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ABSTRACT | Location awareness is vital for emerging Internet-

of-Things applications and opens a new era for Localization-

of-Things. This paper first reviews the classical localization

techniques based on single-value metrics, such as range and

angle estimates, and on fixed measurement models, such as

Gaussian distributions with mean equal to the true value of the

metric. Then, it presents a new localization approach based

on soft information (SI) extracted from intra- and inter-node

measurements, as well as from contextual data. In particular,

efficient techniques for learning and fusing different kinds of SI

are described. Case studies are presented for two scenarios in

which sensing measurements are based on: 1) noisy features

and non-line-of-sight detector outputs and 2) IEEE 802.15.4a

standard. The results show that SI-based localization is highly

efficient, can significantly outperform classical techniques, and

provides robustness to harsh propagation conditions.
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Fig. 1. Pictorial view of LoT relying on SI: blue circles represent

nodes, dashed lines represent wireless connectivity between nodes,

and red contours represent the SI values associated with node

positions.

I. I N T R O D U C T I O N

Location awareness enables numerous wireless applica-
tions that rely on information associated with the posi-
tions of nodes, such as anchors, agents, and targets
in wireless networks [1]–[5]. These applications include
autonomy [6]–[10], crowd sensing [11]–[19], smart envi-
ronments [20]–[25], assets tracking [26]–[30], and the
Internet-of-Things (IoT) [31]–[36]. The process of locat-
ing, tracking, and navigating any possible collabora-
tive or non-collaborative nodes (devices, objects, people,
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and vehicles) is referred to as Localization-of-Things (LoT).
The positional information of network nodes is encapsu-
lated by SI, the ensemble of positional and environmental
information, respectively, associated with measurements
and contextual data. The SI can be extracted via sensing
measurements (e.g., using radio, optical, and inertial sig-
nals) and contextual data (e.g., using digital map, dynamic
model, and node profile). Fig. 1 shows a pictorial view of
Localization-of-Things (LoT) relying on SI associated with
each node. Accurate LoT depends on reliable acquisition
and exploitation of SI, which can be challenging, especially
in harsh wireless propagation environments. In particular,
conventional approaches based on fixed models are often
inadequate for describing SI as a function of the operating
environment, signal features, and filtering techniques.

The demand for accurate localization is growing rapidly
despite the difficulty in extracting positional informa-
tion from the received waveforms in most wireless
environments. Research in localization and navigation has
been carried out along four main strands: 1) fundamental
limits [37]–[46]; 2) algorithm design [47]–[79]; 3) net-
work operation [80]–[91]; and 4) network experimenta-
tion [92]–[96]. Conventional approaches to localization
typically rely on the estimation of single values, such
as distances and angles from inter-node measurements,
and accelerations and orientations from intra-node mea-
surements. In particular, conventional approaches divide
the localization process into two stages: 1) a single-
value estimation stage in which distances, angles, accelera-
tions, or other position-dependent quantities are estimated
and 2) a localization stage in which prior knowledge
and single-value estimates (SVEs) serve as inputs to a
localization algorithm for position inference. For example,
in conventional range-based localization and navigation,
the positions of agents or targets are inferred from anchor
positions and distance estimates [59]–[61]. Localization
accuracy obtained by such methods depends heavily on the
quality of the SVEs [96]–[114].

Typically, the accuracy and reliability of conventional
localization techniques degrade in wireless environments
due to biases in SVEs caused by multipath propagation
and non-line-of-sight (NLOS) conditions. Performance lim-
its on ranging were established in [115]–[127], while
tractable models for range information were derived
in [51]. To cope with wireless propagation impairments,
conventional localization approaches focus on improving
the estimation of single values [97]–[102], [128], [129].
Techniques to refine the SVE have been exploited by rely-
ing on models for SVEs errors (e.g., the bias induced by
NLOS conditions) [98], [128], [129]. In addition, received
waveforms containing reliable positional information can
be selected based on the features extracted from their sam-
ples [130]. Data fusion techniques can be used to improve
the performance of SVE-based localization by considering
the SVE of different features as independent [131]–[133]
or by involving hybrid models that account for the relation-
ship among different features [134]–[137].

To overcome the limitations of SVE-based localiza-
tion, one-stage techniques that employ measurements to
directly obtain positions based on a prior model, namely
direct positioning (DP), have been explored [138]–[146].
Recently, localization techniques that rely on a set of
possible values rather than on single distance esti-
mates (DEs), namely soft range information (SRI),
have been developed [55]. In particular, algorithms to
learn SRI based on unsupervised machine learning have
been developed. To improve the localization perfor-
mance, it is essential to design localization networks
that exploit SI, such as SRI or soft angle informa-
tion (SAI), together with environmental information,
such as contextual data. Contextual data for localiza-
tion include digital maps, dynamic models, and user
profiles [147]–[155].

The LoT scenarios offer the possibility to exploit dif-
ferent sensors that have limited resources for commu-
nication, computing, and memory [156]–[164]. In fact,
unleashing the multisensor LoT requires fusion of data
and measurements collected from heterogeneous sensors
with limited resources for communication, computing, and
memory [5], and design of efficient network operation
strategies [80], [81], [85], [88], [90], [91], [165]–[167].
Multisensor LoT calls for distributed implementation of
SI-based localization capable of fusing information from
multimodal measurements and environmental knowledge.
In addition, distributed localization algorithms require the
communication of messages [47]–[49], [168], which may
involve high dimensionality depending on the kind of SI.
Therefore, it is vital to develop techniques for reducing the
dimensionality of SI to make message passing amenable
for SI-based localization.

The fundamental questions related to SI for localization
and navigation are:

• what gain can be reaped with SI-based methods com-
pared to classical ones;

• how the SI can be learned from sensing measure-
ments such as received waveform samples;

• would SI be enriched by fusing information from
different observables and information from the envi-
ronment; and

• can SI-based algorithms for LoT be implemented effi-
ciently and distributively?

The answers to these questions provide insights into the
evolution of positional information at different stages of
the localization process, which are essential for the design
and analysis of localization systems. The goal of this paper
is to establish the use of SI-based methods for LoT and
quantify their performance gain with respect to classical
ones. We advocate the exploitation of SI, which opens the
way to a new level of accuracy for LoT.

This paper establishes SI-based methods for localization
and navigation. In particular, it describes the techniques
for learning the SI and determines the benefits of fusing
different types of positional information. It also demon-
strates that SI is much richer than SVEs for localization and
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navigation. The key contributions of this paper include the
following:

• introduction of SI-based techniques for LoT;
• methods for learning and fusing SI that is extracted

from sensing measurements and contextual data; and
• quantification of the benefits provided by SI-based

techniques compared to SVE-based and DP tech-
niques.

Case studies are presented for two scenarios in which
sensing measurements are based on: 1) noisy features and
NLOS detection and 2) IEEE 802.15.4a standard.

The remaining sections are organized as follows.
Section II provides an overview of techniques for LoT.
Section III defines SI for localization in terms of positional
and environmental information. Section IV describes
how SI can be exploited in localization and navigation.
Section V provides the performance benchmarks for
SI-based localization. Section VI presents the learning
algorithms and data set reduction methods for SI-based
localization. Section VII provides the performance results
for different case studies. Finally, Section VIII summarizes
this paper.

Notations: R denotes the set of real numbers (R+

for non-negatives) and R
M its M th Cartesian power.

Random variables (RVs) are displayed in sans-serif, upright
fonts; their realizations in serif, italic fonts. Vectors are
denoted by bold lowercase letters. For example, an RV
and its realization are denoted by x and x, respecively; a
random vector and its realization are denoted by x and x,
respecively. The function fx(x) and, for brevity when pos-
sible, f(x) denote the probability density function (PDF)
of a continuous RV x; fx|y(x|y) and, for brevity when
possible, f(x|y) denote the PDF of x conditional on y = y;
ϕ(x; m,Σ) denotes the PDF of a Gaussian random vector
x with mean m and covariance matrix Σ; operators E{·},
V{·}, and P{·} denote, respectively, the expectation, vari-
ance, and probability of the argument, and Ex{·} denotes
the expectation with respect to RV x. Sets are denoted by
calligraphic fonts, e.g., Y, and empty set is denoted by ∅.
For a matrix A and a vector a, the transpose is denoted
by AT and aT, respectively; tr{A} denotes the trace of
the matrix A; and ⊗ denotes the Kronecker product of
matrices. The norm of a vector u is denoted by ‖u‖.
A positional feature vector, a measurement vector,1 and
contextual data are, respectively, denoted by θ, y, and μ.
This paper considers both Bayesian and non-Bayesian for-
mulations; in the former case, the relevant parameters are
modeled as random.

II. L O C A L I Z AT I O N O F T H I N G S

This section provides the problem setting, discusses the key
aspects, and introduces the techniques for LoT.

1In general, a measurement vector is a collection of measurements
obtained by different types of sensors.

A. Preliminaries

A localization network is composed of Na agents2 with
index set Na = {1, 2, . . . , Na} at unknown positions, and
Nb anchors with index set Nb = {Na + 1, Na + 2, . . . , Na +

Nb} at known positions. Both the measurement collection
and the localization process are performed at discrete time
instants, tn, with index set Nt = {1, 2, . . . , Nt}. The goal is
to determine the positional state of agents at different time
instants. The positional state of agent i at time tn, for i ∈
Na and n ∈ Nt, is denoted by x

(n)
i ∈ R

D and includes the
position p

(n)
i and other mobility parameters, such as veloc-

ity v
(n)
i , acceleration a

(n)
i , orientation φ

(n)
i , and angular

velocity ω
(n)
i . The concatenation of all agents’ positional

states and the concatenation of all agents’ positions are
denoted by xNa and pNa

, respectively. Localization tech-
niques determine each position estimate p̂i based on a col-
lection of measurements {yi,j}j∈N , where N ⊆ Na∪Nb is
the index set of nodes involved in measurements exchange
with cardinality N , and on prior information, such as
previous positional states and environmental information.

Measurements are related to a feature vector θ that is
a function of node positional states.3 Therefore, the posi-
tional information can be extracted from the measure-
ments related to nodes i and j at time tn, denoted
by y

(n)
i,j for i, j ∈ Na ∪ Nb and n ∈ Nt, where

i �= j and i = j correspond to inter- and intra-node
measurements, respectively. An inter-node measurement
between nodes i and j is related to positional states
xi and xj , respecively. Inter-node measurements are
commonly obtained by radio measurement units and
can include the entire set of received waveform sam-
ples or metrics, such as received signal strength (RSS)
[169]–[173], time-of-arrival (TOA) [174]–[178], time-
difference-of-arrival (TDOA) [179]–[181], angle-of-arrival
(AOA) [181]–[184], and Doppler shift [185]–[187].
An intra-node measurement of node i is related to the posi-
tional state xi. Intra-node measurements are commonly
obtained by inertial measurement units (IMUs) and can
include magnetic field intensity measurements, Doppler
shift measurements, force measurements, and angular
velocity measurements [151]–[153].

The environmental information μi of agent i can be used
to enforce constraints on positional states. It is commonly
composed of digital maps, dynamic models, and agent
profiles [147]–[153]. A digital map for agent i is related to
its position p

(n)
i or consecutive positions p

(n−1)
i and p

(n)
i ,

a dynamic model for agent i is related to consecutive posi-
tional states x

(n−1)
i and x

(n)
i , and an agent profile for agent

i is related to its positional state x
(n)
i . In particular, digital

maps can be used to discard positions that do not comply
with the map (e.g., outside of a room or building or not
on a street) [147]–[149], dynamic models can be used

2Agents refer to any possible collaborative or non-collaborative
nodes to be localized, including devices, objects, people, and vehicles.

3For brevity, the dependence of θ on node positional states will not
explicitly be written in the following.
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Fig. 2. Sketches of localization techniques based on single values, direct positioning, and soft information.

to express a positional state conditional to a previous
state (e.g., moving within a certain speed interval and
in a favorable direction) [188]–[191], and agent profiles
can be used to enforce the relationships among positional
state components (e.g., to enforce zero lateral and vertical
velocities for vehicles when measured acceleration and
angular velocity fall below given thresholds) [151]–[155].

The performance of localization systems is strongly
affected by the quality of sensing measurements. For exam-
ple, partial or complete blockage of line-of-sight (LOS)
propagation conditions leads to positively biased range
estimates for time-based ranging [92]. In fact, harsh wire-
less propagation conditions, such as NLOS, can result in
highly biased estimates. Those impairments can be mit-
igated by detecting the wireless propagation conditions
causing the bias. In such scenarios, a measurement vector
is y = [zT, δ]T, where z is a measurement vector related
to a feature vector θ and δ ∈ {0, 1} is the NLOS detector
outcome with 0 and 1 corresponding to detecting LOS
and NLOS conditions, respectively.4 Detection errors are
accounted for by means of posterior probabilities of error

εNLOS � P{NLOS|δ = 0} =
pNLOS

P0
P{δ = 0|NLOS} (1a)

εLOS � P{LOS|δ = 1} =
1 − pNLOS

1 − P0
P{δ = 1|LOS} (1b)

where pNLOS = P{NLOS} = 1−P{LOS} is the probability
of NLOS condition and P0 = P{δ = 0} = 1 − P{δ = 1}.

Classical approaches for identifying channel conditions
are based on hypothesis testing, for example, on binary
hypothesis testing between the LOS and NLOS conditions.
Binary hypothesis testing can be extended to multiple
hypothesis testing to identify one out of many (more than
two) situations, for example, related to the number of

4For generic nodes, times, and features, the corresponding subscripts
and superscripts will be omitted.

obstacles (e.g., walls and furniture) that electromagnetic
waves must traverse [92]. A key step in designing the
decision rule is choosing the appropriate set of features
extracted from the received waveforms. The examples of
features include delay spread, maximum amplitude, and
kurtosis [98]–[101], [128], [129].5

Inference methods can be classified according to how
agent positions are inferred (see Fig. 2) as described in the
following.

B. SVE-Based Techniques

Classical techniques based on SVEs determine the posi-
tion of agent i ∈ Na in two stages [see Fig. 2(a)] as
described in the following.
(i) Estimation of Single Values: Determine SVEs {θ̂i,j}

from inter- or intra-node measurements {yi,j}j∈N .
(ii) Positional Inference: Infer the positions pi from SVEs

{θ̂i,j}j∈N using SVE-based algorithms (e.g., range-
based or angle-based algorithms).

The first stage processes each sensing measurement yi,j to
obtain an SVE θ̂i,j , such as DE for range-based localiza-
tion [192]–[205] and angle estimate (AE) for direction-
based localization [206]–[209]. The second stage infers
the agent position p from the SVEs θ̂, obtained in the first
stage, using cooperative or non-cooperative algorithms.

An advantage of classical SVE-based techniques is that
the first stage can be accomplished by independent proce-
dures for each measurement yi,j . This can result in robust
techniques since each measurement can be processed in
a different manner (e.g., different procedures for process-
ing measurements in LOS or NLOS conditions). Another
advantage of classical SVE-based techniques is that the
positional inference stage is simplified as its inputs are sin-
gle values (e.g., multilateration localization algorithms).

5In LOS conditions, the first path in the received signal is typically
the strongest. LOS propagation conditions typically give rise to smaller
delay spread and larger kurtosis compared with NLOS conditions [130].
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A disadvantage of classical SVE-based techniques is that
the SVEs do not capture all the positional information con-
tained in sensing measurements, such as received wave-
form samples.

The localization accuracy of the two-stage approaches
can be improved by the following:

(i) refining SVEs based on environmental informa-
tion [92]; and

(ii) discarding SVEs from the measurements that are
unreliable for providing agent positional informa-
tion [130]–[133].

Features extracted from sensing measurements can provide
information useful in deciding whether a measurement is
representative of the agent position or not (i.e., it con-
tains information about agent position or it is due only
to noise and background clutter) [130]. In cases where
sensing measurements are not representative, they can
be discarded and the corresponding SVEs are not used
in the location inference. Other methods based on SVEs
detect NLOS propagation conditions and then mitigate
the errors on feature estimates when NLOS conditions
are detected [97]–[101], [128], [129]. NLOS conditions
typically introduce a bias β on the expected value of the
feature due to obstructed propagation. Therefore, the SVE
θ̂ for a measurement z based on the minimum-mean-
square-error (MMSE) criterion is given by [55]

θ̂ =

�
(1 − εNLOS)z + εNLOS(z − β), for δ = 0

εLOSz + (1 − εLOS)(z − β), for δ = 1.
(2)

Note that when the NLOS detector is highly reliable
(εNLOS ≈ 0, εLOS ≈ 0), the bias due to the obstructed
propagation is correctly subtracted to refine the SVE [92].
However, in the presence of NLOS detector error, SVEs are
biased by −(1 − εLOS)β in LOS cases and by (1 − εNLOS)β

in NLOS cases. For additive Gaussian noise with standard
deviation σ and εNLOS = εLOS = ε, the mean-square-error
(MSE) of the MMSE estimator is found to be

E

�
|θ̂ − θ|2

�
= ε(1 − ε)β2 + σ2. (3)

This reduces to σ2, which is the MSE in LOS propagation
conditions, when the NLOS detector is totally reliable
(ε = 0).

C. Direct Positioning Techniques

DP techniques [138]–[146] estimate the position of
agent i by relying on the measurement model

yi,j = g(θi,j) + n (4)

where the function g(·) is the same for all j ∈ N [see
Fig. 2(b)], θi,j depends on the positions of nodes i

and j, and n represents additive white Gaussian noise.

The position of node i ∈ Na is estimated as the maxi-
mum likelihood (ML) or least squares (LS) estimate based
on (4). An advantage of DP techniques is that they can
improve the localization accuracy with respect to SVE-
based techniques since more information, intrinsically
contained in sensing measurements, is used. Another
advantage is that when using a tractable g(·) together
with independent, identically distributed Gaussian noise
for each measurement, DP techniques can result in efficient
implementations. A disadvantage of DP is that it is non-
robust in scenarios involving different propagation condi-
tions (e.g., some measurements obtained in LOS and some
other in NLOS). Another disadvantage is that it provides
an inadequate performance when the knowledge of the
function g(·) or the distribution of the noise n is not
sufficiently accurate.

D. SI-Based Techniques

The SI-based techniques [55] directly use sensing mea-
surements yi,j from node j ∈ N to infer the position of
node i by relying on the SI Lyi,j

(θi,j), which varies from
measurement to measurement [see Fig. 2(c)]. Such SI can
encapsulate all the positional information in each sensing
measurement. Then, the agent position pi can be inferred
from SI {Lyi,j

(·)}j∈N .
An advantage of SI-based localization techniques

is that the SI Ly (θ) can be obtained distributively
by N independent procedures tailored to the specific
propagation conditions (e.g., either LOS or NLOS).
Another advantage is that it can improve the localization
accuracy by exploiting all the positional information in
each sensing measurement. A disadvantage of SI-based
localization techniques is that estimating the SI can be
more complicated than estimating SVE.

To better understand the differences in models used
for DP and SI-based techniques, Fig. 3 shows the
examples of distance likelihood function Ly (d) for a
fixed measurement y, as a function of d, under dif-
ferent settings. The parameter pNLOS indicates the
probability of NLOS propagation conditions. Fig. 3(a)
and Fig. 3(b) show the likelihood functions for a
fixed sensing measurement y given by the maxi-
mum value of the ultrawide-band (UWB) waveforms in
IEEE 802.15.4 a indoor residential and outdoor chan-
nels [210], respectively. The figures compare the empir-
ical likelihood function and the Gaussian approximation
(a model typically used in DP) using the empirical mean
and variance. It can be seen from Fig. 3(a) and Fig. 3(b)
that the Gaussian approximation is close to the empirical
one in LOS conditions (pNLOS = 0), whereas it becomes
less accurate as pNLOS increases. In particular, the max-
ima of Gaussian approximations and empirical likelihoods
occur at different distances in severe NLOS conditions
and in equiprobable LOS/NLOS conditions. On the other
hand, by attempting to learn the empirical likelihood,
SI-based techniques can exploit richer information for
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Fig. 3. Examples of distance likelihood functions in two IEEE 802.15.4a channels with NLOS probability pNLOS � 0 (red line), 0.5 (blue line),

and 1 (green line). Empirical likelihoods (continuous lines) and Gaussian likelihoods with empirical mean and variance (dashed lines) are

shown.

better localization performance compared to SVE-based
and DP techniques, especially in harsh propagation
environments.

Remark 1: Note that while DP considers the same form
of likelihood function regardless of the propagation condi-
tions for all sensing measurements, SI-based localization
utilizes different forms of likelihood functions for mea-
surements in different propagation conditions, as shown
in Fig. 2. Observe that SI-based techniques reduce to
DP or SVE-based techniques in specific cases. If yi,j =

θi,j + n with n Gaussian noise, then the three approaches
are equivalent. If the likelihood Lyi,j

(θi,j) is proportional
to a Gaussian PDF, then the approach based on SI is
equivalent to that based on SVE. If the PDF f(θi,j |yi,j) is
proportional to fn(yi,j − g(θi,j)), where fn(·) is the PDF of
a zero-mean Gaussian random vector, then the approach
based on SI is equivalent to DP.

III. S O F T I N F O R M AT I O N F O R
L O C A L I Z AT I O N

SI is composed of soft feature information (SFI) and soft
context information (SCI): SFI is the ensemble of posi-
tional information associated with measurements and SCI
is the ensemble of environmental information associated
with contextual data. SI-based localization infers agent
positions by exploiting both SFI and SCI.

A. Soft Feature Information

SFI for a measurement y is a function of the feature
vector θ given by6

Ly (θ) ∝ fy|θ(y|θ) (5a)

Ly (θ) ∝ fy(y; θ) (5b)

where (5a) and (5b) display the Bayesian and non-
Bayesian formulation, respectively; in the latter case, SFI

6The SFI and SCI are defined up to a proportionality constant, which
is sufficient for SI-based localization.

coincides with the likelihood function of feature vector θ.
Different types of measurements give rise to different SFI.
For instance, the SFI associated with range-related, angle-
related, and velocity-related measurements is, respectively,
given by Ly(d), Ly (α), and Ly (v).

Refer to the example scenario in Fig. 4(a) with two
anchors (red annulus) and an agent (blue circle). The
anchor in the bottom-left collects the range-related mea-
surements, from which the SRI of Fig. 4(b) is obtained.
The anchor in the top-right collects angle-related mea-
surements, from which the SAI of Fig. 4(c) is obtained.
Thus, the SFI provides richer information than its SVE θ̂ by
quantifying the odds of different θ values. The use of SFI
enables soft-decision localization instead of classical hard-
decision localization.

B. Soft Context Information

SCI is a function of the feature vector θ provided by
contextual data μ. Different types of contextual data, such
as digital maps, dynamic models, and agent profiles, give
rise to different kinds of SCI as described next. The SCI
provided by a map can be incorporated as a prior distrib-
ution of the position [147] (e.g., certain positions in the
map are very unlikely) or as a conditional distribution of
the position at time step n, given the position at time step
n − 1 (e.g., mobility in a corridor is more likely along the
corridor then in a perpendicular direction). In the former
case, the SCI is proportional to a prior distribution that
depends on μ as

Φμ(p) ∝ fp(p; μ) (6)

while, in the latter case, it is proportional to a conditional
PDF that depends on μ as

Φμ(p(n),p(n−1)) ∝ fp(n)|p(n−1)(p
(n)|p(n−1); μ). (7)
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Fig. 4. Examples of scenario and associated SI. The area is 120 m × 120 m; for the associated SI, darker colors refer to larger values.

SCI provided by a dynamic model can be incorporated
as a conditional distribution of the positional state at time
step n, given the positional state at time step n − 1 (e.g.,
consecutive positions close to each other are highly likely
for an agent with low speed; similar considerations apply
to consecutive velocities for cars in a highway) [150].
Therefore, SCI associated with a dynamic model μ is
proportional to a conditional PDF depending on μ

Φμ(x(n),x(n−1)) ∝ fx(n)|x(n−1)(x
(n)|x(n−1); μ). (8)

A widely used dynamic model is that based on a lineariza-
tion of the positional state evolution via Taylor expansion
and on Gaussian noise, leading to

Φμ(x(n),x(n−1)) ∝ ϕ(x(n); F x(n−1),Σd) (9)

where F is known as the transition matrix and Σd is the
covariance of the process noise, both depending on μ.

SCI provided by an agent profile can be incorporated
as a distribution of several components in the positional
state. For instance, if the agent is a pedestrian carrying
the IMU on a foot, low values of acceleration and angular
velocity correspond to high likelihood for the low values of
velocity [153]. Therefore, the SCI provided by such agent
profile μ is proportional to a joint PDF of acceleration a,
angular velocity ω, and velocity v as

Φμ(a,ω,v) ∝ fa,ω,v(a,ω,v; μ). (10)

For example, if the agent is a car, the misalignments of
velocity vector and the direction of the car are highly
unlikely. Therefore, SCI provided by such agent profile μ

is proportional to a PDF of the angle γ between velocity v

and heading h as

Φμ(γ) ∝ fγ(γ; μ). (11)

Refer to the example scenario in Fig. 4(a) with SCI
given by the environment map shown in Fig. 4(d). The SCI
provides additional information on positional states, thus

improving the performance of both soft-decision localiza-
tion and classical hard-decision localization.

C. Data Fusion Based on Soft Information

The exploitation of SI for localization also enables the
efficient fusion of sensing measurements and contextual
data via multiplication of the corresponding SFI and SCI.

Sensing measurements gathered with different modal-
ities can be fused efficiently by multiplying their corre-
sponding SFI as long as the different measurement vectors
are conditionally independent, given the positional fea-
tures. Such conditional independence is generally satisfied
as long as the measurement vectors are obtained from
different sensors. In particular, for measurement set Y =

{y(k)}KF
k=1 related to the feature set Θ = {θ(k)}KF

k=1, with
each measurement y(k) related to feature θ(k) for k =

1, 2, . . . ,KF, SFI can be written as

LY(Θ) =

KF�
k=1

Ly(k)(θ
(k)). (12)

D. Soft Information in Harsh Propagation
Environments

SI can encapsulate all the positional information inher-
ent in the sensing measurements obtained in harsh prop-
agation environments even with errors on the detection
of propagation conditions. Consider a measurement vector
y = [zT, δ]T, where z is a measurement vector related to
a feature vector θ and δ is the NLOS detector outcome,
as described in Section II-A. Assuming a constant reference
prior for θ [211], the SFI of y is given by [55]

Ly (θ)

∝
�

(1 − εNLOS)LzLOS(θ) + εNLOSLzNLOS(θ) for δ = 0

εLOSLzLOS(θ) + (1 − εLOS)LzNLOS(θ) for δ = 1

(13)

where LzLOS(·) and LzNLOS(·) denote the SFI for
measurements collected in LOS and NLOS conditions,
respectively.
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For instance, consider a 1-D measurement model

z = θ + n (14)

where n represents the Gaussian noise with PDF

fn(n) =

�
ϕ
�
n; 0, σ2

LOS

�
, for LOS cases

ϕ
�
n;β, σ2

NLOS

�
, for NLOS cases

(15)

in which β denotes the bias due to NLOS propagation.
In such a case

LzLOS(θ) = ϕ
�
θ; z, σ2

LOS

�
(16a)

LzNLOS(θ) = ϕ
�
θ; z − β, σ2

NLOS

�
. (16b)

When the detector is highly reliable (εNLOS ≈ 0, εLOS ≈ 0),
SFI is concentrated around the true feature, i.e., LzLOS(θ)

for LOS and LzNLOS(θ) for NLOS propagation conditions.
Moreover, SI-based techniques are more robust to detect
errors than classical techniques, as the SFI in (13) accounts
for the error probability of the detector and considers both
the true and biased features.

IV. SI-B A S E D L O C A L I Z AT I O N

An SI-based localization system operates according to the
following steps:

(i) acquisition of feature-related measurements and con-
textual data;

(ii) characterization of the SFI and SCI provided by each
measurement and contextual data; and

(iii) position inference by exploiting SFI and SCI.

To illustrate the benefits of SI for localization, we now
describe how SFI and SCI can be utilized to infer the
positions of the agents {pi}i∈Na from measurements y

and contextual data μ.7 Recall that the feature vector θ

inherent in y is related to the node positions p. We describe
the following:

• localization without cooperation, where sensing mea-
surements and contextual data are related only to one
agent at a single time instant;

• network localization with spatial cooperation among
agents, where sensing measurements and contextual
data are related to neighboring agents at a single time
instant;

• navigation with temporal cooperation, where sensing
measurements and contextual data are related only to
one agent at consecutive time instants; and

• network navigation with spatiotemporal cooperation,
where sensing measurements and contextual data are

7For notational convenience, consider that for each pair of nodes i
and j, there is a measurement vector yi,j or a contextual data vector
μi available. The expressions with unavailable measurements or data for
some node pairs can be obtained by removing the terms corresponding
to those pairs.

related to neighboring agents at consecutive time
instants.

A. SI-Based Localization without Cooperation

In non-cooperative localization systems, the positions
of the agents are inferred based on measurements with
respect to the anchors and contextual data. By modeling
the positions of agents as unknown parameters, the max-
imum likelihood (ML) estimate of the position of agent
i ∈ Na is [55]

p̂i = arg max
pi

f({yi,j}j∈Nb |pi)

= arg max
pi

�
j∈Nb

Lyi,j
(θi,j). (17)

If all the SFI in (17) are Gaussian with mean θi,j , then the
ML estimator leads to the LS estimator and to the weighted
least squares (WLS) estimator, respectively, for cases with
the same variance and different variances for j ∈ Nb.

By modeling the positions of agents as RVs, contextual
data can be incorporated directly. The position of agent
i ∈ Na can be inferred from the posterior distribution.
In particular, the MMSE and the maximum a posteriori
(MAP) estimates are given by the mean and mode of the
posterior distribution, respectively, as [55]

p̂i =

�
pi f(pi|{yi,j}j∈Nb ; μi) dpi (18a)

p̂i = arg max
pi

f(pi|{yi,j}j∈Nb ; μi) (18b)

where for the posterior distribution

f(pi|{yi,j}j∈Nb ; μi) ∝ Φμi
(pi)

�
j∈Nb

Lyi,j
(θi,j). (19)

The contextual data μi may depend on the previously esti-
mated position of node i (e.g., a map-aided 3-D localiza-
tion in which the map for node i depends on whether the
previously estimated position for node i was on a certain
floor). Note that the MAP estimator in (18b) coincides with
the ML estimator when contextual data are not available
(i.e., Φμi

(pi) constant with respect to pi).

B. SI-Based Localization with Spatial Cooperation

In network localization systems [1], the positions of
the agents are inferred based on the measurements with
respect to neighboring agents, in addition to those with
respect to the anchors, and to contextual data. By modeling
the positions of agents as unknown parameters, the ML
estimate of the positions of all the agents is [55]

p̂Na
= arg max

pNa

f
�
{yi,j}i∈Na

j∈Na∪Nb

			pNa



= arg max

pNa

�
i∈Na

j∈Na∪Nb

Lyi,j
(θi,j). (20)
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If all the SFI used in (20) is Gaussian with mean θi,j , then
the ML estimate leads to LS or WLS estimates as in the
non-cooperative case.

By modeling the positions of agents as random variables
(RVs), contextual data can be incorporated directly. The
MMSE and the MAP estimates of all agent positions can be
obtained analogously to (18) using the posterior distribu-
tion

f
�
pNa

|{yi,j}i∈Na
j∈Na∪Nb

; μNa




∝
�

i∈Na

�
�Φμi

(pi)
�

j∈Na∪Nb

Lyi,j
(θi,j)


� . (21)

Note that the MAP estimate coincides with ML estimate
when contextual data are not available.

C. SI-Based Navigation with Temporal
Cooperation

Navigation systems [1] infer the positions of the agents
at different time instants based on inter-node measure-
ments from the anchors, intra-node measurements, and
contextual data. When positional states and measurements
can be described by an hidden Markov model (HMM) over
time steps from 1 to n + 1, the posterior distribution of
positional state for each agent can be obtained sequen-
tially [53]. In particular, f(x

(n+1)
i |Y(1:n+1)

i ; μi) can be
obtained by performing a prediction step using a dynamic
model

f
�
x

(n+1)
i

		Y(1:n)
i ; μi

�
∝

�
Φμi

�
x

(n+1)
i ,x

(n)
i

�
f
�
x

(n)
i |Y(1:n)

i ; μi

�
dx

(n)
i (22)

followed by an update step using a new measurement:

f
�
x

(n+1)
i

		Y(1:n+1)
i ; μi

�
∝

�
j∈Nb∪{i}

L
y
(n+1)
i,j

�
θ

(n+1)
i,j

�
f
�
x

(n+1)
i |Y(1:n)

i ; μi

�
(23)

where Y(1:k)
i = {y(1:k)

i,j }j∈Nb∪{i}.8

If both the SFI and the SCI are Gaussian and linear with
respect to positional states, then the updates in (23) can
be performed in a closed form such as those in Kalman
filters (KFs) [212]–[216]. Otherwise, the implementation
of (23) has to resort to approximations accounting for
the complexity versus accuracy tradeoff. Examples of such
approximations are those used in extended Kalman filters
(EKFs) [217], unscented Kalman filters (UKFs) [218], and
belief condensation filters (BCFs) [53].

8Notation y
(1:k)
i,j denotes the set {y(h)

i,j }k
h=1.

D. SI-Based Navigation with Spatiotemporal
Cooperation

Network navigation systems [1] infer the positions
of the agents at different time instants based on inter-
node measurements with respect to both anchors and
neighboring agents, intra-node measurements, and con-
textual data. When positional states and measurements
can be described by an HMM over time steps from
1 to n + 1, the joint posterior distribution of positional
states can be obtained sequentially [40]. In particular,
f(x

(n+1)
Na

|Y(1:n+1); μNa
) can be obtained by performing a

prediction step using a dynamic model

f
�
x

(n+1)
Na

		Y(1:n); μNa

�
∝

�
ΦμNa

�
x

(n+1)
Na

,x
(n)
Na

�
f
�
x

(n)
Na

		Y(1:n); μNa

�
dx

(n)
Na

(24)

followed by an update step using a new measurement:

f
�
x

(n+1)
Na

		Y(1:n+1); μNa

�
∝

�
i∈Na

j∈Na∪Nb

L
y
(n+1)
i,j

�
θ

(n+1)
i,j

�
f
�
x

(n+1)
Na

		Y(1:n); μNa

�
(25)

where Y(1:k) = {y(1:k)
i,j }i∈Na, j∈Na∪Nb .

If the movement of each agent is independent of any
other agent’s movement, then

ΦμNa

�
x

(n+1)
Na

,x
(n)
Na

�
=

�
i∈Na

Φμi

�
x

(n+1)
i ,x

(n)
i

�
. (26)

If both the SFI and the SCI are Gaussian and linear
with respect to positional states, then the updates in
(25) can be performed in closed form such as those in
KFs [212]–[216]. Otherwise, the implementation of (25)
has to resort to approximations accounting for the com-
plexity versus accuracy tradeoff. Examples of such approx-
imations are those used in EKFs [217], UKFs [218], and
BCFs [53].

E. SI-Based vs. SVE-Based Localization

SI-based localization is a new approach that exploits
richer information than classical SVE-based localization.
Consider, for instance, range and angle inter-node mea-
surements; the SI-based localization relies on SRI and SAI,
whereas SVE-based localization relies on DE and AE. Refer
to the examples of SFI and SCI in Fig. 4. Fusion of all
available SFI and SCI provides enhanced SI (red contoured
areas in Fig. 5). In particular, Fig. 5(a) shows the fusion of
the SFI corresponding to the SRI in Fig. 4(b) and to the
SAI in Fig. 4(c). Fig. 5(b) shows the enhanced SI obtained
by fusion of the SRI in Fig. 4(b), the SAI in Fig. 4(c), and
the SCI in Fig. 4(d).

Fig. 6 shows an example of comparison between the
classical and the new approach. In particular, refer to the
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Fig. 5. Example of data fusion for enhanced SI (red contoured area): the coordinates on the axes are in meters.

Fig. 6. Example of SVEs versus SI-based localization: the coordinates on the axes are in meters.

scenario shown in Fig. 4(a) where the bottom-left anchor
provides range measurements to the target, whereas the
top-right anchor provides angle measurements. Due to the
harsh propagation environment, the angle measurements
are affected by a bias, which results in an erroneous AE
for SVE-based localization, while it results in bimodal
SAI for SI-based localization. These two situations are,
respectively, shown in Fig. 6(a) and (b). In particular,
the cross in Fig. 6(a) represents the wrongly estimated
position using the LS algorithm with DE and AE as the
inputs, whereas the dark red area in Fig. 6(b) shows that
the maximum of the positional feature likelihood is near
the true position. This simple example illustrates how SI
on θ provides richer information than that offered by its
SVE θ̂, thus improving the localization accuracy.

F. Distributed Implementation

Distributed implementation is particularly important
in scenarios with networks of nodes having limited
capabilities such as those in LoT. Cooperation in space

and time can improve the localization accuracy. However,
the use of measurements related to several agents causes
information coupling [219], [220], resulting in highly
interrelated inference for different agents. This fact is
reflected in the concatenated arguments in the posterior
distribution in (21) and (25), compared to that in (19)
and (23). The optimal implementation of noncooperative
approaches described in (19) and (23) can be performed
in a distributed fashion since each agent can determine its
own posterior distribution. On the other hand, the optimal
implementation of cooperative approaches described in
(21) and (25) requires a centralized implementation to
determine the joint posterior distribution of all the agents.

Techniques have been developed for distributed
implementation by approximating the joint posterior
distribution via marginalization. For example, the loopy
belief propagation technique approximates the marginal
posterior distribution of each agent by disregarding
the cycles in the graph describing the network
connectivity [49]. Specifically, an approximate marginal
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Fig. 7. Example of distributed implementation: (left) network factor graph with message passing involving node 1; and (right)

computation based on different SFI and SCI inside node 1.

posterior f̃(xi|Y̌) for the positional state of agent i based
on the measurement set Y̌ = {Y, y̌i,j} can be obtained
sequentially from f̃(xi|Y) when a new measurement y̌i,j

is available, which is given as

f̃(xi|Y̌) ∝ f̃(xi|Y)mj,i (27)

where

mj,i ∝
�
f̃(xj |Y)Ly̌i,j

(θi,j)dxj (28)

is usually referred to as message from node j to node i.
Equation (27) forms the basis for developing network
messaging algorithms.

Fig. 7 shows an example of a network factor graph
with messaging for distributed implementation of net-
work localization and navigation (NLN). In particular,
messages entering to and exiting from node 1 are high-
lighted, and the computation blocks inside node 1 are
depicted.

V. S O F T I N F O R M AT I O N A N D
P E R F O R M A N C E L I M I T S

Fundamental limits provide performance benchmarks that
are essential for network design. In [37]–[41], a per-
formance measure called squared position error bound
has been derived as a function of the Fisher information
matrix (FIM). In the following, we will derive the FIM as a
function of SFI and SCI.

Let xNt
Na

be a random vector composed of positional
states, for Na agents at Nt time instants, in which the
[i + (n − 1)Na]th element is x(n)

i . The positional state
is inferred from inter-node measurements y

(n)
i,j related

to x
(n)
i − x

(n)
j , intra-node measurements y

(n)
i,i related

to x
(n)
i , and a dynamic model μ related to x

(n)
i −

x
(m)
i , where i ∈ Na, j ∈ Na ∪ Nb with j �= i,

and n,m ∈ Nt.

According to the Fisher information inequality, an esti-
mator x̂(n)

i of positional state x(n)
i satisfies

E
���x̂(n)

i − x
(n)
i

��2� ≥ tr
�
[J−1]

(n)
i

�
(29)

where [J−1]
(n)
i denotes the [i + (n − 1)Na]th D × D

diagonal block in the inverse of the Bayesian FIM [221]
for positional states xNt

Na
. The FIM for xNt

Na
is given by [40]

J = Jp + J s + J t (30)

where Jp is the FIM corresponding to prior knowledge
of xNt

Na
; J s is the FIM consisting of two terms: the first

term corresponds to the inter-node measurements (with
anchors) and the second corresponds to the spatial coop-
eration (with other agents); and J t is the FIM consisting
of two terms: the first term corresponds to the intra-node
measurements (at a particular time step) and the second
corresponds to temporal cooperation (between different
time steps). In particular

J s =

inter-node meas.with anchors� �� ��
i ∈ Na

n ∈ Nt

G
(n,n)
i,i ⊗

�
j∈Nb

K
(n,n)
i,j +

spatial coop.with agents� �� ��
i, j ∈ Na : i < j

n ∈ Nt

G
(n,n)
i,j ⊗ K

(n,n)
i,j

(31a)

J t =

intra-node meas.at one time step� �� ��
i ∈ Na

n ∈ Nt

G
(n,n)
i,i ⊗ K

(n,n)
i,i +

temporal coop.at different time steps� �� ��
i ∈ Na

n,m ∈ Nt : m < n

G
(n,m)
i,i ⊗ K

(n,m)
i,i

(31b)

where

G
(n,m)
i,j =

�
(ek − el)(ek − el)

T, for (i, n) �= (j,m)

ek(ek)T, for (i, n) = (j,m)
(32)
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in which k = [i+(n− 1)Na ], l = [j+(m− 1)Na], and ek is
an NaNt-dimensional vector with all zeros except a one at
the kth element. The matrices K in (31) will be described
in the following.

Define

jsf(y; θ1, θ2, θ3) � ∂ lnLy (θ)

∂θ1

∂ lnLy (θ)

∂θT
2

jsc(μ; θ1, θ2, θ3) � ∂ ln Φμ(θ)

∂θ1

∂ ln Φμ(θ)

∂θT
2

for soft features and soft context, respectively, where the
parameter vector θ is a function of θ1, θ2, and the nui-
sance parameter vector θ3. It is important to note that
jsf(y; θ1, θ2, θ3) is a function of Ly(θ) that depends on
the type of measurement y. Similarly, jsc(μ; θ1, θ2, θ3) is
a function of Φμ(θ) that depends on the type of contextual
data μ. The matrix K

(n,m)
i,j ∈ R

D×D accounts for the pair-
wise positional information related to agent i ∈ Na at time
step n ∈ Nt and node j ∈ Na ∪ Nb at time step m ∈ Nt as
elaborated next.

1) K
(n,n)
i,i accounts for the information that agent i

obtains at time step n from intra-node measurements
y

(n)
i,i . It can be written as

K
(n,n)
i,i = E

�
jsf(y

(n)
i,i ; x(n)

i , x(n)
i , ∅)�. (33)

2) K
(n,n)
i,j for j ∈ Nb accounts for the information

that agent i obtains at time step n from inter-node
measurements y

(n)
i,j with respect to anchor j. It can be

written as

K
(n,n)
i,j = E

�
jsf

�
y(n)

i,j ; x(n)
i , x(n)

i , ∅��. (34)

3) K
(n,n)
i,j for j ∈ Na \ {i} accounts for the information

that agent i obtains at time step n from inter-node
measurements y

(n)
i,j with respect to neighboring agent

j (i.e., spatial cooperation). It can be written as

K
(n,n)
i,j = E

�−jsf�y(n)
i,j ; x

(n)
i , x

(n)
j , ∅��. (35)

4) K
(n,m)
i,i accounts for the information that agent i

obtains at time step n from its positional state at
previous time step m and the dynamic model μ (i.e.,
temporal cooperation).9 It can be written as

K
(n,m)
i,i = E

�−jsc�μ; x(n)
i , x(m)

i , ∅��. (36)

Consider a network with Na = 3 agents and Nt = 2

time steps. The FIM can be written as in (30), in which
J s (corresponding to spatial measurements) and J t (cor-

9Commonly, dynamic models provide information related to two
consecutive time steps, and in those cases, K

(n,m)
i,i = 0 for m < n−1.

responding to temporal measurements) are given by (37)
and (38), respectively, at the top of the next two pages.
In (37), the first term represents the information com-
ing from inter-node measurements with anchors, while
the second term represents the information coming from
spatial cooperation with other agents. In (38), the first
term represents the information inherent in intra-node
measurements at a particular time step, while the second
term represents the information coming from temporal
cooperation between different time steps.

A. FIM from SI Functions

The building blocks K
(n,n)
i,j of the FIM for some special

cases of SFI are detailed here.
Proposition 1: Consider 2-D node velocity v(n)

i and node
position p(n)

i and define the direction matrix (DM)

Jdm(φ) �
�

cos2(φ) cos(φ) sin(φ)

cos(φ) sin(φ) sin2(φ)

�
. (39)

The blocks K
(n,n)
i,j related to speed ‖v(n)

i ‖, range d
(n)
i,j , and

angle α
(n)
i,j inherent in measurements involving nodes i and

j at time instant n are provided in the following.

1) For intra-node measurements related to the speed

K
(n,n)
i,i = eiveT

iv ⊗ E
v
(n)
i

{λsJs} (40)

where iv is the velocity component index in the
state vector x(n)

i . In (40), λs is the speed information
intensity (SII) [220] and Js is the DM for speed
measurements given by

λs = E
y
(n)
i,i

|v(n)
i

�
jsf

�
y(n)

i,i ;
��v(n)

i

��,��v(n)
i

��, ∅�� (41a)

Js = Jdm(αv) (41b)

where αv is the angle between vector v(n)
i and the

horizontal axis.
2) For inter-node measurements related to ranges

K
(n,n)
i,j = eipeT

ip ⊗ E
p
(n)
i

, p
(n)
j

{λrJr} (42)

where ip is the position component index in the
state vector x

(n)
i . In (42), λr is the range informa-

tion intensity (RII) [38] and Jr is the DM for range
measurements given by

λr = E
y
(n)
i,j

|p(n)
i

,p
(n)
j

�
jsf

�
y(n)

i,j ; d
(n)
i,j , d

(n)
i,j , ∅

��
(43a)

Jr = Jdm

�
α

(n)
i,j

�
(43b)

where d
(n)
i,j is the Euclidean distance between the ith

and jth nodes, and α
(n)
i,j is the angle between vector

p(n)
j − p(n)

i and the horizontal axis.
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J s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j∈Nb

K
(1,1)
1,j 0 0 0 0 0

0
∑
j∈Nb

K
(1,1)
2,j 0 0 0 0

0 0
∑
j∈Nb

K
(1,1)
3,j 0 0 0

0 0 0
∑
j∈Nb

K
(2,2)
1,j 0 0

0 0 0 0
∑
j∈Nb

K
(2,2)
2,j 0

0 0 0 0 0
∑
j∈Nb

K
(2,2)
3,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
j∈Na\{1}

K
(1,1)
1,j −K

(1,1)
1,2 −K

(1,1)
1,3 0 0 0

−K
(1,1)
1,2

∑
j∈Na\{2}

K
(1,1)
2,j −K

(1,1)
2,3 0 0 0

−K
(1,1)
1,3 −K

(1,1)
2,3

∑
j∈Na\{3}

K
(1,1)
3,j 0 0 0

0 0 0
∑

j∈Na\{1}
K

(2,2)
1,j −K

(2,2)
1,2 −K

(2,2)
1,3

0 0 0 −K
(2,2)
1,2

∑
j∈Na\{2}

K
(2,2)
2,j −K

(2,2)
2,3

0 0 0 −K
(2,2)
1,3 −K

(2,2)
2,3

∑
j∈Na\{3}

K
(2,2)
3,j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

3) Finally, for inter-node measurements related to angles

K
(n,n)
i,j = eipeT

ip ⊗ E
p
(n)
i

, p
(n)
j

{λaJa} (44)

where ip is the position component index in the
state vector x(n)

i . In (44), λa is the angle informa-
tion intensity (AII) [41] and Ja is the DM for angle
measurements given by

λa =
1

(d
(n)
i,j )2

E
y
(n)
i,j |p(n)

i , p
(n)
j

�
jsf

�
y
(n)
i,j ;α

(n)
i,j ,α

(n)
i,j , ∅

��
(45a)

Ja = Jdm

�
α

(n)
i,j +

π

2



. (45b)

Proof: In what follows, we provide the proof for the
case of intra-node measurements y

(n)
i,i related to speed

‖v(n)
i ‖; the other two cases can be obtained analogously.

From (33)

K
(n,n)
i,i = E

y
(n)
i,i

,v
(n)
i

�
jsf

�
y(n)

i,i ; x(n)
i , x(n)

i , ∅��

which results in

K
(n,n)
i,i = eiveT

iv ⊗ E
y
(n)
i,i

,v
(n)
i

�
jsf

�
y(n)

i,i ; v(n)
i , v(n)

i , ∅�� (46)

because y
(n)
i,i are measurements related to velocity.

By using the chain rule for derivatives

jsf
�
y

(n)
i,i ; v

(n)
i ,v

(n)
i , ∅� = jsf

�
y

(n)
i,i ;

��v
(n)
i

��,��v
(n)
i

��, ∅�
×∂

��v
(n)
i

��
∂v

(n)
i

�
∂
��v

(n)
i

��
∂v

(n)
i

�T

(47)

since y
(n)
i,i are measurements related to speed.
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J t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(1,1)
1,1 0 0 0 0 0

0 K
(1,1)
2,2 0 0 0 0

0 0 K
(1,1)
3,3 0 0 0

0 0 0 K
(2,2)
1,1 0 0

0 0 0 0 K
(2,2)
2,2 0

0 0 0 0 0 K
(2,2)
3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K
(2,1)
1,1 0 0 −K

(2,1)
1,1 0 0

0 K
(2,1)
2,2 0 0 −K

(2,1)
2,2 0

0 0 K
(2,1)
3,3 0 0 −K

(2,1)
3,3

−K
(2,1)
1,1 0 0 K

(2,1)
1,1 0 0

0 −K
(2,1)
2,2 0 0 K

(2,1)
2,2 0

0 0 −K
(2,1)
3,3 0 0 K

(2,1)
3,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

Performing the expectations in (46) using the law of iter-
ated expectations as E

y
(n)
i,i

,v
(n)
i

{·} = E
v
(n)
i

�
E

y
(n)
i,i

|v(n)
i

{·}�,

we obtain (40) in which λs in (41a) and Js in (41b) result,
respectively, from the expectation of the first and second
terms in the right-hand side of (47).

Remark 2: Proposition 1 indicates that the measure-
ments related to the speed provide information with
intensity λs in the direction of v

(n)
i , since Js has only

one eigenvector associated with non-zero eigenvalue in
such direction. Similarly, the measurements related to the
range provide information with intensity λr in the direction
of p(n)

j − p(n)
i , since Jr has only one eigenvector associ-

ated with non-zero eigenvalue in such direction. Finally,
the measurements related to the angle provide information
with intensity λa in the direction orthogonal to p(n)

j − p(n)
i ,

since Ja has only one eigenvector associated with non-zero
eigenvalue in such direction.

B. FIM in Harsh Propagation Environments

This section provides the SFI from inter-node measure-
ments when a detector for NLOS propagation conditions is
employed, as described in Sections II-A and III-D.

Proposition 2: Consider the inter-node measurement
y

(n,n)
i,j = [zT, δ]T, where z is a measurement related to a

feature θ and δ is the NLOS detector outcome, as described
in Section II-A. When Ly (θ) follows (13) and z follows
the measurement model in (14) and (15) with σLOS =

σNLOS = σ and εLOS = εNLOS = ε, then the FIM block
corresponding to y(n,n)

i,j is given by:

K
(n,n)
i,j = eipeT

ip ⊗ Eθ{λθJθ} (48)

where λθ and Jθ have instantiations

λθ =
1

σ4
[Ez|θ {(z − θ − χ0)

2|δ = 0}P{δ = 0}
+ Ez|θ {(z − θ − χ1)

2|δ = 1}P{δ = 1}] (49a)

J θ =

�
∂ θ

∂p
(n)
i

��
∂ θ

∂p
(n)
i

�T
(49b)

as well as χ0 and χ1 have instantiations

χ0 =
β εϕ(θ; z − β, σ2)

(1 − ε)ϕ(θ; z, σ2) + ε ϕ(θ; z − β, σ2)
(50a)

χ1 =
β (1 − ε)ϕ(θ; z − β, σ2)

ε ϕ(θ; z, σ2) + (1 − ε)ϕ(θ; z − β, σ2)
. (50b)

Proof: Equation (48) is obtained from Proposition 1
and the fact that

∂ lnL
y
(n)
i,j

(θ)

∂θ
=

���
��

1

σ2
(z − θ − χ0) for δ = 0

1

σ2
(z − θ − χ1) for δ = 1.
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Remark 3: For ε = 0 and P{δ = 0} = 1 (LOS scenarios
with totally reliable NLOS detector), the term χ0 = 0

and (48) results in the known expression for LOS sce-
narios (i.e., λ = 1/σ2) [38]. Moreover, the two Gaussian
PDFs ϕ(·) in (50a) and (50b) have negligible overlap
for β � σ, as well as χ0 ≈ χ1 ≈ 0 (resp. χ0 ≈
χ1 ≈ β) when z has mean θ (resp. θ + β) and standard
deviation σ. Therefore, for β � σ (48) approximates
the K

(n,n)
i,j for LOS scenarios with totally reliable NLOS

detector (i.e., λ ≈ 1/σ2), independent of the detector
reliability ε.

VI. L E A R N I N G S O F T I N F O R M AT I O N

Using a Bayesian formulation, the SFI can be determined
based on a joint distribution function, referred to as
generative model, of the positional feature together with
measurements and contextual data. For instance, the SFI
inherent in a measurement vector y related to feature θ

can be determined as Ly(θ) ∝ fy,θ(y, θ) in the absence of
prior information on θ or as Ly(θ) = fy,θ(y, θ)/fθ(θ) in
the presence of prior information on θ [55]. Analogously,
SCI inherent in contextual data μ related to acceleration
a, angular velocity ω, and velocity v can be obtained as
Φμ(a,ω,v) ∝ f(a,ω,v; μ) [153].

In simple scenarios, the generative model can be
accurately determined based on the relation between
measurements, positional features, and contextual data.
In more complex scenarios, finding an accurate gener-
ative model is challenging and it is preferable to learn
it using measurements, positional features, and contex-
tual data by a process commonly known as density
estimation [222]–[224]. In particular, the SI can be deter-
mined by a two-phase algorithm as follows:

1) off-line phase where the approximation of the gener-
ative model is determined from measurements, posi-
tional features, and context data;

2) on-line phase where the SFI and SCI for each new
measurement are determined based on the generative
model learned in the previous phase.

The off-line phase determines the generative models for
environments similar to (but not necessarily the same as)
those where the localization network will operate (i.e.,
where the on-line phase is performed). The exploitation
of SFI and SCI has a complexity that depends on the
generative model learned during the off-line phase; there-
fore, constraints on the computation and communication
capabilities of nodes call for tractable and parsimonious
generative models. Techniques, such as belief condensa-
tion [53], which approximate complicated distributions by
combination of simple ones, can enable the use of tractable
generative models for efficient implementation of SI-based
localization.

A. SI from Reduced Data Set

Determining the generative model from training data
can be difficult, especially for measurement vectors with

Algorithm 1SFI Estimation with Dimensionality Reduction

Off-line Phase
1: Acquire training data {y(k),θ(k)}k∈Ntrain through a

measurement campaign realized in time steps indexed
by Ntrain.

2: Perform dimensionality reduction of training data:

{y(k),θ(k)}k∈Ntrain → {ψ(y(k)),θ(k)}k∈Ntrain .

3: Determine an approximate generative model
f̃(ψ(y),θ).

4: Store the approximate generative model.
On-line Phase
1: for k ≥ 0 do
2: Acquire a new measurement vector y(k) at time tk.
3: Perform dimensionality reduction of the new measure-

ment vector:
y(k) → ψ(y(k)).

4: Determine the SFI of the reduced measurement vector
ψ(y(k)) using the stored generative model as

Lψ(y(k))(θ) = f̃(ψ(y(k)),θ).

5: end for

high dimensionality (e.g., waveform samples with fine
time-delay resolution) [55]. Therefore, dimensionality
reduction is crucial for efficient learning of SFI. Such a
dimensionality reduction step can be described as a func-
tion ψ(·) that transforms a measurement vector y ∈ R

M

into ψ(y) ∈ R
M′

with M ′ significantly smaller than M .
The dimensionality reduction may not necessarily involve
SVEs, while SVEs can be thought of as a specific type
of dimensionality reduction. While the proposed SI-based
approach can be used for any type of measurement,
the dimensionality reduction and generative model learn-
ing techniques are technology-dependent.

An algorithm for estimating the SFI with dimensionality
reduction is composed of two phases (see Algorithm 1):
an off-line phase in which dimensionality reduction ψ(·) is
performed10 and generative models are determined based
on training measurements and an on-line phase in which
the SFI is learned from the generative model and each
measurement collected during operation.

Various techniques can be used for performing dimen-
sionality reduction and determining the generative model.
Unsupervised machine learning techniques provide ways
to learn SFI. In particular, SRI learning is addressed
in [55], where techniques for dimensionality reduction
based on physical features, principal component analysis
(PCA), and Laplacian eigen-map are introduced and tech-
niques for determining generative models based on Fisher-
Wald setting and kernel density estimation are presented.

10Clearly, ψ(y(k)) = y(k) in the absence of dimensionality
reduction.
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Fig. 8. Range information from energy detection.

Energy detection-based techniques are often used to
determine information on the TOA τ of the received signal,
which is related to the distance between the transmitter
and the receiver [115]. In such a case, the SRI can be
obtained based on the distribution function of the Nbin

energy samples (bins) at the energy detector output (see
Fig. 8). In [51], a model for wideband ranging was
proposed together with the PDF of each energy bin bi,
fbi(bi|τ, ηh,ηd), and the probability mass function (PMF)
of the selected bin i, fi(̂ı|τ, ηh,ηd) for a variety of rang-
ing algorithms, where ηh and ηd are parameter vectors
representing the wireless channel and the energy detector,
respectively. Such a model is essential for obtaining the SRI
from the energy detector output samples. The size of the
observation set is important for computation and commu-
nication of the SRI; therefore, alternative methods based
on reduced data sets of the observations were proposed
in [225]. In particular, the SRI for a given observation of
the energy bins b can be written as11

Lb(τ ) =

Nbin−1�
i=0

fbi(bi|τ, ηh, ηd). (51)

This is referred to as energy-based soft decision (ESD)
[see Fig. 8(a)] and is obtained from a data set of size

11The likelihood of the TOA is strictly related to that of the distance.

Nbin (reduced by a factor Nsb, the number of samples
per bin, compared to SRI obtained from the complete set
of received waveform samples). SRI can also be obtained
from the PMF of the selected bin index as

L ı̂(τ ) = fi(̂ı|τ,ηh,ηd). (52)

This is referred to as threshold-based soft decision (TSD)
[see Fig. 8(a)] and is obtained from a data set of size one
(reduced by a factor NsbNbin compared to SRI obtained
from the complete set of received waveform samples). The
SRI provided by the likelihood functions (51) or (52) can
be used for SI-based localization.12

B. Selection of Representative Measurements

Accurate LoT is challenging in harsh propagation con-
ditions, where multipath, clutter, and signal obstructions
can give erroneous measurements that are not represen-
tative of the positional states. These measurements, also
called non-representative outliers [226], can adversely
impact the localization performance [131]–[133]. In the
context of LoT, it is particularly important to develop low-
complexity techniques that select a measurement subset
Ysel ⊆ Y containing the measurements that are more
representative of positional states.

We now describe the measurement selection techniques
that do not require the knowledge of the wireless environ-
ment and rely only on features extracted from the received
waveform samples [130]. Consider a vector

ν ij =
�
ν

(0)
ij , ν

(1)
ij , . . . , ν

(Nd−1)
ij

 T

of Nd indicator samples for the pair (i, j). In the case
of energy detection, ν(q)

ij is related to the energy of the
samples within the qth time interval (dwell time). Table 1
presents the temporal and amplitude features based on
the vector ν ij for selecting the observations that are rep-
resentative of the nodes positions (i.e., less affected by
multipath, noise, and obstruction-loss). In particular, time-
based selection features are inter-quartile range IQRij ,
variance σ̃2

ij , kurtosis κ̃ij , and skewness χ̃ij . Amplitude-
based selection features are maximum value Mij , sample
variance s2ij , sample range rij , and sample skewness cij .
For each scenario, it is essential to choose the selection
feature h(νij) ∈

�
IQRij , σ̃

2
ij , κ̃ij , χ̃ij ,Mij , s

2
ij , rij , cij

�
or a

combination of them based on its relationship with the
localization performance [130].

VII. C A S E S T U D I E S

This section compares the performance of SVE-based, DP,
and SI-based techniques in two case studies corresponding

12The SRI can also be used for SVE-based localization; in fact,
the maximum of the SRI enables the determination of DEs for position
inference in classical two-stage localization.
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Table 1 Time- and Amplitude-Based Measurement Selection Features

to the following scenarios:

1) noisy features and NLOS detection; and
2) IEEE 802.15.4 a standard.

In each scenario, measurements are obtained in different
wireless environments.

Before delving into the performance comparison in each
case study (CS), a discussion on the complexity of the
SVE-based, DP, and SI-based techniques is given. The
SVE-based technique does not require an off-line phase
(training) and relies only on a single value per measure-
ment. The DP technique requires prior knowledge of the
channel model. If such a model is unknown, then DP uses
an off-line phase to estimate the channel response (from
multiple received waveforms for each anchor–agent dis-
tance).13 The SI-based technique requires an off-line phase
to determine a generative model for the SFI (however,
it does not require multiple received waveforms for each
anchor–agent distance) [55]. In the on-line phase, DP tech-
nique computes a likelihood function that depends on the
entire received waveform, resulting in high computational
complexity, whereas the SI-based technique benefits from
a dimensionality reduction step, resulting in significantly
lower complexity despite the moderate information loss.

A. CS-I: Measurements Based on Noisy Features
and NLOS Detection

Consider a network in a 100 m × 100 m area with
four anchors and a varying number of agents all randomly
deployed therein. This CS compares the performance of
SVE-based localization, DP, and SI-based localization in
terms of root-mean-square error (RMSE) together with
the position error bound (PEB) as a benchmark.14 The
measurement set is composed of noisy features and
NLOS detector output. The noisy features are related to
ranges and/or angles according to (14) and (15), and

13In the IEEE 802.15.4 a scenario, waveforms are processed in the
time domain and a covariance matrix is obtained for each anchor–agent
distance [141].

14PEB is the square root of the right-hand side of (29), which is
independent of the specific localization technique used and serves as a
benchmark for the MSE of unbiased position estimators.

the NLOS detector error follows (1). Specifically, we con-
sider εNLOS = εLOS = ε, pNLOS = 0.4, and σNLOS =

σLOS = σ with σ = 2 meters for range measurements
and σ = 2 degrees for angle measurements. We compare
the SVE-based and SI-based techniques using the same
measurements for inferring agent positions. In particular,
SVE-based localization employs the Gaussian measure-
ment model with mean and variance given, respectively,
by (2) and (3). On the other hand, SI-based localization
exploits SFI according to (13) and (16) for inferring agent
positions based on the posterior distribution given by (19),
(21), (23), or (25) for different levels of spatial and
temporal cooperation.

Fig. 9 shows the localization performance based on
range measurements as a function of the obstructed propa-
gation bias β for different values of ε. Notice that SRI-based
localization provides significant performance improvement
and robustness to NLOS detection errors compared with
DE-based localization. Also, observe that exploiting SRI
enables the filling of most of the performance gap between
DE-based localization and PEB. Similar observations can
be made from Fig. 10, which shows the localization per-
formance based on angle measurements for SAI- and AE-
based localization.

Now, consider the fusion of range and angle measure-
ments. Fig. 11 shows the localization performance as a
function of the obstructed propagation bias β for different
values of ε.15 Notice that SI-based localization exploit-
ing both SRI and SAI provides significant performance
improvement and robustness to NLOS detection errors
compared to SVE-based localization using both DE and AE.
Also, observe that the performance of SI-based localization
approaches the PEB.

Consider spatial cooperation among agents. Fig. 12
shows the localization performance based on range
measurements as a function of the number of coop-
erating agents for obstructed propagation bias β =

20 m and different values of ε. Notice that SRI-based
localization provides significant performance improve-

15For example, β = 20 indicates that the bias on range measure-
ments is of 20 m and the bias on angle measurements is of 20°.
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Fig. 9. Localization performance based on range measurements as

a function of obstructed propagation bias for ε � 0.1 (solid line) and

0.2 (dashed line). The performance of SVE-based localization (green

circle) and SI-based localization (red triangle) as well as the PEB

(blue square) are shown.

ment and robustness to NLOS detection errors com-
pared to DE-based localization. Also, observe that exploit-
ing SRI enables the filling of most of the performance
gap between the DE-based localization and PEB. Note
also that SRI-based localization exploits spatial cooper-
ation better and approaches to the PEB faster with the
number of cooperating agents compared to DE-based
localization.

Now, consider navigation with temporal and spatiotem-
poral cooperation among agents. In such a scenario, each
agent follows a circular trajectory (a radius of 20 m cen-
tered at a random position) at a speed of 0.625 m/s. The
dynamic model for position inference is

Φμ(p(n),p(n−1)) = ϕ(p(n) − p(n−1);0, σ2
dI)

where σd = 0.6 m and the localization update rate is
1/(tn − tn−1) = 1 Hz for all n. First, consider tem-
poral cooperation only. Fig. 13 shows the localization
performance based on range measurements as a function
of the time step for obstructed propagation bias β =

20 m and different values of ε. Notice that SRI-based
navigation with temporal cooperation provides significant
performance improvement and robustness to NLOS detec-
tion errors compared to DE-based navigation. Also, observe
that exploiting SRI enables the filling of most of the
performance gap between DE-based navigation and PEB.
We now quantify the benefits due to spatial, in addition
to temporal, cooperation. Fig. 14 shows the localization
performance as a function of the time step and the number
of cooperating agents in the same scenario considered
in Fig. 13. Notice that SRI-based navigation exploits spa-
tiotemporal cooperation better than DE-based localiza-
tion by accentuating the performance improvement and

Fig. 10. Localization performance based on angle measurements

as a function of obstructed propagation bias for ε � 0.1 (solid line)

and 0.2 (dashed line). The performance of SVE-based localization

(green circle) and SI-based localization (red triangle) as well as the

PEB (blue square) are shown.

Fig. 11. Localization performance based on range and angle

measurements as a function of obstructed propagation bias for

ε � 0.1 (solid line) and 0.2 (dashed line). The performance of

SVE-based localization (green circle) and SI-based localization (red

triangle) as well as the PEB (blue square) are shown.

robustness to NLOS conditions. Moreover, SRI-based local-
ization with spatiotemporal cooperation approaches to the
PEB faster with the number of cooperating agents com-
pared to DE-based localization.

B. CS-II: Measurements Based on IEEE 802.15.4a
Standard

Consider a network in a 20 m × 20 m area with
four anchors located at the corners of the square and
agents randomly deployed therein. This CS compares the
performance of SVE-based localization, DP, and SI-based
localization in terms of localization error outage (LEO)
defined as the empirical probability that the localiza-
tion error is above a target value. The anchors emit
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Fig. 12. Cooperative localization: localization accuracy and performance benchmark for different numbers of cooperating agents.

Fig. 13. Non-cooperative navigation: navigation accuracy and performance benchmark for different time steps.

Fig. 14. Cooperative navigation: navigation accuracy and performance benchmark for different time steps and numbers of cooperating

agents.

UWB root raised cosine pulses (roll-off factor of 0.6 and
pulsewidth parameter of 0.95 ns) in the European lower
band [3.1, 4.8] GHz with maximum power spectral density
−42 dBm/MHz. The emitted pulses propagate through
a multipath channel modeled according to the IEEE
802.15.4 a standard for indoor residential environments
with probability pNLOS of being in NLOS conditions. The
signal-to-noise ratio at 1 m from the transmitter is 30 dB.
SVE-based technique uses DE from each anchor, which is
obtained from the delay τmax corresponding to the max-
imum correlation value between the received waveform
and the transmitted pulse. The DP technique processes the
received waveform according to the algorithm proposed
in [141] with covariance matrices estimated from the
received waveform samples during the off-line phase.
The SI-based technique employs a three-modal Gaussian

generative model and exploits dimensionality reduction by
considering ψ(y) as a vector of four elements, including
τmax, the maximum value of the correlation, and two
principal components obtained from PCA as in [55]. We
compare SVE-, DP, and SI-based techniques for inferring
agent positions based on the MMSE criterion using the
same measurements.

Fig. 15 shows the LEO based on the received waveform
measurements generated according to IEEE 802.15.4 a
standard for the indoor residential and the outdoor chan-
nel models with pNLOS = 0.2,0.5, and 0.8. Notice that SI-
based localization exploiting SRI provides significant LEO
improvement as well as robustness to NLOS propagation
conditions compared to DP and SVE-based localization.
For example, in indoor residential channel with pNLOS =

0.2, the localization error is above 4 m in about 40% of
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Fig. 15. LEO in two IEEE 802.15.4a channels with different values of NLOS probability pNLOS � 0.2 (dashed line), 0.5 (dotted–dashed line),

and 0.8 (solid line). The performance of SVE-based localization (green circle), DP (blue square), and SI-based localization (red triangle) is

shown.

cases for DE-based localization, 4% of cases for DP, and 2%
of the cases for SI-based localization. In more severe NLOS
propagation conditions with pNLOS = 0.8, the localization
error is above 4 m in about 50% of cases for DE-based
localization, 13% of cases for DP, and only 6% of the cases
for the SI-based localization. In the outdoor channel with
pNLOS = 0.2, the localization error is above 3 m in about
27% of cases for DE-based localization, 4% of cases for
DP, and 2% of the cases for SI-based localization. With
pNLOS = 0.8, the localization error is above 3 m in about
41% of cases for DE-based localization, 26% of cases for
DP, and only 2% of the cases for the SI-based localization.
This shows that also in IEEE 802.15.4 a standard scenario,
SI-based localization is superior to DP and SVE-based
localization, especially in harsh propagation conditions.

VIII. F I N A L R E M A R K

This paper introduced the concept of LoT and proposed a
new approach for accurate inference of positional states.

The proposed approach exploits SI that combines SFI
and SCI extracted from measurements and contextual
data, respectively. We described efficient techniques for
learning and exploiting the SI based on the reduced data
sets. Various case studies are presented for different wire-
less environments. In particular, the localization perfor-
mance is quantified for sensing measurements based on
noisy features and NLOS detection, and IEEE 802.15.4a
standard. The results show that SI-based localization sig-
nificantly outperforms DP and SVE-based localization,
especially in harsh propagation conditions. Indeed, SI-
based techniques are vital for LoT, especially when devices
are designed for communication rather than for localiza-
tion. Furthermore, the exploitation of SI offers robustness
to wireless propagation conditions, thereby opening the
way to a new level of accuracy for the LoT. �
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