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Abstract—Wireless networks with navigation capability enable
mobile devices to both communicate and determine their positions.
Diversity navigation employing multiple sensing technologies can
overcome the limitation of individual technologies, especially when
operating in harsh environments such as indoors. To character-
ize the diversity of navigation systems in real environments, we
performed an extensive measurement campaign, where data from
heterogenous sensors were collected simultaneously. The perfor-
mance of Bayesian navigation algorithms, relying on the particle
filter implementation, is evaluated based on measured data from
ultrawideband, ZigBee, and inertial sensors. This enables us to
quantify the benefits of data fusion as well as the effect of statistical
mobility models for real-time diversity navigation.

Index Terms—Diversity navigation, inertial devices, measure-
ment campaign, mobility models, particle filters.

I. INTRODUCTION

ETWORK NAVIGATION is a new trend on the horizon

for future mobile technology, opening doors to a variety
of navigation-based applications and services [1]. Examples
include surveillance, medical therapy, traffic management, in-
teractive remote control, and gaming [2].

The purpose of a navigation system is to determine the
unknown position of mobile nodes (referred to as agents) based
on measurements with respect to nodes in known positions
(referred to as anchors) as well as other agents. Navigation
performance is typically given in terms of localization error
and outage (e.g., submeter localization error for at least 90%
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of positions in both space and time), as well as location-
update rate (e.g., ten position estimates per second). These
requirements, depending on specific applications, dictate the
complexity of the navigation technique.

The most widely used solution to provide positional infor-
mation is the global positioning system (GPS) which employs a
constellation of satellites. In cluttered environments (e.g., inside
buildings, in urban canyons, and under tree canopies), the GPS
performance is often degraded due to propagation impairments
such as multipath and line-of-sight (LOS) blockage. These
impairments present significant challenges to the design and
operation of indoor navigation systems.

The navigation process typically occurs in two phases:
(1) a measurement phase, during which agents make intra-
and/or internode measurements using different sensors, and
(i) a location-update phase, during which agents infer their
positions based on prior knowledge and new measurements.
Intranode measurements can be obtained through inertial mea-
surement units (IMUs), which measure orientations, acceler-
ations, and angular velocities, while internode measurements
can be obtained through range measurement units (RMUs),
which measure received signal strength (RSS) or time-of-arrival
(TOA) of exchanged signals. Intranode measurements from
IMUs can improve the performance of navigation systems by
providing information on agents’ mobility, especially when
internode measurements exhibit a temporary outage due, for
example, to obstacles. Examples of reliable internode measure-
ments include ultrawideband (UWB) and narrowband signals
from RMUs. Multipath resolvability of UWB signals [3]-[11]
makes UWB-TOA-based technique ideal for high-accuracy
ranging in cluttered environments [12]-[14]. ZigBee technol-
ogy, designed for various wireless sensor network applications,
can be used to infer distances through RSS measurements with
low complexity [15]-[18]. The adoption of a single technology
in harsh environments is often not sufficient to satisfy the
accuracy and reliability requirement of the applications. To
overcome these limitations, the use of multiple technologies
for intra- and internode measurements is necessary, leading
to diversity navigation systems. Bayesian filtering, based on
mobility and perception models (also known as measurement
models), can efficiently combine measurements from multiple
sensors [19]. In particular, both mobility and perception models
affect the navigation performance and need to be carefully
characterized.

Recent research in localization and navigation has been car-
ried out in three related strands, such as the following: (a) funda-
mental limits; (b) algorithm design; and (c) experimental
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characterization. Understanding the fundamentals of network
localization and navigation is important not only to provide
a performance benchmark but also to guide algorithm devel-
opment and network design [20]-[29]. Given an underlaying
technology, the localization and navigation performance also
depends on the algorithm used [30]-[32]. The experimental
characterization enables the system design for fulfilling the
target performance in a real environment [33]-[36].

The design and analysis of diversity navigation systems in re-
alistic environments require experiments specifically designed
for collecting data from multiple sensing measurements under a
common setting. While there are articles based on simulations
using multiple RMUs [37] or measurements with single RMU
and IMU as in [38], to the best of the authors’ knowledge,
there are no measurements from multiple RMUs and IMUs
under a common setting, with a goal of characterizing diversity
navigation systems.

In this paper, we characterize diversity navigation systems
based on real-time measurements from multiple sensors in an
indoor environment. In particular, we consider Bayesian (PFs)
which combine the following: a prior knowledge from mobility
and perception models; acceleration measurements from IMUs;
and UWB impulse radio TOA and narrowband ZigBee RSS
measurements from RMUs. The key contributions of this paper
can be summarized as follows:

¢ introduction of mobility and perception models based on

inertial and ranging measurements;

e comparison of mobility models under a common set of

real-time indoor measurements;

» experimental characterization of diversity navigation sys-

tems employing multiple sensing technologies.

The remainder of this paper is organized as follows. The
measurement campaign is described in Section II, Section III
presents the Bayesian navigation algorithm, and Section IV
reports the characterization of mobility and perception models
based on experimental measurements. The performance metrics
are defined in Section V, and the results of the navigation
systems are given in Section VI. The conclusion is provided
in Section VIIL.

II. EXPERIMENTATION SETTING

Here, we describe the measurement campaign that enables
the comparison of various navigation techniques [39]. This
campaign also allows us to quantify the benefits coming from
different sensing technologies. In particular, we consider ori-
entation and acceleration measurements using IMUs and UWB
impulse radio TOA and narrowband ZigBee RSS measurements
using RMUs. All measurements are taken automatically by a
small robot moving at controlled speeds along a predetermined
trajectory.

A. Measurement Setup

The experiment is performed in a typical office building
located at the University of Bologna, Bologna, Italy. The map
of the localization area, the trajectory of the robot, and the
positions of the anchors are shown in Fig. 1. Note that the
locations of the UWB anchors have been chosen to have most
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Fig. 1. Experimentation environment with UWB (triangles) and ZigBee
(crosses) anchors. The trajectory of the robot is also depicted (gray curve).

of the TOA-based ranging measurements taken in non-LOS
conditions (worst case). Note also that the locations of ZigBee
anchors and their number have been chosen to have a sufficient
number of RSS-based ranging measurements taken in LOS
conditions (otherwise, adequate ranging reliability would not
be possible).

The trajectory followed by the robot can be divided into three
sections, with the total length equal to 18 m. The first section
is a straight line along the y-axis, the second is a quarter of a
circle with radius equal to 2.4 m, and the third is a straight line
along the x-axis. Two different types of motion are considered:
constant speed and variable speed. In both cases, the robot
starts moving 5 s after the beginning of the experiment. In the
constant-speed case, the robot travels the whole trajectory in
49.5 s with a speed of 0.36 m/s. In the variable-speed case, the
robot is subjected to 14 different speeds. It travels the whole
trajectory in 63.5 s with an average speed of 0.29 m/s and a
maximum speed of 0.44 m/s.

B. Sensor Characteristics

The key sensing devices used in the measurement campaign
consist of FCC-compliant UWB impulse radios, [EEE802.15.4-
compliant narrowband ZigBee radios, and microelectromechan-
ical systems (MEMS) based accelerometer. A brief description
of these devices follows.

e FCC-compliant UWB devices: the UWB impulse radios
operate with 3.2-GHz bandwidth centered at 4.6 GHz with
—12.8 dBm of equivalent isotropically radiated power.
Based on a proprietary protocol, two-way TOA-based
range measurements between a pair of devices are col-
lected every 500 ms.

e IEEE802.15.4-compliant ZigBee devices: these narrow-
band radios operate with 5-MHz bandwidth centered at
2.4 GHz. A total of 21 ZigBee devices are programmed
as anchor nodes, while only one device is programmed
as mobile node. Every 50 ms, the mobile node sends a
broadcast message to the anchor nodes which perform the
corresponding RSS measurements.
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(b)

Fig. 2. Views of the (a) robot carrying measurement devices and (b) experimentation environment.

* MEMS inertial sensing device: the accelerometer has a dy-
namic range up to +2g (g being the gravitational acceler-
ation) with a 12-bit resolution. Every 2 ms, it acquires one
acceleration measurement composed of three acceleration
values, one for each axis.

A laptop is connected wirelessly to all of these devices for
recording the measurements. Fig. 2(a) shows the robot carrying
multiple sensing devices and moving along a programmed
trajectory shown in Fig. 2(b). The motion and the speed of the
robot are controlled through the laptop.

III. BAYESIAN NAVIGATION

A navigation system can be modeled as a dynamic system,
whose evolving state can include position, velocity, acceler-
ation, and orientation. This state can be inferred from ob-
servations (i.e., the measurements) collected through multiple
sensors using Bayesian filtering [19]. We now provide a survey
on Bayesian navigation to recall the main aspects affecting the
navigation performance.

A. Prediction and Correction Phases

The aim of navigation is to estimate the agent state x(¢) at
time ¢ from multiple observations and prior knowledge. The
observations are collected in discrete times {¢;} with interval
Ay =t —tp_q forall k =1,2,..., K; hence, the agent state
is updated every A seconds. We use the notation x, = x(t)k
and denote z, = 251, 2k.2, - - - » 2k.N,, | s the set of N}, obser-
vations at time ¢;.! The Bayesian filters estimate a probability
density function (pdf) b(xy,) of xy, called belief, over the state
space conditioned on all collected observations. To illustrate,
we denote z1.j, as the sequence of all observations until the time
ti. The belief b(xy) is then defined as the pdf of the random
variable x;, conditioned on all the observations up to time ¢, as
given by

b(xk) = f(xk|z1k) - )

'For instance, the agent state X at time k consists of position py and
velocity v, whose estimates will be denoted by Py and vy, respectively.

The state x; based on observations z;., can be estimated
from (1) via maximum a posteriori estimation. To make the
computation tractable, we consider that the dynamic system is
modeled as a first-order Markov chain [19]. This implies that
the inference of the state xj; is based on the previous state
X;—1 and can be described as a succession of prediction and
correction phases.

We now discuss the prediction and the correction phases
for inferring the new state. Given the belief b(xp_1) =
f(Xg—1|21.5-1) at time ¢5_1, the predicted belief at time ¢, is
given by

b™(xx) = f(Xk|Z1:8-1) = /fm(xk|xk—]_)b(Xk_1)ka_1
2

where the term fy, (X |xx—1) is the mobility model of the agent.
The mobility model gives the pdf of current position xj given
the previous position xj_1, and it is related to the environment
and the mobility behavior of the agent.

When a new set of measurements is collected, the updated
belief is given via Bayes’ rule

b(xx) = nfp(zr|xr)b™ (xk) 3)

where 7 =1/f(z|z1.4.—1) and the term f,(zx|xy) is the
perception model of the agent. The perception model gives the
pdf of observations zj, given the position xj and is related to
the environment and sensor technology.

B. Bayesian Particle Filters

Bayesian filters differ in the representation of the pdf for each
state x;. Among several implementations, those based on PFs
provide a good compromise in terms of complexity, flexibility,
and accuracy [2].

Belief computation via PFs is based on a sampling procedure
known as (SIS) [40]. The key advantage is the ability to repre-
sent an arbitrary pdf by using more particles into regions of the
state space having higher probability. The PF implementation
requires attention when applied to high-dimensional estimation
problems since the complexity grows exponentially with the
dimension of the state space.
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PFs are based on sets of samples weighted according to the
belief b(xy) which is thus approximated as

NS
Xp) ~ Z W0 (x
i=1

where NN is the number of particles, wy, ; > 0V, k is the weight

k— Xki) 4

for particle ¢ at time ¢, such that Z =, W, = 1,and 6(-) is the
Dirac’s delta pseudofunction. The quality of the approximation
in (4) depends on the number of particles Ns. According to [40],
a way to compute (4) is given by

mobility model ®))
perception model. (6)

Xi,i ~ fn (Xkoi[Xi—1,4)
W i :wk—l,ifp(zk‘xk,i)

After several iterations, only a few particles might have nonneg-
ligible weight. To overcome this problem, a resampling enables
us to delete the inconsistent samples (those with negligible
weights) and to increase the number of particles with high
weights. This procedure is known as sequential importance
resempling (SIR) [40].

IV. MOBILITY AND PERCEPTION MODELS

We now present the mobility and perception models whose
parameters are characterized based on inertial and ranging
measurements. Our approach evaluates the belief of state x,
which is given by position py, and takes the velocity vj into
account through the mobility model.

A. Mobility Models

The mobility model for each agent depends on its movement
capability in the environment and the specific application. We
consider Gaussian mobility models with conditional pdf of py, ;,
conditioned on the previous position px_1 ;, given by?

yo L
IR 7)Y

e 3 [(Pri—r1,) TSt (Pryi— 0]

fm(pk,i,

)

where p,, ; varies with the mobility model, as described in
the following, and the covariance matrix 3, accounts for
the uncertainty in the movements in a 2-D plane; thus, it is
expressed by

2
ag g ag
Em _ m,z P m,2:6 my | (8)

P Om,z0m,y Um,y

We propose two mobility models based on (7), namely, mobility
with speed measurements and mobility with speed learning.
They are described in the following together with the case of
absence of mobility.

1) Mobility with speed measurement (SM). When the speed
and the direction of the motion are measured from an

2In the absence of prior information on the real movement of the agent (i.e.,
the agent is free to move in all directions with different speeds), the Gaussian
mobility model represents a fairly general model with a tractable number of
parameters. In the presence of some prior information on the agent’s movement
(e.g., direction or speed is set by the environment), a mobility model more tight
to the real mobility would provide better performance.
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IMU, the mean p;, ; in (7) depends on pg_1;, and the
speed vj_1 is measured at time ¢;_1 according to

My = Pk-1,i + Vik-14¢. )

The standard deviations o, , and oy, , on the two axes
are computed starting from the measurement accuracy of
the IMU device.

2) Mobility with speed learning (SL). When the speed and
the direction of the motion are determined from pre-
viously estimated positions, a sliding window of N,
previous estimated positions can be used, and the mean
y, ; in (7) is obtained as in (9) with

N,
LS By — Pey1)
Vi1 = —q — —G—
k—1 NuAt : Pr—j Pk—j-1
Jj=1
S s ) (10)
= N, A, Pk-1 — Pk-N,-1)-

We will compare the SM and SL mobility models under
the same oy, , and oy, .

3) No mobility (NM). When the position at each instant is
estimated independently of the previous one, navigation
reduces to a sequence of independent localization steps.
Therefore, the mobility model is given by

Fon(Pri Prri) = 1)

= 11

where S € R? is the set of possible 2-D locations within
the experimentation area with size |S| and 1s(p) = 1 for
p € S and 0 otherwise.

B. Perception Models

We denote the coordinates of UWB anchor nodes by p(U),

forn=1,2,...,
nodes by p%),form =1,2,...,
7. is defined as
Zk:|:
(U)

where r; "’ and r( ) represent the range measurement vectors
from UWB and Z1gBee anchor nodes at time 7y, respectively.
We consider a perception model (6), with independent observa-

tions, given by
=TT fo(itons) < TT £2(0lprs) (13)

NéU), and the coordinates of ZigBee anchor

Néz). The observation vector

)

<Z>} (12)

Zk |pk i
nEC,iU) mECiZ)
where r,(cUn) , element of r( ), and r,(C ) | element of r,(C ), are

range measurements at time ¢, from the UWB anchor n and the
ZigBee anchor m, respectively. The sets C ,(CU) and C\* P ) contain
the indexes of UWB and ZigBee neighboring anchor nodes at
time ¢y, respectively. The likelihood functions fy and f7 are
assumed to be Gaussian distributions, resulting in

fo (rpes) ~ N ([ori = B2 o0%) ey
12 (i lpes) ~ N ([[ori = 02 . o%) . as)
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Fig. 3. Measured RSS as a function of the true distance. Best fitting curve is
reported with Py = —50.4 dBm and 3 = 3.14.

The standard deviations af}” and O'I()Z) depend on the sensing
technology and can be obtained from measurements (e.g., see
the network experimentation methodology introduced in [36]).

Ranging techniques significantly affect the localization ac-
curacy, system complexity, and system cost. We now discuss
briefly how to estimate the range from measurements obtained
with the RMUs in the experimental campaign.

In the experimental campaign, UWB nodes measure the
round-trip time TrT, which is related to the TOF 7¢ by

TRT = 27T¢ + T4 (16)

where 7, is the response delay of the involved node.® The
distance r between two nodes can be determined by (7rr —
T4)c/2, where c is the speed of electromagnetic waves.

From RSS measurements between two nodes, the distance
can be estimated for a known propagation model. The pres-
ence of propagation effects such as small-scale and large-scale
fadings makes the received power stochastic. The mapping
of the RSS from a ZigBee device into a distance requires a
deterministic model, which is typically obtained by fitting the
measurements in the experimentation with appropriate regres-
sion model [16]. We consider a deterministic regression model
for which the received power P; (the RSS in dBm) is related to
the distance r (in meters) as

r
P, = Py —1081og () 17
To
where Py (dBm) is the power received at a distance 7y and
B is the path loss exponent. Parameters Py and 3 have been
obtained through best fitting with measurements, as shown in
Fig. 3. Therefore, from measured P, the expression

_Pr—Py
r=r19l0” "108 (18)
can be used to determine the distance between the two nodes.

3A two-way ranging protocol is employed; therefore, synchronization be-
tween the two nodes is not required [13].

V. PERFORMANCE METRICS

We now define the performance metrics for characterizing
diversity navigation systems. The navigation error, at time ¢y,
is given by

e(pr) = [P — Pl 19)
which represents the Euclidean distance between the estimated
position py, and the true position py, at time .

Based on (19), the navigation root mean square error
(RMSE) ers is defined as

E {e(px)?}

where E{-} represents the statistical expectation over the en-
semble of space and time. The performance can be also char-
acterized in terms of navigation error outage (NEO) which is
defined as the navigation-error-based outage probability (OP),
which is given by*

ERMS — (20)

Pygo =P{e(px) > em}

=E{De 100 ([Pr —Pr])} - Q1)

In (21), ey, is the application-dependent target (i.e., the
maximum tolerable) localization error, and 14(z) = 1 when
z € A and 0 otherwise. The NEO can be interpreted as the
probability that the localization error at a particular position
exceeds the target localization error ey as the agent moves
along the trajectory.

VI. EXPERIMENTAL RESULTS

This section provides results for a diversity navigation sys-
tem based on measurements. Navigation accuracy is evalu-
ated in terms of navigation RMSE erygs and NEO PxEoy
as discussed in Section V, for Bayesian PFs employing the
mobility and perception models described in Section IV. In
particular, mobility models NM, SM, and SL are considered
for both cases of constant and variable speeds. The number of
particles Ny influences the accuracy of the position estimate as
well as the complexity of the algorithm. To determine a good
tradeoff between performance and complexity, we evaluate the
navigation performance with different values of Ng. In Fig. 4,
we show the NEO for different numbers of particles, employing
the mobility model SL with only UWB devices in variable-
speed scenario. This result allows us to understand the benefit
of increasing the number of particles. In our evaluation, the
performance improvement saturates at a value of about Ny =
1000. The parameter settings used for the navigation algorithm
are reported in Table I, where we assume for the covariance
matrix in (8) that the coordinates are independent (i.e., p = 0)
with the same standard deviation oy, ; = O,y = Oy

4The OP is a well-known concept in wireless communications; the similarity
with the application to location-aware networks is in evaluating the probability
that the quality of service falls below a given target value [41].

51n the numerical results, Pxgo has to be interpreted as an outage rate in the
given mobility path shown in Fig. 1.
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Fig. 4. NEO versus ey}, (in centimeters) with Ay = 500 ms for different
values of Ng. The SL model is considered with o, = 0.04 m and N, = 20.

TABLE 1
PARAMETER SETTINGS FOR THE NAVIGATION ALGORITHM
[ Parameter | Value | Technique |
Ns 1000 ALL
A 500 ms ALL
Om 0.04m SM-SL
B8 3.14 ZigBee
Po —50.4dBm ZigBee
otV 0.26m UWB
a{” 0.50 m ZigBee
TABLE 1II

NEO AND erys FOR THE BAYESIAN PFS WHEN ONLY THE UWB
NAVIGATION. MOBILITY MODELS NM, SM, AND SL WITH OPTIMUM

WINDOW SI1ZE ARE CONSIDERED WITH CONSTANT SPEED

Mobility Model | Pxgo(1m) | Paeo(0.5m) | erus [em]

NEO AND ernys FOR THE BAYESIAN PFS WHEN ONLY THE UWB
NAVIGATION. MOBILITY MODELS NM, SM, AND SL WITH OPTIMUM

NM 0.03 0.28 54.64

SM 0 0.22 40.00

SL 0 0.20 39.53
TABLE 1II

WINDOW SIZE ARE CONSIDERED WITH VARIABLE SPEED

Mobility Model | Pxgo(1m) | Pypo(0.5m) | erms [em]

NM 0.12 0.32 109.43
SM 0 0.07 29.93
SL 0.01 0.15 37.81

The effect of the window size N, on the navigation RMSE
ermMms for the mobility model SL is evaluated in Figs. 5 and
6 for the constant- and variable-speed cases, respectively. Ex-
perimental data are reported together with the fitting curve.
These figures show a tradeoff between the capabilities of the
SL model to filter measurement noise and to follow agent
accelerations. In fact, for lower N,,, the mobility model suffers
from measurements noise, while for higher values, the speed is
averaged over a window length that does not enable to follow
rapid accelerations. In the case of variable speed, the optimum

IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014
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Fig. 5. Navigation RMSE as a function of window size N, for the UWB
system and mobility model SL. A constant-speed scenario is considered.
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Fig. 6. Navigation RMSE as a function of window size N, for the UWB
system and mobility model SL. A variable-speed scenario is considered.

window size for SL is approximately /N, = 10, whereas the
navigation RMSE remains almost constant for lower values
until NV, = 7 and 8 in the case of constant speed.

The NEO and navigation RMSE for UWB technology are
reported in Tables II and III for the cases of constant speed and
variable speed, respectively. From Tables II and III, one can
see the improved navigation performance when the mobility
models SM and SL are used, especially for the case of variable
speed. The RMSE in the two tables shows how a statistical
mobility model with estimation or measurement of the speed
vector of the agent improves the navigation performance.

The NEOs of Bayesian PFs employing the mobility models
NM, SM, and SL (with optimum window size) are shown in
Figs. 7 and 8 for the cases of constant speed and variable speed,
respectively. Note that the NEO is significantly affected by the
mobility model, especially in the case of variable speed. For
example, Fig. 8 indicates that, in 80% of cases, the navigation
errors are below 35 and 43 cm for SM and SL, respectively,
while with NM, it is below 73 cm for the case of variable speed.
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Fig. 7. NEO for the UWB system. Constant-speed scenario. Three mobility
models: NM, SM, and SL with optimum window size.
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02

Fig. 8. NEO for the UWB system. Variable-speed scenario. Three mobility
models: NM, SM, and SL with optimum window size.

We now present results for the ZigBee ranging unit only
and for a diversity navigation system fusing UWB, ZigBee,
and inertial measurements. In particular, Figs. 9 and 10 show
the NEO for mobility model SM in the cases of constant and
variable speeds, respectively. Note that the diversity solution
with joint use of UWB, ZigBee, and inertial sensors improves
the performance, especially in the case of variable speed. The
diversity system captures the benefits of both single technolo-
gies, especially in the case of constant speed where the ZigBee
measurements are inaccurate. Tables IV and V report the NEO
and navigation RMSE; as example in the case of variable speed,
the joint usage of the three sensing technologies ameliorates
the navigation RMSE of about 20% with respect to the UWB
or ZigBee system alone. Figure 11 and Table VI illustrate the
diversity system and the mobility models NM and SL when
both UWB and ZigBee technologies are employed. Results
show how diversity schemes lead to a larger performance
improvement in terms of both eryg and NEO. An example

1.0 T T T T ‘ ‘ T
L™ ——UWB-SM |
ZigBee-SM
0.8} Diversity system
0.61 _
Q
~ ]
a8
041 ,
02r i
0 = .
0 80 100
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Fig. 9. NEO for UWB, ZigBee, and diversity systems. A constant-speed
scenario is considered.
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Fig. 10. NEO for UWB, ZigBee, and diversity systems. A variable-speed
scenario is considered.

TABLE IV
NEO AND erms FOR THE BAYESIAN PFS WHEN UWB, ZIGBEE, AND
DIVERSITY SYSTEMS ARE EMPLOYED. MODEL SM IS CONSIDERED
WITH CONSTANT SPEED

| Technology | Pxeo(1m) | Pxgo(0.5m) | erms [cm]
UWB-SM 0 0.27 42.12
ZigBee-SM 0.15 0.68 69.00

Diversity system 0 0.22 40.02

of estimated trajectory with the diversity navigation system is
given in Fig. 12 for the case of variable speed.

VII. CONCLUSION

Diversity navigation systems enable new applications that
require high-accuracy localization of mobile nodes even in
harsh environments. We have characterized a diversity navi-
gation system based on measurements from multiple sensor
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Fig. 11.  NEO for UWB and ZigBee technologies with models NM, SL, and

SM in variable-speed scenario. Optimum window size is considered for SL.

TABLE V
NEO AND erns FOR THE BAYESIAN PFs WHEN UWB, ZIGBEE, AND
DIVERSITY SYSTEMS ARE EMPLOYED. MODEL SM IS CONSIDERED
WITH VARIABLE SPEED

Technology | Pneo(1m) | Pneo (0.5 m) | erms [cm]

UWB-SM 0 0.07 29.01

ZigBee-SM 0 0.06 30.00
Diversity system 0 0.02 24.12

TABLE VI
NEO AND erns FOR THE BAYESIAN PFS WHEN UWB AND ZIGBEE
TECHNOLOGIES ARE EMPLOYED. MODELS NM, SL, AND SM ARE
CONSIDERED WITH VARIABLE SPEED

Technology | Pngo(1m) | Pxgo(0.5m) | erms [cm]
UWB, ZigBee-NM 0.01 0.17 41.16
UWRB, ZigBee-SL 0 0.07 30.62

Diversity system 0 0.02 24.12

technologies under a common setting. The navigation perfor-
mance of Bayesian particle filtering of measurements from
UWB, ZigBee, and inertial sensors has been determined in
terms of navigation error and NEO. Various mobility and
perception models have been used in Bayesian filtering with
parameters determined from measurements. Our results have
shown that the diversity solution can improve the navigation
accuracy, especially with variable speed. Experimental results
provide insights on how and when mobility information can be
harnessed to ameliorate the navigation performance.

ACKNOWLEDGMENT

The authors would like to thank M. Chiani for hosting the ex-
perimentation and N. Decarli and colleagues of NEWCOM++
WPR.B for their participation in the measurement campaign.
The measurement campaign has been realized in the framework
of the European Network of Excellence NEWCOM-++.

IEEE SYSTEMS JOURNAL, VOL. 8, NO. 1, MARCH 2014

>
e

Fig. 12. Real (gray) and estimated (black) trajectories of the robot for the
diversity navigation system. UWB (triangles) and ZigBee (crosses) anchors are
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