
Optimal Quantum State Discrimination
with Fixed Measurements

Maison Clouâtré1, Stefano Marano2, Andrea Conti3, Peter L. Falb4, Moe Z. Win4

1Quantum neXus Laboratory, Massachusetts Institute of Technology, USA
2Department of Information & Electrical Engineering and Applied Mathematics (DIEM), University of Salerno, Italy

3Department of Engineering and CNIT, University of Ferrara, Italy
4Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, USA

Abstract—Given an unknown quantum state described by
one of two possible density operators, the Helstrom bound
provides the minimum discrimination error probability (DEP) by
optimizing over all possible quantum measurements. However, it
is unrealistic to implement arbitrary measurements in practice
due to physical limitations of measurement apparatuses. This
paper considers a quantum state discrimination scenario where
a fixed measurement apparatus is available. In this setting, we
advocate the use of quantum pre-processing (QPP) to realize
effectively different measurements from that of the fixed appa-
ratus. Applying optimal QPP prior to measurement with the fixed
apparatus allows one to minimize the DEP. This paper derives the
minimum DEP, determines the QPP required to achieve it, and
provides necessary and sufficient conditions for this minimum
DEP with optimal QPP to coincide with the Helstrom bound.

Index Terms—Quantum state discrimination, quantum pre-
processing, Helstrom bound, quantum communications, quantum
systems.

I. INTRODUCTION

A foundational result in quantum information is the Hel-
strom bound [1], [2, pp. 106-108], which states that the
minimum discrimination error probability (DEP) in binary
quantum state discrimination is characterized entirely by the
trace distance between the two density operators to be dis-
tinguished [3]–[6]. This bound is achieved by minimizing
the DEP over all possible quantum measurements. However,
if measurement capabilities are constrained [7]–[9], then the
Helstrom bound is unachievable in general. Therefore, re-
searchers are often interested in measurement systems that do
not necessarily achieve the Helstrom bound [10]–[13]. This
paper considers binary quantum state discrimination when a
fixed measurement apparatus is available. To realize effec-
tively different measurement systems, quantum pre-processing
(QPP) is applied to the unknown state prior to measurement
with the fixed apparatus. The goal is to derive the minimum
achievable DEP in this fixed measurement setting, i.e., the
tightest possible DEP bound. By construction, the minimum
DEP depends directly on the available experimental setup and
QPP capabilities.
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To the best of our knowledge, the device-specific bounds
on the achievable DEP developed in this paper chart new
territory with respect to the existing literature. The closest
related existing works considered quantum state discrimination
with measurements belonging to restricted families, such as
local measurements, separable measurements, positive under
partial transposition measurements, and measurements imple-
mentable by local operations and classical communication
(LOCC) [14]–[17]. These types of restricted families arise,
e.g., in quantum networks. In part, these restricted families are
of interest because there exist orthogonal states which they
cannot reliably distinguish [14]. The paper [15] established
a mathematical framework for studying restricted families of
measurements by introducing a semi-norm dependent on the
restricted family in consideration. This semi-norm replaces the
trace distance in the Helstrom bound to give the distinguisha-
bility of quantum states. Other works studied the use of re-
stricted measurement families in adversarial quantum hypoth-
esis testing [17] as well as in channel discrimination [18]. For
a complete literature review of quantum state discrimination
see [19]; for an assortment on quantum communications and
networking see [20]–[30].

While restricted families of measurements are interesting in
their own right, the present paper is concerned with systems
where a fixed measurement apparatus is available and QPP is
applied prior to measurement. This setting is crucial to un-
derstanding the fundamental limits of, among others, quantum
computing with imperfect (non-projective) measurements. The
contributions of this paper are as follows: we

• derive a lower bound on the DEP achievable when QPP
is used prior to measurement;

• prove that this bound is achievable by optimizing over
QPP and one’s decision rule;

• provide closed-form expressions for optimal QPP achiev-
ing the minimum DEP; and

• give conditions for the minimum DEP with optimal QPP
to coincide with the Helstrom bound.

To put these results into action, we quantify the optimal DEP
of a quantum computer-enabled optical receiver for coherent
state binary phase-shift keying (BPSK) communications [31].

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Matri-
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ces are denoted by bold uppercase letters. For example, a
random variable and its realization are denoted by x and x;
a random matrix and its realization are denoted by X and
X , respectively. The Hermitian conjugate, rank, and trace
of a matrix X are denoted X†, rank{X}, and tr{X},
respectively. The m-by-m identity matrix is denoted by Im;
the subscript is removed when the dimension of the matrix
is clear from the context. The m-by-n matrix of zeros is
denoted by 0m×n. For a square matrix X , the notation X ≽ 0
means that X is positive semidefinite, λ↑

k(X) denotes the kth
smallest eigenvalue of X , and λ↓

k(X) denotes the kth largest
eigenvalue of X . The unitary group of order d is defined as
U(d) = {U ∈ Cd×d : U †U = UU † = I}. The Kronecker
product is denoted ⊗ and the mth Kronecker power of X
is denoted X⊗m. The Kraus rank of a linear map K on
the set of density matrices is denoted krank{K}. The set of
natural, real, and complex numbers are denoted N, R, and C,
respectively. Let m,n ∈ N∪{0} with m ⩽ n; Nn

m denotes the
set {m,m+1, ..., n}. All other sets are denoted by calligraphic
font as in X . The indicator function is defined as 1X (x) = 1
if x ∈ X and 1X (x) = 0 otherwise.

II. SYSTEM MODEL

The state of a finite d-dimensional quantum system can
be represented by a density matrix in Cd×d. We will use
the terminology “quantum state” and “the density matrix
describing the quantum state” interchangeably. This section
first revisits quantum state discrimination, then presents a
model for QPP-based quantum state discrimination in the fixed
measurement scenario.

A. Preliminaries on quantum state discrimination

In Bayesian binary quantum state discrimination, the state
Ξ is random and takes on one of two possible distinct
values, denoted by the density operators Ξ0 and Ξ1. Let
p0 ≜ P{Ξ = Ξ0} and p1 ≜ P{Ξ = Ξ1} denote the “prior”
probabilities of Ξ0 and Ξ1, respectively. In the formalism of
hypothesis testing, let

H0 : Ξ = Ξ0

H1 : Ξ = Ξ1 .
(1)

The goal is to decide which of the two states Ξ0 and Ξ1

the system is in. Note that this mathematical formulation
contains the multi-copy discrimination problem as a special
case. For instance, suppose that one wishes to distinguish two
quantum states, Υ0 or Υ1, based on m ∈ N independent copies
of the unknown state. Taking Ξ0 = Υ⊗m

0 and Ξ1 = Υ⊗m
1

recasts the multi-copy problem into the mathematical form (1)
considered herein. The traditional model of quantum state
discrimination is as follows.

• To infer the true value of Ξ, one measures the
state. The measurement is characterized by a positive
operator-valued measure (POVM) system M =
{M1, M2, . . . , MN} where N ⩾ 2, My ≽ 0 for
y ∈ NN

1 , and
∑N

y=1 My = I . The outcome of the

measurement is a random variable y taking values in NN
1

and distributed according to Born’s rule

P{ y = y |Ξ = Ξ0 } = tr{MyΞ0} (2a)
P{ y = y |Ξ = Ξ1 } = tr{MyΞ1} . (2b)

• Once the state Ξ is measured, the measurement outcome
y is mapped to a decision Ĥ about the true hypothesis
using a decision rule 1S(·) : NN

1 → {0, 1}.1 A decision
rule is parameterized by a decision region S ⊆ NN

1 . If
1S(y) = 0 then Ĥ = H0, and if 1S(y) = 1 then Ĥ =
H1.

The performance of a particular quantum state discrimina-
tion scheme (comprised of the POVM M and the decision
region S) is characterized by the probability of inferring the
wrong hypothesis, i.e., the DEP given by

PM
e (S) = p0

∑
y∈S

tr{MyΞ0}+ p1
∑
y∈Sc

tr{MyΞ1} (3)

where Sc ≜ NN
1 \ S . The expression (3) can be written in a

more insightful form by noting that the decision rule 1S(·)
induces from M the binary POVM

M(S) ≜ {M(S) , I −M(S) } (4)

where M(S) ≜
∑

y∈S My and I − M(S) =
∑

y∈Sc My .
The DEP reduces to

PM
e (S) = p0 tr{M(S)Ξ0}+ p1 tr{[I −M(S)]Ξ1} (5a)

= p1 − tr{M(S) [ p1Ξ1 − p0Ξ0 ]︸ ︷︷ ︸
≜Z

} (5b)

where Z ∈ Cd×d. Hence, to minimize the DEP, the quantity
tr{M(S)Z} should be as large as possible. An optimal
decision region S⋆ ⊆ NN

1 is defined according to the following
rule that maximizes tr{M(S)Z}: for every y ∈ NN

1 , y ∈ S⋆

if and only if tr{MyZ} ⩾ 0.2

Remark 1: The problem is trivial in the cases where Z
is negative semidefinite or positive semidefinite: an optimal
decision rule is to always decide Ξ0 or Ξ1 regardless of
the measurement outcome. We exclude these scenarios and
consider the interesting case where Z is indefinite. □

A seminal result of quantum information states that the DEP
in (5) satisfies the condition

PM
e (S) ⩾ 1

2

(
1− ∥Z∥1

)
≜

NN
Pe (6)

which is known as the Helstrom bound [2, pp. 106-108]. It
was shown that equality in (6) can be achieved if one can
implement a measurement characterized by the binary POVM
M⋆ = {M⋆, I−M⋆} where where M⋆ is the projector onto
the range of [Z]+ ≜ (Z +

√
Z2)/2.3 The optimal decision

rule associated with the POVM M⋆ is to decide Ĥ = H1 if

1For simplicity, only deterministic decision rules are considered in this
paper. It can be shown that random decision rules perform no better than
deterministic ones in the context of this paper [2], [32].

2Notice that if tr{My Z} = 0 for some y ∈ NN
1 then S⋆ is not a unique

optimal decision region.
3Since Z is Hermitian, Z2 has a unique positive square root [33, p. 253].
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the outcome associated with M⋆ is observed and to decide
Ĥ = H0 otherwise. While the Helstrom bound provides the
ultimate quantum limit on state discrimination, as we will see
shortly, there are systems of interest where the lower bound (6)
is loose.

B. Quantum state discrimination with fixed measurements

Suppose that we only have access to a physical measurement
apparatus that implements a fixed measurement, characterized
by the POVM M. As the POVM M is unlikely conducive
to minimizing the DEP, we introduce the concept of QPP
which is used to alter the distribution of the measurement
outcome y, encoding more information about the underlying
hypothesis. With QPP, the traditional model of quantum state
discrimination is reformulated as follows.

• Prior to measuring the unknown state Ξ with the avail-
able measurement system, pre-process the state Ξ. This
action, referred to as QPP, is mathematically modeled as
passing the unknown state Ξ through a quantum channel
described by completely positive and trace-preserving
(CPTP) mapping K(·) : Cd×d → Cd×d.

After QPP, the state K(Ξ) is measured using the measurement
characterized by M and the decision is made according to
a rule 1S(y) as before. The effect of QPP is to alter the
distribution of the measurement outcome y taking values in
NN

1 , namely (2) becomes

P{ y = y |Ξ = Ξ0 } = tr{MyK(Ξ0)} (7a)
P{ y = y |Ξ = Ξ1 } = tr{MyK(Ξ1)} . (7b)

The DEP associated with QPP K(·), the POVM M, and the
decision rule 1S(·) is

PM
e (S;K(·)) = p1 − tr{M(S)K(Z)} . (8)

This expression follows from (5) using the linearity of quan-
tum channels.

For minimizing DEP (8), the quantity tr{M(S)K(Z)}
should be as large as possible. Whereas only S is to be opti-
mized in the traditional model of quantum state discrimination,
now both the QPP K(·) and the decision region S are to be
optimized. The goal is to solve the optimization problem

P1 : maximize
S⊆NN

1

maximize
K(·)∈K

tr{M(S)K(Z)}

where K is the set of feasible QPP (i.e., the physical trans-
formations that one may perform on the unknown state Ξ).4

In what follows, the class of Kraus rank-constrained QPP is
considered. Thus, the feasible QPP sets are of the form

K(Nk) ≜
{
K(·) : krank{K(·)} ⩽ Nk

}
(9)

with Nk ∈ Nd2

1 . This type of feasible QPP arises in many cases
of interest. For instance, the effects of a quantum circuit with a
limited number of ancilla on a target state may be represented

4It can be shown that the order of maximization in P1 is irrelevant. In
particular, one can first maximize over QPP and then over the decision rule,
vice versa, or simultaneously. Each configuration gives the same maximum.

in this way, as will be demonstrated in Section V. In P1,
the inner optimization problem concerns optimal QPP and the
outer optimization problem concerns optimal decision making.
Section III solves the optimal QPP problem in closed-form.

III. OPTIMAL QUANTUM PRE-PROCESSING (QPP)

The following theorem provides the exact performance
of the optimal rank-constrained QPP. How to achieve this
optimal performance is discussed after the theorem’s proof.
For notational simplicity, M is written in place of M(S).
Also, let ν+ ∈ Nd

0 and ν− ∈ Nd
0 denote the number of strictly

positive and strictly negative eigenvalues of Z, respectively.
Theorem 1: The optimal value of the rank-constrained QPP

optimization problem

P2 : maximize
K(·)∈K(Nk)

tr{MK(Z)}

is given by (10b) at the top of the following page. If Nk ⩾
max{ν+, ν−}, then the optimal value of P2 reduces to

λ↓
1(M)− λ↑

1(M)

2

(
∥Z∥1 + (p1 − p0)

)
. (11)

□
Proof: First consider (10b). Any QPP of Kraus rank at

most Nk can be written as K(·) : Z 7→
∑Nk

n=1 VnZV †
n with

Vn ∈ Cd×d satisfying
∑Nk

n=1 V
†
nVn = Id. Because of this

relation, one may select a set of matrices Wn ∈ Cd×(Nk−1)d

such that the block matrix

X =

 V †
1 V †

2 · · · V †
Nk

W †
1 W †

2 · · · W †
Nk

 ∈ CNkd×Nkd (12)

is unitary. Similarly, one may partition any unitary
X ∈ U(Nkd) as in (12) to obtain a QPP with Kraus rank
at most Nk.

Defining A ≜ INk
⊗M and

B ≜


0(Nk−1)d×d 0(Nk−1)d×(Nk−1)d

Z 0d×(Nk−1)d

 (13)

it is straightforward to show, regardless of the particular values
of the Wn’s, that

tr{MK(Z)} = tr{XAX†B} . (14)

The maximum of the right hand side of (14) is known [34,
p. 772], namely

maximum
X∈U(Nkd)

tr{XAX†B} =

Nkd∑
j=1

λ↓
j (A)λ↓

j (B) . (15)

Given that B has at least (Nk − 1)d zero eigenvalues, (10a)
holds. The proof of (10b) is completed by noting that Z
has (d − ν+ − ν−) zero eigenvalues so that λ↓

j (Z) = 0 if
ν+ < j ⩽ d− ν−.

To prove (11) observe that the eigenvalues of INk
⊗M are

those of M repeated Nk times. If Nk ⩾ max{ν+, ν−} then the
ν+ largest eigenvalues of INk

⊗M are all exactly λ↓
1(M); the
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maximum
K(·)∈K(Nk)

tr{MK(Z)} =

ν+∑
j=1

λ↓
j (Z)λ↓

j (INk
⊗M) +

Nkd∑
j=ν++(Nk−1)d+1

λ↓
j−(Nk−1)d(Z)λ↓

j (INk
⊗M) (10a)

=

ν+∑
j=1

λ↓
j (Z)λ↓

j (INk
⊗M) +

Nkd∑
j=Nkd−ν−+1

λ↓
j−(Nk−1)d(Z)λ↓

j (INk
⊗M) (10b)

ν− smallest eigenvalues of INk
⊗M are all exactly λ↑

1(M).
Hence, when Nk ⩾ max{ν+, ν−}, (10b) can be simplified to

maximum
K(·)∈K(max{ν+,ν−})

tr{MK(Z)}

= λ↓
1(M)

ν+∑
j=1

λ↓
j (Z) + λ↑

1(M)
d∑

j=d−ν−+1

λ↓
j (Z) . (16)

On the other hand, note that Z = p1Ξ1−p0Ξ0 and tr{Z} =
p1−p0. Therefore, the eigenvalues of Z sum to (p1−p0) and
the equality

d∑
j=d−ν−+1

λ↓
j (Z) = (p1 − p0)−

ν+∑
j=1

λ↓
j (Z) (17)

follows. Using the fact that ∥Z∥1 =
∑ν+

j=1 λ
↓
j (Z) −∑d

j=d−ν−+1 λ
↓
j (Z) alongside (17), the equalities

ν+∑
j=1

λ↓
j (Z) =

(p1 − p0) + ∥Z∥1
2

(18a)

d∑
j=d−ν−+1

λ↓
j (Z) =

(p1 − p0)− ∥Z∥1
2

(18b)

are obtained. The proof is completed by combining (16)
with (18a) and (18b). ⊠

Theorem 1 reveals the optimal performance of QPP, but it
remains to derive QPP that achieves the optimal performance.
The proof of Theorem 1 provides a blueprint for deriving such
QPP. Let A = QAΛAQ†

A and B = QBΛBQ†
B be spectral

decompositions of A and B, respectively, in terms of unitary
matrices QA and QB and diagonal matrices ΛA and ΛB .
The spectral theorem [33, p. 246] guarantees the existence of
such decompositions since A and B are Hermitian. For any
X ∈ U(Nkd) and XAB ≜ Q†

BXQA ∈ U(Nkd), the cyclic
property of the trace gives

tr{XAX†B} = tr{XABΛAX†
ABΛB} . (19)

Selecting XAB so that the right-hand side of (19) achieves
the maximum given in (15) is straightforward: choose XAB

to be a permutation matrix P ∈ U(Nkd) such that

tr{PΛAP †ΛB} = tr{Λ↓
A Λ↓

B} =

Nkd∑
j=1

λ↓
j (A)λ↓

j (B) . (20)

Then, an optimizer of the problem in (15) is X⋆ = QBPQ†
A.

To obtain an optimizing QPP K⋆(·) for (10a), simply partition
X⋆ as in (12). The process of arriving to (20) is depicted in
Fig. 1.
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

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(a)
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(c)

Fig. 1. Visualization of Theorem 1’s proof in the case where d = 3 and
Nk = 2. The quantity tr{XAX†B} when X = I is shown in (a). The
quantity tr{XABΛAX†

ABΛB} when XAB = I is shown in (b). The
optimal value tr{Λ↓

A Λ↓
B} when λ↓

1(Z), λ↓
2(Z) ⩾ 0 and λ↓

3(Z) < 0 is
shown in (c). White space is used to denote matrix elements that are decidedly
zero. Notice that ΛB in (b) and Λ↓

B in (c) have at least (Nk − 1)d = 3
zero eigenvalues.

Theorem 1 provides optimal QPP for any decision rule
1S(·). It then remains to choose the optimal decision rule.
In general, this is a difficult problem due to the nonlinear
dependence of (10b) on M . Fortunately, for small N , an
optimal decision rule can be computed by simply enumerat-
ing (10b) (or (11) if Nk ⩾ max{ν+, ν−}) over all M(S)
generated by subsets S of NN

1 . It is interesting that the
quantity λ↓

1(M)− λ↑
1(M) appears in the optimal value (11).

This quantity is known as the spread of the matrix M [35].
Hence, when Nk ⩾ max{ν+, ν−}, an optimal decision region
S solving P1 is one that maximizes the spread of M(S).
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Since M(S) = {M(S), I −M(S)} is a POVM, this spread
lies in the interval [0, 1]. The spread equals 1 if and only if
λ↓
1(M(S)) = 1 and λ↑

1(M(S)) = 0. If there exists y ∈ NN
1

such that My ∈ M has spread equal to 1, then an optimal
decision region is simply S⋆ = {y}.

There is an important implication of Theorem 1. In general,
it may take a mapping of Kraus rank d2 to model a quantum
channel [36, Thm 4.4.1]. However, (11) in Theorem 1 shows
that at most Nk = max{ν+, ν−} < d is needed for optimal
QPP. In other words, optimal QPP does not require the most
complex quantum channels. This has positive implications for
performing QPP on quantum computers with limited ancilla.
For qubit systems, this result shows that unitary channels are
sufficient for optimal QPP.

IV. DEP LOWER BOUND AND COMPARISON TO THE
HELSTROM BOUND

Quantum channels are contractive under the trace norm, i.e.,
∥K(Z)∥1 ⩽ ∥Z∥1 for all K(·) and Z [36, p. 239]. Combining
the contractivity of quantum channels with (6) gives the bound

PM
e (S;K(·)) ⩾

NN
Pe ∀S, K(·) (21)

and subsequently

N
PM
e ≜ minimum

S⊆NN
1 , K(·)∈K(Nk)

PM
e (S;K(·)) ⩾

NN
Pe . (22)

That is, the minimum DEP
N
PM
e achievable with constrained

measurement is lower bounded by the Helstrom DEP
NN
Pe. Note

that the DEP
N
PM
e is achievable by construction: given fixed M

and rank constrained QPP,
N
PM
e is achievable by some decision

region S and QPP K(·). In the constrained measurement
setting,

NN
Pe is not necessarily achievable, thus

N
PM
e is the more

informative quantity.
Let us inquire about when the DEPs

N
PM
e and

NN
Pe coincide,

in which case optimal QPP alongside an optimal decision
rule allows one to achieve the Helstrom bound despite the
fixed measurement. The following theorem gives necessary
and sufficient conditions for the two DEPs to coincide.

Theorem 2: Recall from Remark 1 that Z is indefinite, i.e.,
ν+ > 0 and ν− > 0. The following statements hold.

• If Nk ⩾ max{ν+, ν−}, the equality
N
PM
e =

NN
Pe in (22)

holds if and only if there exists a decision region S ⊆ NN
1

satisfying the following equivalent conditions:
1) the spread of M(S) equals 1;
2) λ↓

1(M(S)) = 1 and λ↑
1(M(S)) = 0.

• If Nk < max{ν+, ν−}, the equality
N
PM
e =

NN
Pe in (22)

holds if and only if there exists a decision region S ⊆ NN
1

satisfying both of the following conditions:
1) M(S) has at least ν+/Nk eigenvalues equal to 1;
2) M(S) has at least ν−/Nk eigenvalues equal to 0.

□

Proof: Consider first the case where Nk ⩾ max{ν+, ν−}.
From (8) and (11), the optimal DEP is given by

N
PM
e = p1 −maximum

S⊆NN
1

λ↓
1(M(S))−λ↑

1(M(S))
2

×
(
∥Z∥1 + (p1 − p0)

)
. (23)

Note that the eigenvalues of any POVM element, such as
M(S), lie in the interval [0, 1]. Hence,

λ↓
1(M(S))− λ↑

1(M(S)) ⩽ 1 . (24)

Since ∥Z∥1 + (p1 − p0) =
∑d

j=1 |λ
↓
j (Z)| + λ↓

j (Z) > 0, it
follows that

N
PM
e is maximized if and only if λ↓

1(M(S)) −
λ↑
1(M(S)) = 1. Equivalently,

N
PM
e is maximized if and only

if both λ↓
1(M(S)) = 1 and λ↑

1(M(S)) = 0. If this is the case,
using the fact that p0 + p1 = 1 in (23) reveals

N
PM
e =

NN
Pe.

Consider now the case where Nk < max{ν+, ν−}. Recall
that the eigenvalues of INk

⊗ M(S) are exactly those of
M(S) with multiplicity Nk. The right-hand side of (10b) is
maximized if and only if M(S) has at least ν+/Nk eigen-
values equal to 1 and M(S) has at least ν−/Nk eigenvalues
equal to 0. If there exists S such that M(S)’s eigenvalues
satisfy these two conditions, then

N
PM
e is

N
PM
e = p1 −

ν+∑
j=1

λ↓
j (Z) (25a)

= p1 −
(p1 − p0) + ∥Z∥1

2
(25b)

=
NN
Pe (25c)

where (25b) follows from (18a) and (25c) follows from p0 +
p1 = 1. This completes the proof. ⊠

V. CASE STUDY: QUANTUM COMPUTER-ENABLED
RECEIVER FOR OPTICAL BPSK WITH COHERENT STATES

This section will use the theory developed in this pa-
per to quantify the optimal DEP achievable by a quantum
computer-enabled receiver for optical BPSK communications
with coherent states, such as that proposed in [31]. Quantum
transduction [37] is used to transfer the information encoded
in the received optical state to a superconducting qubit. For
the details of this process, the reader is referred to [31].

The transduction occurs in two steps: the optical state is
transduced to a microwave cavity and then the state of the
microwave cavity is transduced to a superconducting qubit.
After the first step, given that the coherent state |±β⟩ is
received, β ∈ C, the cavity is in the Gaussian state

ΞM(n̄tr,±
√
ηtrβ) =

1

π n̄tr

∫
C
e−

|α∓√
ηtrβ|2

n̄tr |α⟩⟨α|dα (26)

where |α⟩ is a coherent state, ηtr ⩾ 0 is the loss parameter, and
n̄tr ⩾ 0 is the “heating parameter” (number of thermal photons
accumulated during the transduction process). The ±√

ηtr β
in (26) carries the information about which BPSK symbol
was sent. The state ΞM(n̄tr,±

√
ηtr β) of the microwave

cavity is then transduced to the superconducting qubit via the
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TABLE I
OPTIMAL DEP ACHIEVABLE WITH QPP OF KRAUS RANK

CONSTRAINT Nk AND MEASUREMENT EFFICIENCY η.

Copies of the unknown state: m = 4

Helstrom bound:
NN
Pe = 0.0286

Nk = 1 Nk = 2 Nk = 3 Nk = 4

η = 0.1 0.0747 0.0629 0.0550 0.0550
η = 0.2 0.1529 0.1371 0.1267 0.1267
η = 0.3 0.2552 0.2414 0.2323 0.2323
η = 0.4 0.3736 0.3657 0.3605 0.3605

Copies of the unknown state: m = 3

Helstrom bound:
NN
Pe = 0.0267

Nk = 1 Nk = 2 Nk = 3 Nk = 4

η = 0.1 0.0766 0.0687 0.0608 0.0532
η = 0.2 0.1563 0.1458 0.1353 0.1252
η = 0.3 0.2584 0.2492 0.2401 0.2312
η = 0.4 0.3755 0.3702 0.3650 0.3599

Copies of the unknown state: m = 2

Helstrom bound:
NN
Pe = 0.0784

Nk = 1 Nk = 2 Nk = 3 Nk = 4

η = 0.1 0.1627 0.1627 0.1627 0.1627
η = 0.2 0.2470 0.2470 0.2470 0.2470
η = 0.3 0.3314 0.3314 0.3314 0.3314
η = 0.4 0.4157 0.4157 0.4157 0.4157

Jaynes-Cummings interaction. In the interaction picture, the
Hamiltonian is H = ℏχ(A⊗Σ++A†⊗Σ−) where ℏ is the
reduced Planck constant, χ ⩾ 0 is the coupling between the
qubit and field, A is the annihilation operator of the field, and
Σ+ (resp. Σ−) is the raising (resp. lowering) operator of the
qubit. Denoting the mean photon number of the microwave
cavity by N , consider the case where n̄tr = 1.8, ηtr = 0.924,
χt = π/4

√
N , and β = 3 [31].

After transduction, the state Υ of the qubit takes on one
of two values, Υ0 or Υ1, depending on which symbol |±β⟩
was sent by the transmitter. Take the prior probabilities to be
equally likely: p0 = p1 = 1/2. In the case of m-fold repetition
encoding, we can transduce m independently received symbols
to m different qubits. The goal of the receiver is to infer Ξ,
taking on values Ξ0 = Υ⊗m

0 and Ξ1 = Υ⊗m
1 . Suppose that

imperfect measurements, characterized by the binary POVM
M = {M , I −M} with

M = (1− η) |0⟩⟨0|+ η |1⟩⟨1| (27)

can be performed independently on each qubit. In (27),
η ∈ (0, 0.5) is the efficiency of the measurement. In the limit
of η → 0, (27) represents a projective measurement onto
the computational basis of each qubit. Finally, owing to the
fact that the qubits reside in a quantum computer, they can
be coupled to an Nk-dimensional ancilla. By the Stinespring
dilation theorem [36, p. 172], preparing the ancilla in a pure
state followed by performing composite unitary operations
allows one to achieve arbitrary QPP of Kraus rank constraint
Nk on Ξ.

Table I summarizes the minimum DEP
N
PM
e and the Hel-

strom bound
NN
Pe for various measurement efficiencies η, ancilla

0
0 0.10.05 0.15
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Fig. 2. Ratio between the Helstrom bound and the optimal DEP, when Nk =
2, plotted as a function of the measurement efficiency η. The lower this ratio,
the looser the Helstrom bound is in the fixed measurement setting.

dimension Nk, and block length m. The Helstrom bound is at
least an order of magnitude off from the minimum achievable
DEP in many cases. Fig. 2 plots the ratio between the Helstrom
bound and the minimum DEP as a function of measurement
efficiency η in the case where Nk = 2. Notice that, even in
the case where the measurement efficiency is around 95%, this
ratio is significantly less than 1.

VI. CONCLUSION

This paper explored quantum state discrimination in the
setting where a fixed measurement apparatus is available.
The employment of optimal QPP was advocated and the
fundamental limits of quantum state discrimination—as well
as optimal QPP to achieve these limits—were derived in closed
form. The derived limits supplant the Helstrom bound in the
scenarios of interest. The results derived in this paper can play
a key role in the design of quantum systems relying on state
discrimination.
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