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AbstrAct
Location awareness is essential for enabling con-

textual services and for improving network manage-
ment in 5th generation (5G) and beyond 5G (B5G)
networks. This article provides an overview of the 
expanding opportunities offered by location aware-
ness in wireless networks, discusses soft information 
(SI)-based approaches for improved location aware-
ness, and presents case studies in conformance 
with the 3rd Generation Partnership Project (3GPP) 
standardization by the European Telecommunica-
tions Standards Institute (ETSI). Results show that 
SI-based approaches can provide a new level of 
location awareness in 5G and B5G networks.

IntroductIon
Location awareness is vital for fifth generation 
(5G) and beyond 5G (B5G) networks [1, 2]. On 
one hand, location awareness enables numerous 
location-based services (LBSs) including autonomy, 
asset tracking, smart environments, and the Inter-
net of Things.1 On the other hand, location aware-
ness permits more efficient utilization of wireless 
resources via techniques including pencil beam-
forming and network slicing [3, 4]. Therefore, it is 
important to determine positional information of 
network nodes (including devices, objects, people, 
and vehicles), referred to as Localization of Things 
(LoT). The positional information of network nodes 
is inherently encapsulated in soft information (SI) 
[5], which is related to various types of position-
al features (e.g., distance, angle, and proximity) 
extracted from measurements and of contextual 
data (e.g., dynamic model, digital map, and user 
profile) corresponding to the environment. It is 
therefore essential to develop localization tech-
niques that are capable of accounting for all the SI 
present in a B5G ecosystem. Indeed, accurate loca-
tion awareness depends on the ability to extract 
and exploit SI, both of which can be challenging in 
complex wireless environments.

The demand for accurate location aware-
ness has grown rapidly [6]. Classical localization 
approaches typically rely on single-value estimates 
(SVEs), such as distance and direction estimates, 
and on knowledge associated with the SVE uncer-
tainty (when available) to serve as inputs for a 
position inference algorithm. Localization accura-
cy obtained by such methods depends heavily on 
the quality of the SVEs, which deteriorates in com-
plex wireless environments. In particular, the per-
formance of conventional techniques degrades in 
wireless environments due to biases in SVEs caused 

by non-line-of-sight (NLoS) conditions and multipath 
propagation. This challenges both the reliability of 
LBSs and the efficiency of network management.

To improve location awareness, the SI-based 
approach has recently been proposed [5]. This 
approach probabilistically accounts for the rela-
tion between any position-related measurement 
and a positional feature. It enables full exploitation 
of the positional information inherent in different 
types of measurements (namely, multimodal LoT) 
together with contextual data. Multimodal LoT 
requires efficient fusion algorithms for measure-
ments and data gathered from heterogeneous 
sensors, management strategies for networks con-
sisting of nodes with stringent resource limitations, 
and communication strategies that can cope with 
the dimensionality of the SI. In order to improve 
the localization accuracy and reduce the com-
munication overhead in 5G and B5G networks, it 
is vital to develop efficient learning methods that 
capture the essential positional information while 
reducing the dimensionality of SI.

Pivotal questions related to location awareness 
in B5G networks are:
• What level of performance gain do SI-based 

methods provide compared to classical 
methods in different scenarios?

• How are models learned for describing SI from 
different measurements in wireless networks?

• How do we fuse heterogeneous measure-
ments and contextual data for location 
awareness in the B5G ecosystem? 

The answers to these questions provide insights 
into achieving new levels of location awareness 
in B5G networks for enabling LBSs and improving 
network management. The goal of this article is to 
present SI-based approaches for multimodal LoT in 
5G and B5G networks, as well as to quantify their 
performance improvement compared to conven-
tional approaches. We advocate the exploitation of 
SI to achieve a new level of accuracy and efficien-
cy for location awareness in B5G networks.

This article introduces SI-based approaches for 
location awareness in B5G networks and demon-
strates that SI is more capable than SVEs of providing 
accurate location awareness. In particular, the article:
• Presents methodologies for achieving location 

awareness in 5G and B5G networks, particu-
larly describing SI-based approaches for LoT

• Discusses model learning and information 
fusion for SI-based localization in stan-
dardized European Telecommunications 
Standards Institute (ETSI) 3rd Generation 
Partnership Project (3GPP) scenarios
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Location Awareness in Beyond 5G Networks

LOCATION AWARENESS FOR 5G AND BEYOND 

Location awareness is essential 
for enabling contextual services 
and for improving network man-
agement in 5G and B5G networks. 
The authors provide an overview 
of the expanding opportunities 
offered by location awareness 
in wireless networks, discuss 
SI-based approaches for improved 
location awareness, and present 
case studies in conformance with 
the 3GPP standardization by ETSI.

1 The IEEE Communications 
Society’s Best Readings cov-
ering location awareness can 
be found at https://www.
comsoc.org/publications/
best-readings/network-local-
ization-and-navigation.
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• Quantifies the performance gain of SI-based 
methods via case studies for different scenar-
ios in conformity to ETSI 3GPP standardiza-
tion technical reports [7]
The remaining sections are organized as fol-

lows. The following section presents location 
awareness in 5G and B5G networks. We then 
describe SI-based LoT, and provide results in 
3GPP settings. Lastly, we offer final remarks.

LocAtIon AwAreness In b5G networks 
LocALIzAtIon requIrements

The standardization for LBSs in 5G and B5G net-
works is based on various use case scenarios and 
network operating conditions. The service level 
requirements for the use cases are specified in 
terms of key performance indicators (KPIs) that 
are related to the localization of user equipments 
(UEs). The main KPIs defined by 3GPP are hor-
izontal and vertical accuracy, availability, and 
latency. Other important KPIs are related to the 
power consumption and energy needed for local-
ization, and the scalability with the number of 
user equipments (UEs).

The 3GPP specification [1] describes seven 
positioning service levels (PSLs) as summarized in 
Table 1. Notice that most of the foreseen services 
require high accuracy (horizontal and vertical pre-
cision below 1 m over 99 percent of instantia-
tions) and, some of them, low latency (location 
updates every few tens of milliseconds) even in 
complex wireless environments. These require-
ments can be fulfilled by exploiting multimodal 
network capabilities, where both radio access 
technology (RAT)-dependent and RAT-indepen-
dent measurements are jointly used for inferring 
UE positional states.

LocALIzAtIon meAsurements
The 3GPP standard has specified, since earli-
er releases, the signals dedicated to localization 
or those that can be exploited for localization, 
including the positioning reference signal (PRS) in 
downlink and the sounding reference signal (SRS) 
in uplink. Related measurements that carry posi-

tional information are the down-link and up-link 
time-difference-of-arrival (TDoA), the angle-of-arriv-
al (AoA), and the angle-of-departure (AoD). Other 
types of measurements related to UE positional 
states can also be considered, particularly in pri-
vate networks. Therefore, examples of measure-
ments for location awareness include inter-node 
measurements, commonly obtained by radio mea-
surement units; and intra-node measurements, 
commonly obtained by inertial measurement 
units. The environmental information associated 
with a UE can also be used as prior information 
to improve the localization accuracy. Examples of 
environmental information include digital maps, 
dynamic models, and UE profiles. The accuracy 
of location awareness is strongly affected by the 
quality of measurements and by the knowledge of 
the environment. Figure 1 illustrates an example of 
position estimation with accurate and inaccurate 
measurements for LBSs and shows how network 
management can exploit higher localization accu-
racy, specifically for pencil beamforming [3].

beyond 5G technoLoGIes
A new paradigm that is foreseen to play a key 
role in B5G networks is the integrated sensing 
and communication, that is, the exploitation of 
the same signal for both sensing the environment 
and communicating information (e.g., radar and 
communication for autonomous vehicles). This 
calls for research on waveform design, interfer-
ence mitigation, spectrum sharing, time sharing, 
and hardware reuse between sensing, localiza-
tion, and communication. Joint sensing and com-
munication can also be used in a passive radar 
setting for the detection and localization of 
device-free targets. This setting leverages both 
base stations and access points as illuminators 
of opportunity, without deploying any dedicated 
wireless source, relying on any target device, and 
incurring additional costs. The signals propagate 
in the monitored environment and are reflected 
by both background objects (clutter) and target 
objects [8]. Sensing and localization in this case 
can be performed by a network of receivers (spe-
cific sensors or UEs) that are deployed in a desig-

TABLE 1. Service level requirements, also referred to as PSLs (first column), for 5G localization according to 3GPP TS 22.261 [1]. Such requirements are given in terms of absolute (A) position of a UE or of 
relative (R) position between two UEs or between one UE and another 5G network node; and in terms of horizontal (H) and vertical (V) accuracy. The table also reports the service availability and 
latency associated with each level. Requirements are specified for a general positioning service area or an enhanced positioning service area for different maximum speeds.

PSL A/R
Accuracy

Availability Latency
Environment and velocity

 H V Positioning service area Enhanced positioning service area

1 A 10 m 3 m 95% 1 s Indoor (30 km/h); outdoor (rural 
and urban; 250 km/h) Indoor (30 km/h)

2 A 3 m 3 m 99% 1 s Outdoor (rural and urban; trains 
500 km/h; others 250 km/h)

Outdoor (dense urban, 60 km/h; roads, 250 km/h; 
railways, 500 km/h); indoor (30 km/h)

3 A 1 m 2 m 99% 1 s Outdoor (rural and urban; trains 
500 km/h; others 250 km/h)

Outdoor (dense urban, 60 km/h; roads, 250 km/h; 
railways, 500 km/h); indoor (30 km/h)

4 A 1 m 2 m 99.9% 15 ms NA Indoor (30 km/h)

5 A 0.3 m 2 m 99% 1 s Outdoor (rural 250 km/h) Outdoor (dense urban, 60 km/h; roads and railways, 
250 km/h); indoor (30 km/h)

6 A 0.3 m 2 m 99.9% 10 ms NA Outdoor (dense urban, 60 km/h); indoor (30 km/h)

7 R 0.2 m 0.2 m 99% 1 s Indoor and outdoor (rural, urban, dense urban) 30 km/h; the relative positioning is 
between UEs or other positioning nodes within 10 m distance from each other 
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nated area to receive the signals emitted by base 
stations or by other sources of opportunity and 
reflected by the passive targets.

Recently, research efforts have been devot-
ed to resiliency and robustness of localization 
systems in harsh electromagnetic environments 
affected by severe impairments such as multipath 
and non-line-of-sight (NLoS) conditions. In such 
environments, the use of intelligent surfaces (ISs) 
promises to mitigate these impairments by con-
trolling the electromagnetic environment [9]. 
Therefore, ISs can be employed to create desir-
able wireless propagation conditions that improve 
the performance of localization systems in B5G 
networks. In addition, the use of THz bands is 
envisioned as a key wireless technology to satisfy 
the demand for extremely high throughput and 
can be utilized for localization in environments 
such as those of B5G for Industry 4.0 [10].

soft InformAtIon for LocAtIon AwAreness
Localization aims to determine the position-
al states of network nodes. At a given time, 
the positional state of a node includes its posi-
tion (absolute or relative coordinates) and other 

mobility-related quantities (e.g., velocity, accel-
eration, and orientation). Localization methods 
infer the positional states of the nodes based on 
inter-node and intra-node measurements, and on 
contextual data.

Location awareness is the knowledge of prob-
abilistic information on UEs’ possible positional 
states. Such information is described by the con-
ditional posterior of the positional state, which 
can serve to infer the positional state of each UE 
and enable applications where probabilistic infor-
mation of the positional state is sufficient. The 
location awareness for the UEs at different time 
instants can be obtained based on inter-node mea-
surements with respect to both base stations and 
neighboring UEs (cooperation with other UEs via 
side links), intra-node measurements, and contex-
tual data. Most location-aware services, including 
those relying on 5G and B5G networks, require 
inference of sequences of positional states. The 
joint posterior distribution of positional states 
can be determined via a prediction step (using a 
dynamic model) followed by an update step (using 
an observation model and a new measurement) .

Location awareness can be obtained from SI, 
which is composed of soft feature information 
(SFI) and soft context information (SCI) [5]. In 
particular, SI can be determined from a joint dis-
tribution function of positional features, measure-
ments, and contextual data. This joint distribution 
is obtained from a generative model tailored to 
wireless environments, including those described 
by technical specifications for 5G networks. The 
SI-based approach provides a statistical charac-
terization of the relation between position-related 
measurement and a positional feature. Therefore, 
even measurements affected by severe multipath 
or NLoS conditions can be used by SI-based local-
ization since SI relies on probabilistic models that 
have already accounted for such situations.

In cases where positional states follow a lin-
ear evolution and both SFI and SCI are Gaussian 
functions, the inference can be performed in a 
closed form as in Kalman filters [11]. Otherwise, 
its implementation employs approximations that 
account for a trade-off between complexity and 
accuracy [12]. Compared to existing works that 
rely on predefined measurement models, such as 
those in the field of multi-sensor multi-target track-
ing [13], SI-based approaches do not require spe-
cific measurement models. This can be especially 
useful if the measurement models for the wireless 
environment are not available or if the data vol-
ume of the measurements prohibits the direct use 
of likelihood functions.

dIstrIbuted ImpLementAtIon
In 5G and B5G networks, it is important to infer 
positional states in a distributed manner. In non-
cooperative scenarios, each UE can determine its 
own position, resulting in a distributed implemen-
tation. However, it is known that spatiotemporal 
cooperation can significantly improve localization 
accuracy. Unfortunately, a distributed implementa-
tion of cooperative methods is hindered by infor-
mation coupling, that is, the UE positional state 
inferences are highly interrelated. Therefore, the 
optimal implementation of cooperative approach-
es requires a centralized implementation to deter-
mine the joint posterior distribution of all UEs.

FIGURE 1. Example of accurate positional information exploited for network management; a next generation NodeB 
(gNB), employing pencil beams based on estimated UE position, communicates with five users. The lower/higher 
uncertainty in the estimated UE position is depicted using dark/light purple ellipses. Two beamwidths are consid-
ered, where a smaller/larger beamwidth (dark/light purple beams) is used in case of lower/higher uncertainty. 
Positional information can also be used to guide mobile gNB nodes exemplified by drones. In the bottom part 
of the figure, an example is shown for estimated UE position with lower/higher uncertainty (dark/light purple) 
obtained with two TDoA measurements and one AoA measurement in the presence of four gNBs (empty red 
circles) and a single UE (blue circle).
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Distributed techniques for cooperative local-
ization in B5G networks are expected to rely on 
the approximation of marginal distributions. Such 
approximations can be obtained from graphs that 
describe the network connectivity after disregard-
ing cycles. Hence, each node keeps track of its 
own positional estimate and uncertainty, and indi-
vidual estimates and uncertainties are updated 
by means of message passing among different 
processing nodes.

LeArnInG soft InformAtIon
In complex 5G and B5G wireless environments, 
finding an accurate generative model for the 
SI is challenging, and it is preferable to learn it 
via machine learning techniques using measure-
ments, positional features, and contextual data. 
The SI can be determined by a two-phase algo-
rithm summarized here.

Offline (Training) Phase: Learn a generative 
model using trial data such as heterogeneous 
measurements, ground truth features, and con-
textual data.

Online (Operation) Phase: Determine the 
SI using the generative model from the training 
phase together with the new measurement and/
or contextual data.

Learning a generative model in the training 
phase from trial data is particularly difficult when 
measurement vectors have high dimensional-
ity (e.g., samples of received waveforms). In 
such cases, dimensionality reduction techniques 
are essential for efficiently learning the SFI. The 
SI-based approach is general and can be used with 
different types of measurements in the B5G eco-
system. The specific method used for reduction of 
the dimensionality and for learning the generative 
model depends on the technology used. Different 
techniques for learning SFI based on unsupervised 
machine learning have been discussed in [5].

dAtA fusIon In heteroGenous networks
The development of 5G and B5G networks leverag-
es an ecosystem composed of heterogeneous tech-
nologies. Therefore, it is essential to exploit diverse 
types of measurements. The SI-based approach 
naturally and efficiently fuses heterogeneous mea-
surements from multimodal sensors. Fusion of such 
measurements can be implemented by multiplying 
SFIs corresponding to different measurements, as 
long as the random measurement data are condi-
tionally independent given the positional states.

The conditional independence of the observa-
tions adequately represents the behavior of actual 
measurements obtained by sensors that are spa-
tially scattered or by sensors belonging to different 
technologies. Examples of multimodal measure-
ments are those associated with different  types of 
amplitude-, time-, and angle-related features [14].

cAse study: 3Gpp stAndArdIzed scenArIos
This section presents results on localization accura-
cy, in terms of the empirical cumulative distribution 
function (ECDF) of the horizontal localization error, 
based on the ETSI 3GPP standard. In particular, the 
performance obtained with the SI-based approach 
is compared to that reported in the 3GPP Techni-
cal Report (TR) [7]. The position root mean square 
error (RMSE) is also presented for different genera-
tive models of the SI and cardinalities of the trial data. 

Two 5G standardized scenarios are consid-
ered, namely urban microcell (UMi) and indoor 
open office (IOO). The UMi scenario exhibits a 
lower probability of LoS links and a higher delay 
spread, while the IOO scenario is characterized 
by higher probability of LoS links and lower delay 
spread. In both cases, we account for the spatial 
consistency of the wireless channel. For the UMi 
scenario, a 550 m  550 m area is considered 
with 19 sites; each site includes three gNBs, each 
covering an angular sector of 120° and emitting 
at a power level of 43 dBm. For the IOO scenar-
io, a 120 m  50 m area is considered with 12 
single-sector gNBs emitting at a power level of 
24 dBm. For both scenarios, the UEs are random-
ly deployed within the monitored area, and the 
noise figure at the receiver side is 5 dB. Figure 2 
shows LoS maps and gNBs spatial displacement 
for the UMi (top) and IOO (bottom) standardized 
scenarios. In particular, the figure shows instan-
tiations of UE positions in which a UE would be 
in LoS with zero (white), one (light purple), two 
(salmon), and at least three (dark purple) gNBs.

TDoA measurements obtained from the PRS 
are considered with two combinations of band-
width and carrier frequency: 50 MHz bandwidth 
at 2 GHz, namely Type I simulation setting; and 
100 MHz bandwidth at 4 GHz, namely Type II 
simulation setting. According to [7], the gNBs are 
synchronized. The channel instantiations are gen-
erated using the QuaDRiGa channel simulator, 
which supports 3GPP standardized channel mod-
els and accounts for spatially correlated large- and 
small-scale fading [15].

The generative model for SI is based on Fish-
er-Wald settings, considering a Gaussian mixture 
model (GMM) with three mixtures. The UE loca-
tion is inferred by maximizing a GMM. The offline 
and online phases employ a 10-fold cross-vali-
dation technique for each of the standardized 
settings. In particular, 1000 instantiations of large- 
and small-scale fading are generated, and for 
each instantiation, 10 UEs are randomly deployed 
within the monitored area, and position inference 
is performed. At each iteration of the cross-valida-
tion procedure, the TDoA-related measurements 
and positional feature obtained from 900 instan-
tiations of the 10 UEs are used to train the gen-
erative model, while 100 instantiations of the 10 
UEs are used for position inference. In the online 
phase, the maximum of the GMM is obtained via 
an exhaustive search. A coarse position estimate 
is first obtained by searching over the entire area 
with a grid of 5 meters per step. A fine position 
estimate is then obtained by searching over a 30 
m  30 m area centered on the coarse estimate 
with a grid of 0.5 meters per step.

Figure 3 shows the ECDF of the horizontal 
localization error for both UMi and IOO scenar-
ios with Type I and Type II settings. Markers rep-
resent the results obtained by current techniques 
reported in 3GPP TR [7], while lines represent the 
results obtained by the SI-based approach. It can 
be observed that the SI-based approach provides 
significant performance improvements compared 
to the results obtained by current techniques 
described in the 3GPP TR for all percentiles, 
scenarios, and settings. In particular, at the 90th 
percentile, the SI-based approach improves the 
localization accuracy by about 2.5 m for the UMi 

The SI-based approach is 
general and can be used 

with different types of 
measurements. In complex 

5G and B5G wireless 
environments, finding an 

accurate generative model 
for the SI is challenging, 

and it is preferable to learn 
it via machine learning 

techniques using measure-
ments, positional features, 

and contextual data.
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Type I setting and by about 5 m for the UMi Type 
II setting. Signifi cant performance improvements 
can also be observed for the IOO scenario. At the 
90th percentile, the SI-based approach improves 
localization accuracy by about 6.5 m for the IOO 
Type I setting and by about 4 m for the IOO Type 
II setting. This can be attributed to the fact that 
the SI-based approach better exploits the posi-
tional information inherent in the measurements 
via generative models learned from the wireless 
environment and is more robust compared to 
classical approaches. It can also be observed that 
the accuracy of the SI-based approach is not infl u-
enced by the considered scenario. This can be 
attributed to the fact that when the generative 
model is tailored to a specific scenario, the key 
factors determining the localization accuracy are 
the signal bandwidth and carrier frequency.

Figure 4 shows the position RMSE as a func-
tion of the number of mixtures used in the gener-
ative model for all scenarios and settings. It can be 
observed that a mixture cardinality of three and two 
already provides an RMSE close to the best possi-
ble one for UMi and IOO scenarios, respectively. 
Table 2 shows the position RMSE for diff erent num-
bers of UE measurements used at each iteration of 
the cross-validation procedure in training the gener-
ative model for both UMi and IOO scenarios with 
Type I and Type II settings. It can be observed that 
RMSE already approaches its best possible value 
with 50 or 500 training measurements, depending 
on the considered scenario and setting. This shows 
that the SI-based approach can perform well even 
with a small number of training measurements.

The performance gain demonstrated in these 
results reveals that the SI-based approach is cru-
cial for localization in 3GPP standardized scenari-
os. Such localization accuracy can be exploited for 
enabling LBSs and improving network management.

fInAL remArks
This article introduces methodologies for achiev-
ing location awareness in 5G and B5G networks. 
A new SI-based approach is presented for accu-
rate inference of UE positional states. Efficient 
methods for learning and exploiting SI are also 
discussed. Such techniques are crucial for loca-
tion awareness, especially in scenarios where 
nodes have limited computation and communica-
tion capabilities. Case studies, according to 3GPP 
standardization technical reports, are presented in 
urban microcell and indoor open office wireless 
environments. Results show that SI-based localiza-
tion signifi cantly outperforms current techniques 
described in the 3GPP technical report. Further-
more, SI-based methods offer robustness to dif-
ferent conditions of the wireless environment, 
thereby paving the way to a new level of location 
awareness in B5G networks.
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FIGURE 2. Example of LoS map for ETSI 3GPP urban microcell (top) and indoor open off ice (bottom) scenarios where 
red circles represent the  gNBs. White, light purple, salmon, and dark purple areas correspond to positions with 
no gNBs, one gNB, two gNBs, and at least three gNBs in LoS, respectively.

FIGURE 3. ECDF of the horizontal localization error for ETSI 3GPP UMi and IOO scenarios using PRS with 50 and 100 
MHz bandwidths at 2 GHz and 4 GHz center frequencies, respectively. The performance of SI-based localization is 
compared to that reported in the 3GPP TR [7].
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FIGURE 4. RMSE of the position estimate as a function of the number of mixtures in the GMM for ETSI 3GPP UMi and 
IOO scenarios using PRS with 50 and 100 MHz bandwidths at 2 GHz and 4 GHz center frequencies, respectively.

TABLE 2. Position RMSE as a function of the number of UE measurements used in each training phase.

Number of UE training 
measurements

RMSE (m) 

UMi Type I UMi Type II IOO Type I IOO Type II

5 3.22 2.07 2.75 1.95

50 2.71 1.62 2.50 1.48

500 2.71 1.59 2.45 1.48

5000 2.72 1.61 2.46 1.48

9000 2.72 1.60 2.46 1.48
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