) =V, (z) (23)
some eigenvalues & are equal can be obtained as limiting U(z) = Vi(z) (24)
cases of (17). Numerically, it is sufficient to slightly perturb the -t
eigenvalues ok since all functions are continuous and eigerbndg(x) = gNmax=Naing=2((3), the c.f. of the capacity re-

values of¥ are deterministic. - duces to the following compact expression:
For the dual case of correlation at the transmitter side only,
using the fact thal H' andH " H have the same nonzero eigen- po(z) = K det U (25)

values, we can state the following [17]. ) o
) ) whereU is anN,,;, X Nuin Hankel matrix withijth elements
Theorem 1 (Duality Theorem)The capacity of MIMO sys- given by

tems withNy = N; and Ng = N», operating alp = p;
. . . . . . OO
in a Rayleigh-fading environment with correlation among the o o Nmax—Nmin+i+i=2 =2 (1) e
Y . . . U j = T e “p(x)dr.  (26)
transmitting antennas, characterized by correlation matfor 0

the rows of the channel matrilf, is equal to the capqcity of For the correlated MIMO Rayleigh-fading channels, the
MIMO systems withN = Np andNr = N1, operating at eigenvalues distribution is given in (17). Again, by using
p = p1N2/N; in a Rayleigh-fading environment with correla-cOrollary 2 in the Appendix with

tion among the receiving antennas, characterized by the corre-
lation matrix¥ for the columns of the channel matdX. &(z) = E(z, o) (27)

By using the Theorem 1, the results for MIMO systems with ¥(z) =Vi(z) (28)
correlation among the transmitting antennas can be obtained NN
from the results for the case with correlation among the r@n]ef(x) = xR (), the expected value of the product
ceiving antennas. Hence, we will only consider the latter cakbi—1" #(Ai) reduced to the following compact expression:

in the following. When correlation is present at both ends, our

) . ; . = Ky detG 29
results (neglecting the correlation on one side) are to be consid- $e(z) = e (29)
ered as upper bounds on the capacity. whereG is anNyi, X Nyin Matrix withijth elements given by
IV. EXACT EXPRESSION OF THECHARACTERISTIC gij = / gNmax=Nminti=lo=2/70 0y dz. (30)
FUNCTION OF C ’

In this section, we will derive the c.f. of capacity using thén both cases, the functions in (26) and (30) can be evaluated in
joint pdf of the eigenvalues given in (10) and (17). By introa compact closed form using the identity
ducing the function

/ " (14 bz)Ve < dx
0

J27=

p(z) = (1 + ) (20)  _ (=1 —n—y)1F(1+nn+y+2,1/ab)
* a b (—y)
the c.f. of the capacity is written as + a" YT (n + 14+ y) 1 Fi(—y, —n — vy, 1/ab) (31)
o (2) 2 E. {e727C=) valid for ®{a} > 0,n > 0, arg{b} # =, where['(.) is the

N Gamma function andF’ (-, -, -) is the hypergeometric function

26].

—E A 21) | . .
A { 1;[1 o ,)} (21) Therefore, the c.f. of the capacity for the Rayleigh MIMO

) Nowin channel is written in concise closed form as the determinant

= // NI ) H o(z:)dz (22) of a matrix, as indicated by (25) and (29); these are the key
Dovd B contributions of this paper. Due to its simplicity, from the c.f.
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all other distribution functions (pdf and CDF) can be simply . N:=N-=6,p=10 dB, exponential correlation
obtained by means of a single integral, that can be evaluated 0 RN
efficiently for instance by fast Fourier transform (FFT) methods. 0'8 LA
To give an example, we provide the expression for the CDF ' PN
of the capacity 07 I A0 O P
06 ~
o] A
oo 1— e—]27rzm 8 05 \ Rl — Analytical [
Fe(x) = / oc(z |: :| dz (32) o 1Ty O Simulation [~
(@) J oo (2) J2mz 04 Al
03 S
e IO
where we used the fact that the random varigblis not nega- 02 \\ \\ \ \\\R\\
tive. 0.1 TR
: SN
o RN\
V. MEAN CAPACITY FOR CORRELATED MIMO SYSTEMS 0 5 . [b;f; ria 20 s %

Here we derive the mean capacity expression for correlated

. . . . ig. 1. CCDF of the capacity for a MIMO system wiffir = 6, Ng = 6,
MIMO systems, by using an identity from the Appendix. I:rongnd SNR per receiving antenpa= 10 dB. Exponential correlation case with

(5), the mean capacity can be written as ranging from0 t0 0.9.
Nmin
_ ) P with i, 7 = 1, ..., Ng [15, eq. (27)]. The parameter con-
E{C} =E 1 14+ — X\ 33 / o . .
{c} { ; 082 ( + Nt )} (33) trols the width of the angle-of-arrival (AOA), ranging frotn

(isotropic scattering) too (extremely nonisotropic scattering),
that can be interpreted as the mean of the sum of a given functjore [r, w) accounts for the mean direction of the AOd;;
applied to the different eigenvalues Bf. Thus, starting from is the distance (normalized with respect to the wavelength) be-
(17) and using Theorem 3 in the Appendix with tween elementsand; of the receiving antenna array, abgl -)

is the zero-order modified Bessel function.
&(z) = E(z, o) (34)
U(z) = Vi(z) (35) A. Exponential Correlation Model

. Fig. 1 shows the CCDF of the capacity, which gives the prob-
¢(z) = pNmax—Nmin and¢(z) = log,(1 + pz/Nt), we imme-  ability thatC is larger than the absciséa., for a MIMO system

diately obtain the following expression: with Nt = 6, Nr = 6; the SNR per receiving antenna is fixed
to p = 10 dB and the parameterranges from) to 0.9. The
Nomin oo : ) figure shows that the capacity reduction is negligible for small
E{C} = Ks Z det{/ gNmax = Nmint7 -1 values ofr, but it becomes significant far > 0.5. It can be seen
k=1

that we have a 90% probability that the capacity is larger than
. o~/ U ; <log2 (1 + P x)) dx} 13 bits/s/Hz at- = 0.5 and redu_ces to9 bits/_s/Hzgt: 0.9. We
Nt i j=1,...N also compare our exact analytical expressions with Monte Carlo
(36) simulations; the latter are carried out by generating 10 000 real-
izations ofH and evaluating (3). As expected, the comparison
where o; are the eigenvalues of the correlation matrix, anghows an excellent agreement between analysis and simulation.
Uk, j(z) is defined in (54). It can be concluded from Fig. 1 that, for this exponential cor-
The expression (36) thus extends the result of [11, eq. (8§ ation model, the effect of correlation is negligible when the
on the mean capacity to the case of spatially correlated MIM@aximum correlation between pairs of antenna elemeriss
Rayleigh-fading channels. Moreover, by differentiating the cfess thar0.5. This result is in agreement with previous results
in (25) and (29) using well-known rules for the derivative of then the effect of spatial correlation [15], [16], [29].
determinant of a matrix [27, eq. (6.5.9)], all moments of the r.v. We next investigate effects of SNR and the number of an-

=1L, .-; /Nmin

C can be also easily derived. tennas on the CCDF of the capacity. The CCDF of the capacity
for various values op is plotted in Fig. 2, forNt = Ng = 5,
VI. ANALYSIS OF SOME CORRELATED SCENARIOS r = 0.7, with p ranging from 5 to 30 dB. If we fix again

) ] . _90% probability, the value af’.. we obtain ranges from about 6
The analytical framework we derived is general and valid f@§its/s/Hz forp = 5 dB to about 37 bits/s/Hz fog = 30 dB.

arbitrary correlation matrices. To give an example, we CoN-The CCDF of the capacity for various values 8f. = Ng
sider two well-known correlation models: exponential correlgg plotted in Fig. 3 forp = 10 dB, andr = 0.8. The figure

tion with ¥ = {rli=/l}; ;1 n, andr € [0, 1) [28]; and  shows that at 90% probabilitg, is larger than 3 bits/s/Hz when

a recent model proposed in [15]. In the latter model, in casg. — N, = 2, and becomes larger than 19 bits/s/Hz when
of Rayleigh-fading environment, the generic elementdbe- Nt = Ng = 10. Even withr as high a$.8, it can be observed

comes that the capacity increase is almost linear wih = Ny, as

. - in the case for the capacity of uncorrelated MIMO systems [3],
Ty (\/772 — Am?dZ; + jdmnsin(p)d;; ) /Zo(n) [4].




2368

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 10, OCTOBER 2003

N;=N;=5, r=0.7, exponential correlation p=10 dB, exponential correlation
! A \ N %0 : :
0.9 j \ \ \ 28 o
- i \ \ p=30dB S Rl
\ ‘\ \ \ \ 26 s 10,2
0.8 H ' \ 24 ----r1=04
07 \ ,: ' \\ '\ \ 7.3 B— : _—: l:gg
\p=5 B | \\ | \ 20 :
; \ :
0.6 : \ . 18
w ; p=15 dB} PEePEE
o \ ) 16
Q 05 i \ | =
o ip=t10dB | ! 14
' | .
04 ‘ | p=20 dB‘.\ \ 12 >
]
0.3 !
' v
1
\
\

—
-

o

=
N

/

O N B O

A\

\

N

0 20 30 40 50 2 3 4
C, Ibitis/Hz]

10

Fig. 2. CCDF of the capacity for a MIMO system wiffir = 5, Ny
andp = 5 to 30 dB. Exponential correlation case with= 0.7.

(S

Fig. 4. Mean value of the capacity as a function'df = N, for a MIMO
system withp = 10 dB. Exponential correlation case withranging from0 to
0.8.

p=10 dB, r=0.8, exponential correlation
1 - < N;=N.=3, d,,=0.5, p=20 dB
NN \ AN 1
h viooy i ‘\ \ TN N TS
0.9 ey ey 0o NI
\ Loh \\ \ \ ‘\ \\ . A\ N
08 - ‘ koot 0.8 | W2\ :
Lo \ [ \ [
Lo \ | \ Y
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C\’ := “ 1——J-‘\‘ ‘x | 0.6 / k )
06 IR R w | wens \
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a Lo R 05
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04 IR | \ Lol 04 e
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Fig. 5. CCDF of the capacity for a MIMO system wifti, = Ny = 4, and
Fig.3. CCDF ofthe capacity for a MIMO system wjth= 10 dB. Exponential » = 20 dB. Correlation model of [15] with,, = 0.5, = 0, 10, andp
correlation case withh = 0.8, and Nt = Ng = 2 to 10. ranging from0 to 7 /2.

Finally, Fig. 4 shows the mean capacity obtained by (36) gy different values ofi coincide (this. can be qa}sily derived by
a function of Ny = Ng, for p = 10 dB and different values [15,' eq. (27)]). When the propagation conditions range from
of 7. The figure shows that the mean capacity increases alm@§tisotropic(n = 0) to a nonisotropiqz = 10) scattering,
linearly with the number of antennas; the presence of exponé‘ﬂe capacity decreases;_ln particular, the reduction is significant
tialcorrelation among the receiving antennas only affects td1€n. (the mean direction of the AOA) approacheg.

slope of the curves. Furthermore, the reduction of capacity du™inally, Fig. 6 shows the effect of the paramejesn the ca-

to the correlation is negligible for values ofsmaller tharD.4. Pacity; No = Ng = 4, p = 20 dB, ;. = 7/2, andd;, = 0.5.

On the other hand, when= 0.8 and six antennas are consid-1 ne figure clearly shows that which controls the width of the

ered, the reduction in terms Bf C'} compared to the uncorre-AOA, has a strong influence on the capacity; if we fix CCDF
lated case is almost 4 bits/s/Hz.

= 0.9, the reductionin terms @, , asn ranges front) (isotropic
scattering) tar, is of about 7.5 bits/s/Hz.
B. Correlation Model of [15]

In this subsection, we show some example of the CCDF of the Vil. ConcLUSION

capacity for a MIMO system with the correlation model pro- In this paper, we have derived a concise closed-form expres-
posed in [15]. Here, we consider a linear array at the receivaon for the distribution in terms of c.f. of the capacity for mul-
with equally spaced antenna elements.

tiple-antenna systems in frequency-flat, correlated, Rayleigh-
In Fig. 5, we have fixegh = 20 dB, Nyt = Ny = 3, and the fading channels. The analytical methodology we propose is gen-

normalized (with respect to the wavelength) distance betweeral and can be used for arbitrary correlation on one side (trans-
the two adjacent antenna element$).i5; two values ofy are mitter or receiver). The proposed analysis allows a fast evalua-
considered) (isotropic scattering) antD, with i as a parameter tion of the capacity pdf and of the outage capacity for MIMO

ranging from0 to 7 /2. Note that, in the case gf= 0, the curves systems. Moreover, the exact expression for the mean value of
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1 p=20 dB, p=n/2, d,,=0.5 where the sums are over all possible permutatjgnsnda of
BN the integerd, ..., N.
09 MLV
08 e“.\ e Note that wheru; ; ;. are independent ok, i.e.,a; j x =
Vi Vo
07 R A R a;, 1, we have
0.6 AR \\ N
& Wl v
AR A T(4) = 3 sen) 3 @) [T oo
04 W \‘\ e I o k=1
AR
0.3 ‘u \ \\ ! \ = N'det ({(11'7]'7 1}1‘7]':17 - ]\7) (40)
0.2 R
NPy B . . .
o1 ER VAU IRY \ i.e., the7(-) degenerates intdV! times the determinant of
o NN RN {ai, j 1}, j=1..., n. Using the above definition, we give a useful
0 5 10 15 20 25 30
C, Ibit/s/Hz] theorem.

Fio 6. CCDE of th o or & MIMO e = N 4 Theorem 2: Given two arbitraryN x N matrices®(z) and
ig. 6. of the capacity for a system wi =Ngr=4,p= R o o . :
20dB,u = 7/2,andd,> = 0.5. Correction model of [15] withy ranging from ‘I’(‘T) with ;th eleme.nt@}(lj ).and\pl(w])’ and arbitrary func
0to7. tions¢;(+), the following identity holds:

. . N
the capacity has been derived; this result is a generalizatifn- . / |®(z)| - |P(z)| H &k(zy) de
of that provided in [11] for the uncorrelated case. Finally, nu- /D k=1
merical results show that, in case of an exponential correlation
model, when the correlation coefficient between adjacent an-

b
=7 {/ Q;(z)V;(z)&x(x) dx}
tenna elements is smaller théud, the reduction in terms of ca- a i,j,k=1,..,N
pacity is negligible. where the multiple integral is over the domain

(41)

APPENDIX

D={a<z1<ba<x3<0b,...,a<azy<b}
SOME USEFUL IDENTITIES

. ) . anddz = dxidrs---dxy.
Let us start by recalling some basic results from linear al-

Dy I : : U= Proof: By rewriting the determinant using (37) we have
gebra. The definition for the determinant of a generic matrix
A= {ai,j}ivjzl...N is given by [30]

- [ 19(@)) - 19(@)| [T 1) do

(42)
N
|A| = ngn(a)Haﬁ,,,: (37) - // [ZSgH(U)H‘I’m(xl)]
o =1 D pu ]
whereoc = o1, 09, ..., on iS @ permutation of the integers
1, ..

., N, the sumis over all permutations, asgh(c) denotes

: : [Z sgn(p) H\I’/Am (xm)] ka($k) dz
the sign of the permutation. Using (37), we obtain a slightly dif- " m k
ferent expression that is more useful for our purposes. We first

= > seu(n) ) sgn(o)
note that permuting columns or rows of a matrix changes the 1 4
sign of the determinant according to the sign of the permuta-

tion; we obtain an alternative expression for the determinant of

[ [ T2t n)éaton) da
Dk
a matrix as :
N = "sgn(p) > sen(o)
" o
A = sgn(p) Y segn(o) [ ao.. u. (38) b
o i=1 . H / ‘Pak (:Ek)\I/”k (:L’k)fk(:lik) dzy, (43)

wherey is an arbitrary permutation. o b a. - _ _

We now give an extension of this definition to rahkensors, and substituting the definition (39) into (43) gives (41). [
i.e., three-dimensional matrices.

Corollary 1: Given two arbitraryN x N matrices®(z) and
Definition 1: Given a rank3 tensor

¥(x) with ijth elementsd;(z;) and ¥;(z;), and an arbitrary
function&(+), the following identity holds:
A= {ai,j,k}i,j, k=1,..,N

[ [ @@ @) ] e da

: . k=1

T(A) =2 sg (@) ] _ et { [ 0i)w, @)@ d

@2 Y sen() Y sen(@) [[ oo (9) et 4 [ 009 )(0) o
s [t k=1

we define the operatdf (A) as
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where the multiple integral is over the domain Theorem 3: Given two arbitraryN x N matrices®(z) and
W (z) with ijth elementsb;(z;) and¥;(z;), and two arbitrary
D= < <b,a< <b,...,a< <b . - J) TN
fasaisbasay<h . asoy<b) functions¢(-) andé(-), the following identity holds:
anddz = dxidrs---dxy.

N N
Proof. This can be seen as a special case of Theorem 2;6[ .. / ®(z)| - |U(z T E(r) d 52
degenerate tensors, where (40) applies. . D )l [ )|,,H1£( m)kz::lf( ) (2)

b ord

Alternatively, (44) can be proven directly without Theorem2 . .
by writing the determinants explicitly using (37) as _ Zdet ({/ B3 ()T, ()€ () U '(£($)>d$} )
. . - ? J : 5 J
o [ @) O ()| [T £(2n) da 45) k= ¢ i =1, N
[ [ e@l-| @)Lt (45) Y

where the multiple integral is over the domain
Dora=1{b>x1 213> --- >N > a}

://D [;Sgn(a)n¢al(wz)]

and the functiorU;, ;(x) is defined by
: [Z sgn(p) H%(azm)] [1¢G@x) dz (46) ’ (e R
" " g Uy, j(x) = { L itk j (54)
= S S '
zl; zn(u) z(,: gn(o) Proof: We first consider the domain
[ [ T2 @)t @) do (4 Pelesmsbasmsh..a<ov<h)
Dy We can write

= 2 sl 3 sgn(o) [ [ 9@ 9@ L€t Y éen) da (55)
H/ Doy (21) Uy (z1)€ (k) de (48) :// lngn(o—)H@m(xz)]

b
=> { / Pi(2)¥;(x)E(x) da:} (49) : [Z sen(p) [[ . (@) | [[ €(am) Y E(m) dz (56)
7 @ i,j=1,....N " i m k
b =) sgn(p) ) _sgn(o)
_ N { / ()W, ()E(x) dm} (50) ; ;
@ i,j=1,...,N .
where we used (38) for passing from (48) to (49). O ' / o /D 1;[ o (Zm) ¥ (#m )& (@m) Xk: (wx) do
To the best of the authors’ knowledge, the preceding proof is (57)
original. However, Corollary 1 can be thought of as a contin- :ngn<“> ngn(g)
uous analog of the Cauchy-Binet formula and has been known -
in multivariate analysis as early as 1883 [31]. b ~
. b, ()T m m)U m)) dTm
Corollary 2: Given two arbitraryN x N matricesd(z) and zk: 1;[/@ (@) W, (@ )6 @)U, (G ) o
¥(x) with ijth elementsd;(z;) and¥;(z;), and an arbitrary (58)

functioné(-), the following identity holds:

//D [@@)] - [¥(@)| [ é(a) da

b
= det({/ D, (z)¥;(z)é(z) dx} ) (51) _ N!Z
a i,i=1,., N x

where the multiple integral is over the domd@m,q = {b > / (60)
.1712.1722...2:1?]\72&}.
Proof: Although |®(z)| and |¥(z)| are not individu-

>

{' [ @(m)%(z)&(z)Uk,j(f(w))dx} |

where we used (38) for passing from (58) to (59). Then, we
observe that even in this case, the integrand function in (52) is

ally symmetric functions ofzq, ..., xny (a permutation of o . S S .

- zx corresponds to a permutation of the column c)Fymmetrlc in the variables, which justifies the scaling of a
T _ . | | . .

the matrices, and the determinant changes with the sign of ﬁgtorN. when integrating 0veDora. =

permutation), their product is clearly symmetric. Therefore, in
Corollary 1, the integrand on the left side of (44) is a symmetric
function ofzq, ..., xn, which can be attributed for the scaling The authors wish to thank A. Giorgetti for discussions about
of a factorN! from (44) to (51). [0 the capacity of correlated channels.
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