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Abstract—We derive an upper bound and investigate some ap-
proximations on the symbol error probability (SEP) for coherent
detection of -ary phase-shift keying, using an array of antennas
with optimum combining in wireless systems in the presence of
multiple uncorrelated equal-power cochannel interferers and
thermal noise in a Rayleigh fading environment. Our results are
general and valid for an arbitrary number of antenna elements as
well as an arbitrary number of interferers. In particular, the exact
SEP is derived for an arbitrary number of antennas and inter-
ferers; the computational complexity of the exact solution depends
on the minimum number of antennas and interferers. Moreover,
closed-form approximations are provided for the cases of dual
optimum combining with an arbitrary number of interferers, and
of two interferers with an arbitrary number of antenna elements.
We show that our bounds and approximations are close to Monte
Carlo simulation results for all cases considered in this paper.

Index Terms—Adaptive arrays, antenna diversity, cochannel in-
terference, eigenvalue distribution, optimum combining, Wishart
matrices.

I. INTRODUCTION

A DAPTIVE ARRAYS can significantly improve the
performance of wireless communication systems by

weighting and combining the received signals to reduce fading
effects and suppress interference. In particular, with optimum
combining, the received signals are weighted and combined
to maximize the output signal-to-interference-plus-noise ratio
(SINR). In the presence of interference, this technique provides
substantial improvement in performance over maximal ratio
combining where the received signals are combined to max-
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imize the desired signal-to-noise ratio (SNR) only. However,
determining the performance of optimum combining is more
difficult than with maximal ratio combining.

In this regard, closed-form expressions for the bit-error prob-
ability (BEP) of binary phase-shift keying (BPSK) have been
derived for the single-interferer case with Rayleigh fading of the
desired signal in [1] and [2], and with Rayleigh fading of the
desired signal and interferer in [3]. An exact BEP expression,
which requires numerical integration, for BPSK and a single in-
terferer is also given in [4].

With multiple interferers of arbitrary power, Monte Carlo
simulation has been used to determine the BEP in [2]. In [5],
upper bounds on the BEP of optimum combining were derived
given the average powers of the interferers. However, these
bounds are generally not tight.

To avoid Monte Carlo simulation, the exact BEP expression
was derived in [6] for the case of equal-power interferers, which
permits analytical tractability. However, the results are limited
to the case of BPSK and no thermal noise. Approximations for
the BEP have been presented in [7] and [8] for binary modula-
tion in the presence of thermal noise. However, the approxima-
tion of [7] still requires Monte Carlo simulation to derive mean
eigenvalues (a table is provided in [7] for some cases), and the
approximation of [8] is valid only for the case when the number
of interferers is less than the number of antenna elements.

In this paper, starting from the eigenvalues distribution of
complex Wishart matrices, we first give the exact expression
of the symbol-error probability (SEP) for coherent detection of

-ary phase-shift keying (MPSK) using optimum combining in
the presence of multiple uncorrelated equal-power interferers,
as well as thermal noise, in a Rayleigh fading environment.
Evaluation of this expression involves multiple numerical inte-
grals. Then, based on some new results on the eigenvalues distri-
bution of complex Wishart matrices, we derive new closed-form
upper bounds. We show that these bounds are generally tighter
than those of [5]. Moreover, we extend the approaches in [7]
and obtain new closed-form approximations of the SEP that do
not require Monte Carlo simulation and are close to simulation
results.

In Section II, we describe the system model, and in Sec-
tion III, derive the exact SEP of optimum combining with mul-
tiple interferers. Upper bounds are derived in Section IV, and
approximate formulas are given in Section V. In Section VI,
we compare our analytical results with simulations, and in Sec-
tion VII, we present a summary and conclusions.

0090-6778/03$17.00 © 2003 IEEE
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Fig. 1. Baseband model of optimum combining receiver.

II. SYSTEM MODEL

We consider coherent demodulation with optimum com-
bining of multiple received signals in a flat fading environment
as in Fig. 1. The fading rate is assumed to be much slower
than the symbol rate. Throughout the paper, denotes the
transposition operator, and stands for conjugation and
transposition. The received signal at the -element array
output consists of the desired signal, interfering signals,
and thermal noise. After matched filtering and sampling at the
symbol rate, the array output vector at timecan be written as

(1)

where and are the mean (over fading) ener-
gies of the desired signal andth interferer, respectively;

and
are the desired andth interference propagation vectors,
respectively; and (both with unit variance) are
the desired and interfering data samples, respectively; and

represents the additive noise. We model and
as multivariate complex-valued Gaussian vectors having

and ,
where is the identity matrix. The additive noise is modeled
as a white Gaussian random vector with independent and
identically distributed (i.i.d.) elements with and

, where is the two-sided thermal
noise power spectral density per antenna element.

The SINR at the output of the -element array with op-
timum combining can be expressed [1], [2] as

(2)

where the short-term covariance matrix, conditioned to all
interference propagation vectors, is

(3)

and denotes expectation with respect to. Therefore

(4)

It is important to remark that and, consequently, also the
SINR vary at the fading rate.

The matrix can be written as where is
a unitary matrix and is a diagonal matrix whose elements
on the principal diagonal are the eigenvalues of, denoted by
( ). The vector has
the same distribution as , since represents a unitary trans-
formation. The SINR given in (2) can be rewritten as

(5)

Since is a random matrix, its eigenvalues are random vari-
ables.

We now investigate the statistical properties of
( ). We will show later that this is related to
problems arising in multivariate statistics, regarding the eigen-
value distribution of complex Wishart matrices. Let

(6)

be a ( ) random matrix composed of interference
propagation vectors as columns. For equal-power interferers,
i.e., for , (4) can be rewritten as

(7)

where is a ( ) random matrix. The eigen-
values of can be written in terms of eigenvalues of, denoted
by ( ), as

(8)

where the joint probability density function (pdf) of the
eigenvalues of are given by the following theorem.
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Theorem 1: The joint pdf of the first
orderedeigenvalues of , with

, is

(9)

where and is a normalizing constant
given by

(10)

with

(11)

The additional eigenvalues of are identically
equal to zero.

Proof: See Appendix B.
As a consequence ofTheorem 1, we have the following corol-

lary.
Corollary 1 (Reciprocity Principle) :The statistical distribu-

tions of the eigenvalues of , for the case of antennas and
interferers with , are equal to that of the (nonzero) eigen-
values of for the case of antennas and interferers.1

Using the distribution theory for transformations of
random vectors [9] together with (8), the joint pdf of

with is

(12)

where is given byTheorem 1. The additional
eigenvalues of are identically equal to .

III. EVALUATION OF THE EXACT SEP

The SEP for optimum combining in the presence of multiple
cochannel interferers and thermal noise in a fading environment
is obtained by averaging the conditional SEP over the (desired
and interfering signal) channel ensemble. This can be accom-
plished by

(13)

where is the SEP conditioned on the random variable
, and is the pdf of the combiner output SINR. Note that
depends on the desired and interference propagation vectors.

Although the evaluation of (13) involves a single integration for
averaging over the channel ensemble, it requires the knowledge

1This proves the equality, observed also numerically by Monte Carlo simula-
tion in [7, Table I], of the expectations of the nonzero eigenvalues of~R when
the number of antennas is exchanged with the number of interferers.

of the pdf of , which can be quite difficult to obtain. This is
alleviated by using the chain rule of conditional expectation as

(14)

where we first perform (i.e., average over the channel
ensemble of the desired signal) to obtain the conditional SEP,
conditioned on the random vector, denoted by . We then
perform to average out the channel ensemble of the in-
terfering signals.

The th interfering data samples, , can
be modeled as zero-mean, unitary variance Gaussian random
variables. Note that the Gaussian assumption gives a good ap-
proximation when the interfering contribution is due to a large
number of interferers sampled at a random time, and generally
it represents a worst case [10]; here, it will be used regardless
of the number of interferers. In the following, we assume that

is an MPSK data sample. With the previous assumption
together with the Gaussianity of , for coherent
detection of MPSK is given by [11], [12]

(15)

where and . Using
(15), can be written as

(16)

where is the characteristic function (cf) of, condi-
tioned on , given by

(17)

and we have used the fact thatis Gaussian with i.i.d. elements.
Therefore, the conditional SEP, conditioned on, in the general
case of antennas and interferers, becomes

(18)

where

(19)

Using (9), (12), (14), and (18), the unconditional SEP for op-
timum combining becomes

(20)

Equation (20) is exact and valid for arbitrary numbers of an-
tennas and interferers; however, it requires the evaluation of
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nested -fold integrals, which can be cumbersome to eval-
uate for large . To give an idea of the amount of time
needed for (which allows us to investigate either dual
combining with an arbitrary number of interferers or an arbi-
trary number of antennas with two interferers), the computation
of (20) on a 450-MHz PC requires about 100 s.

Since the computation time for the numerical evaluation of
(20) increases with the number of antennas and interferers, rig-
orous bounds, as in [5], or approximate expressions, as in [7],
are useful; unfortunately, the bounds in [5] are generally not
very tight, and the approximation in [7] requires Monte Carlo
simulation. This motivates the need to derive simpler and tighter
bounds or approximate expressions in closed form.

IV. UPPERBOUNDS ONSEP

In this section, we derive a new upper bound for the SEP
based on the knowledge of the pdf of the trace of the covariance
matrix .

Theorem 2: The SEP is upper bounded by

(21)

where is defined in (19), and is a chi-square distributed
random variable with degrees of freedom (DOFs),
having pdf given by

if
otherwise.

(22)

In (22), is the gamma function [13, eq.(8.310), p. 942], and

(23)
For a single-interferer scenario, (21) is an equality, i.e., it gives
the exact SEP for .

Proof: By applying the result in Appendix C to (18), we
have

(24)

where the equality is verified for , therefore

(25)

Note, from (8), that

(26)

where we have used the fact that eigenvalues of
are identically equal to zero byTheorem 1, and hence

(27)

In order to evaluate the expectation in (25), we observe that

. Hence, the random vari-

able is chi-square distributed with DOFs,
with pdf given by (22). This completes the proof of the theorem.

The expectation is evaluated in Appendix D as
shown in (28) at the bottom of the next page, where is
the exponential integral defined by (57) in Appendix D.

The bound (21) allows the evaluation of SEP for coherent
detection of MPSK modulation with optimum combining; the
numerical evaluation of it only requires a fraction of a second
on a PC. Note that the inequality in (24) becomes equality for
the case of single interferer (as well as for single antenna), and
our bound gives the exact results.

V. APPROXIMATIONS ON THESEP

In this section, some new results on the SEP approximations
will be presented. Here, we start from the approximation pro-
posed in [7], and we derive a methodology which allows us
to eliminate the need for Monte Carlo simulation in the cases
of dual optimum combining with an arbitrary number of inter-
ferers, and of two interferers with an arbitrary number of an-
tenna elements. We prove that the approximation proposed in
[8] is an upper bound of [7]; furthermore, we generalize the re-
sult of [8], and the generalized results are now applicable for the
case in addition to .

A. Approximation via Expected Eigenvalues

In [7], it is proposed to approximate the unconditional cf of
as .

By adopting this approximation in (20), the SEP for MPSK
is approximated as follows:

(29)

where is given by

(30)

and the th element of is

(31)
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Discussion

Since R is semidefinite positive, the eigenvalues
are real and nonnegative. Therefore, for

each , it is easy to verify that the function

(32)
is -concave ineach when the other variables are fixed, but,
despite this, the function is neither globally convex nor concave.

Approximation (29) is obtained by replacing the expected
value of with the function evaluated at the expected values
of the ’s, i.e.,

(33)

Now, if the function were concave (convex), applying
Jensen’s inequality will produce an upper (lower) bound, but,
since (32) is neither concave nor convex, Jensen’s inequality
[14] cannot be applied. However, (29) gives good agreement
with the exact SEP expression (20) for typical parameters of
interest. This may be due to the fact that, in the region where
the pdf of the eigenvalues is not negligible, (32) behaves
essentially as an affine function.

Integrating both sides of (33) overand scaling by , we
obtain

(34)

Note that, given the expectation of the eigenvalues ,
the last integral can be also derived in closed form by using a

canonical decomposition method [15], [16]. In the following,
(34) will be denoted as approximation A, and we will show in
Section VI that it is in good agreement with the exact analysis
of (20) as well as simulation results. In general, approxima-
tion A requires knowledge of . In [7], the expectation
of the eigenvalues for some specific cases were calculated via
Monte Carlo simulation. For the case of dual optimum com-
bining ( ) with arbitrary , or the case of two inter-
ferers ( ) with an arbitrary number of antenna elements,

is obtained easily in a closed form using the reciprocity
principle given inCorollary 1, together with the results of Ap-
pendix E.

B. Approximation via Equal Expected Eigenvalues

The determination of , in general, requires the evalua-
tion of multiple integrals for each of the ( ) eigenvalues.
This can be alleviated, at the expense of tightness, by the fol-
lowing bound.

Theorem 3: is upper bounded as follows:

(35)

where is given in (30) and theth element of is

(36)

Proof: The integrand of (34) can be written as

(37)

where for . By using (45) of
Appendix C, with , we get

(38)

(28)
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Fig. 2. SEP for coherent detection of BPSK, quaternary PSK, and 8-PSK using
dual optimum combining (N = 2) for N = 1, 2, and 4 andSIR = 10 dB.
Excellent agreement between exact analysis and simulation can be observed.

Using (8)

(39)

(40)

where we have used (66) from Appendix E in deriving (40).
Therefore

(41)
Finally, by using (30), (36), and (41), it is straightforward to
show that (34) is upper bounded by .

The above theorem provides a rigorous proof that the ap-
proximate solution for proposed in [8], based on
heuristic assumptions, represents an upper bound of the solu-
tion proposed in [7]. It also provides the generalization of the
approximation of [8], which is now valid for arbitrary numbers
of antennas and interferers. In the following, we will denote (30)
together with (36) as the approximation B. Note that approxima-
tion B does not require knowledge of .

VI. NUMERICAL RESULTS

In this section, we evaluate the exact SEP [given by (20)], the
upper bound [given by (21) together with (28)], the approxima-
tion A [given by (30) together with (31)] and the approximation
B [given by (30) together with (36)] derived in previous sec-
tions, and compare them with Monte Carlo simulation results.
The simulations were performed over 10 000 trials. We investi-
gate the effect of SNR defined as , signal-to-interference
ratio (SIR) defined as , the number of interferers,
and the number of antenna branches on the SEP. Unless other-
wise stated, we consider the coherent detection of 8-PSK with
optimum combining.

We first consider coherent detection of BPSK, quaternary
PSK and 8-PSK using dual optimum combining ( ).

Fig. 3. Comparison between upper bound derived in Section IV with the only
previously known upper bound given by [5, eq. (13)] for the case of BPSK,
SIR = 10 dB,N = 4,N = 1, 4, and 8. Note that our upper bound is 4.8
and 5.3 dB (at BEP of 10 ) tighter and 4.8 and 7.4 dB (at BEP of 10) tighter
than [5, eq. (13)] forN = 4 and 8, respectively.

Fig. 4. SEP as a function of SNR for coherent detection of 8-PSK using dual
optimum combining (N = 2) for the case ofN = 1 and 3 with SIR= 5 and
10 dB.

Fig. 2 shows the SEP as a function of SNR, for 1, 2, and
4, and dB. The results show excellent agreement be-
tween exact analysis and simulation. The curves also exhibit an
error floor when the number of interferers is greater than the
array DOFs, i.e., . Next, we compare in Fig. 3 the upper
bound derived in Section IV with the only previously known
upper bound given by [5, eq. (13)]. Note that our upper bound
is 4.8 and 5.3 dB (at BEP of 10) tighter and 4.8 and 7.4 dB
(at BEP of 10 ) tighter than [5, eq (13)] for 4 and 8,
respectively.

Fig. 4 shows the SEP with dual optimum combining for the
case of 1 and 3 with SIR 5 and 10 dB. Note that there
is the error floor for the case of which decreases as
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Fig. 5. SEP as a function of SIR for 8-PSK,N = 3, N = 1 and 4,
SNR= 5, 10, and 20 dB.

Fig. 6. SEP versus the number of interferersN for case of 8-PSK,N = 4,
SNR= 10 dB, SIR= 0, 5, and 10 dB.

SIR increases. In order to further investigate the dependence of
SEP on SIR, the SEP is plotted as a function of SIR in Fig. 5
for the case of 3, with 1 and 4, and SNR 5,
10, and 20 dB. Note that when the SIR is comparable with the
SNR, the number of interferers plays a marginal role. Finally,
the asymptotic SEP is limited by the thermal noise.

The SEP versus the number of interferers is plotted in Fig. 6
for , SNR dB, and three different values of SIR (0,
5, and 10 dB). It can be seen that, when the array is overloaded,
the performance does not depend significantly on the number
of interferers; this behavior is accentuated for small values of
SIR. The SEP versus the number of antenna branches is plotted
in Fig. 7 for SNR dB, SIR 5 and 10 dB, and 3.
The figure shows that the system is able to exploit the spatial

Fig. 7. SEP versus the number of antenna branchesN for 8-PSK,N = 3,
SNR= 10 dB, SIR= 5 and 10 dB.

Fig. 8. SEP versus SNR for 8-PSK,N = 4, N = 1, 3, and 5; and SIR
= 5 dB.

diversity provided by the increasing number of antennas (the
SEP in logarithmic scale is a approximately linear in). Note
that our upper bound is quite close to the simulation results.

Fig. 8 shows the SEP as a function of SNR for ,
SIR dB, and 1, 3, and 5. As expected, we note
the presence of error floor in the overloaded case (

). Moreover, when , the remaining DOFs
(diversity order) is and we expect an asymp-
totic behavior for SEP proportional to . This im-
plies that the curve of the SEP versus SNR approaches, for
large SNR, a straight line on a semilogarithmic scale with slope

decade/dB. Indeed, slopes of 3/10 decade/dB
for , and decade/dB for can be observed
from Fig. 8. Similar results are shown in Fig. 9 for ,
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Fig. 9. SEP versus SNR for 8-PSK,N = 4,N = 3, SIR= 0, 10, and 15
dB.

, and SIR 0, 10, and 15 dB, and the asymptotic be-
havior of SEP for large SNR can be seen for all values of SIR.

VII. CONCLUSION

In this paper, we derived the exact SEP for optimum com-
bining of signals in the presence of multiple equal-power inter-
ferers and thermal noise. Both cases and
were investigated and, to validate the analysis, results were com-
pared to Monte Carlo simulation results. The exact analytical
SEP requires the solution of a multiple integral whose com-
plexity depends on the smaller of and . This led us to
derive upper bounds and approximations for reduced computa-
tional complexity.

For the case of a single interferer (as well as for a single
antenna) our bound becomes the exact result, and agrees with
known results for the single-interferer case given in [3] and [4].
Finally, the performance of the upper bound and the approxi-
mate formulas have been assessed by comparison with simula-
tions.

The results show that, for typical cases considered in this
paper, our new upper bound is at least 4.8 dB tighter than the
only other available bound in the literature. The results also
show that the approximation based on the knowledge of the
expectation of the eigenvalues is close to Monte Carlo simula-
tion results; to this end, we derived a closed-form expression for
the expectation of the eigenvalues in the cases of dual optimum
combining with an arbitrary number of interferers, and of two
interferers with an arbitrary number of antennas. Finally, the re-
sults show that the upper bound and approximation B provide
similar accuracy.

APPENDIX A
DISTRIBUTION OFEIGENVALUES OF THEWISHART MATRIX

Let us define , with , where is the
set of the ( ) complex matrices, and .

If all the th elements of , , are complex values with
real and imaginary part each belonging to a normal dis-
tribution , then the ( ) Hermitian matrix

is called Wishart. Moreover, the joint pdf of the
ordered eigenvalues of , with

, can be found in [17] as

(42)

with

(43)

APPENDIX B
PROOF OFTHEOREM1

In this appendix, we will proveTheorem 1using the results
of Appendix A, and derive the distribution of the eigenvalues of
the matrix of (7) for arbitrary and . Let us consider the
cases and , separately. The proof for the
former case is straightforward application of Appendix A, but
to prove the latter case, we need the following theorem.

Theorem 4: Suppose that and with
, the ( ) matrix has the same eigenvalues as

the ( ) matrix , counting multiplicity, together with an
additional eigenvalues identically equal to zero.

Proof of Theorem 4:See [18, p. 53].
Proof of Theorem 1:[Case I. ]: When ,
can be related directly to a Wishart matrix, since the en-

tries of the random matrix are i.i.d. Gaussian random vari-
ables with zero-mean, independent real and imaginary parts,
each with variance 1/2. So, we can write

(44)

where is a ( ) complex Wishart matrix.
Thus, the joint pdf of the eigenvalues of is given by (42) and
(43) with and .

Proof of Theorem 1:[Case II. ]: When ,
can still be related to the Wishart matrix, by means ofThe-

orem 4. In fact, by introducing the ( ) matrix
and the ( ) matrix , then the ( ) ma-

trix has the same eigenvalues as the

( ) matrix , and the additional
eigenvalues are equal to zero. Moreover, since ,

is a ( ) complex Wishart ma-
trix, and therefore, has total of eigenvalues, where
eigenvalues have the joint pdf given by (42) with and

, and the additional eigenvalues are identi-
cally equal to zero.
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APPENDIX C
AN INEQUALITY

Here we prove the following inequality:
Theorem 5: For any , , and , where

(45)

Proof: We find the maximum of the function

(46)

subject to the constraint

(47)

To this aim, by using the Lagrange’s multipliers, we introduce
a parameter and the function

(48)

and set the partial derivatives of to zero. We can
observe that the condition requires that

(49)
This equation is satisfied by choosing , that, for

, provides a maximum of the function in (46). To see
that this cannot be a minimum, it is sufficient to let onegoing
to zero, keeping finite . In this case (46) goes to zero, whereas
the right member of (45) remains finite.

APPENDIX D
CALCULATION OF

Let , and
, and then (23) can be written as

(50)

Using (22) and letting gives results as
shown in (51) at the bottom of the page. Note (52) and (53) at
the bottom of the page. Multiplying (52) and (53) gives (54) at
the bottom of the page. Substituting (54) into (51), and noting
that we obtain (55) at the bottom of the page,

(51)

(52)

(53)

(54)

(55)
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where is the complementary incomplete gamma
function defined by [13 (8.350.2), p. 949]

(56)
and is given by

(57)

The special case of is known as the exponential integral.
Integrating (56) and (57) by parts, the recurrence relations can

be obtained as

(58)

(59)

By solving the recurrence relations (58) and (59), we get

(60)

(61)

Using (60) and (61) results in (62) as shown at the bottom of the
page.

APPENDIX E
SOME RESULTSON MEAN EIGENVALUES OF

Since (42) is a product of several terms in the form ,
the expected value of the eigenvalues of can be written
in a closed form for all values of and .

As an example, we found the following results:

• , : in this case it is straightforward to verify
that ;

• , : after some algebra, we get (63) as shown
at the bottom of the page.

It can be shown that can be further simplified to

(64)
To derive , we first observe that

(65)

where is the trace of the matrix. Then

(66)

(62)

(63)
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where is the th element of with ,
and the last equality is due to the following normalization (see
Appendix A):

Finally, by using (66), we get

(67)

where is given by (64).
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