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Abstract— Distributing entanglement between distant nodes is
an essential task in quantum networks. To achieve this task, quan-
tum repeaters have been introduced to perform entanglement
swapping. This paper offers a design of remote entanglement
distribution (RED) protocols that maximize the entanglement
distribution rate (EDR). We introduce the concept of enodes,
representing the entangled quantum bit (qubit) pairs in the
network. This concept enables us to design the optimal RED
protocols based on the solutions of some linear programming
problems. Moreover, we investigate RED in a homogeneous
repeater chain, which is a building block for many quantum
networks. In particular, we determine the maximum EDR for
homogeneous repeater chains in a closed form. Our results
enable the distribution of long-distance entanglement with noisy
intermediate-scale quantum (NISQ) technologies and provide
insights into the design and implementation of general quantum
networks.

Index Terms— Quantum networks, routing, entanglement
swapping, entanglement distribution, repeaters.

I. INTRODUCTION

QUANTUM INFORMATION SCIENCE is poised to cre-
ate the next technological revolution [1]–[3]. There are

various quantum-enabled cutting-edge technologies in quan-
tum communication [4]–[8], quantum computation [9]–[11],
and quantum sensing [12]–[14]. Many of these technolo-
gies rely on distributing quantum entanglement [15]–[17].
For example, distributing entanglement enables quantum tele-
portation [18]–[20] and remote state preparation [21]–[23],
sending quantum information without having to move physical
particles.

The main difficulty of distributing entanglement at two
distant nodes in quantum networks lies in the significant decay
of communication capacity with the length of the channel. For
example, the capacity of a lossy channel decays exponentially
with the distance of optical fibers, thereby hindering distrib-
uting entanglement between two nodes that are far apart. To
address this issue, researchers introduced quantum repeaters in
the design of quantum networks. A quantum repeater is a node
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with quantum memory and Bell-state measurement capabil-
ity. With quantum repeaters, entanglement can be distributed
between distant nodes without physically sending entangled
quantum bits (qubits) through the entire network [15]–[17].
The benefits of using quantum repeaters have been demon-
strated in several studies [24], [25]. For example, inserting
quantum repeaters between two nodes connected by optical
fibers can improve the channel capacity; such capacity is
determined by the maximum distance of the quantum channels
divided by the quantum repeaters.

Several protocols have been proposed for entanglement
distribution in quantum networks [24]–[30]. A key metric to
evaluate these protocols is the entanglement distribution rate
(EDR), i.e., the average amount of entanglement distributed
between two specified nodes, referred to as source and sink,
per time slot. Most protocols cannot provide the maximum
EDR except for [24], [25], in which optimal entanglement
routing protocols are proposed for basic decoherence channel
models. However, the results in [24], [25] rely on the assump-
tion of perfect quantum repeaters, i.e., the entanglement
swapping can be performed with success probability of one.1

This assumption is unlikely to hold in the foreseeable future.
In [30], the scenario with imperfect quantum repeaters is con-
sidered with the constraint that entanglement swapping is suc-
cessfully and simultaneously performed at all the nodes along
a path connecting the source and the sink, and this leads to sub-
optimal protocols since the order of entanglement swapping is
not optimized. Little is known about the protocols that sched-
ule entanglement swapping optimally with imperfect quantum
repeaters.

Among different quantum networks, we are particularly
interested in the homogeneous repeater chain, a network that
connects two distant nodes with a chain of identical and
equally spaced repeaters. This is because the investigation
of homogeneous repeater chains can shed light on quantum
networks with general structures and lay the foundation for the
study of more complicated network structures. Since the intro-
duction of homogeneous repeater chains in [31], many proto-
cols and EDR analyses have been provided [32]–[40]. These
protocols and analyses can be categorized into two groups.
The first group of work considers quantum memories that can
store qubits only for a short time. Such consideration accounts
for the limitation of current quantum-hardware capabilities
[38]–[40]. For example in [38], entanglement-based quantum
key distribution rate is determined, and different factors such
as fiber loss, detector dark counts, and detector inefficiency are

1In the rest of this paper, “perfect/imperfect repeaters” and “per-
fect/imperfect entanglement swapping” are used interchangeably when clear
in the context.
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accounted for. However, if the quantum memory cannot store
qubits for a sufficiently long time, entanglement swapping
operations need to succeed simultaneously at each quantum
repeater. This makes the EDR decrease exponentially with
respect to the length of a repeater chain. The second group
of work considers quantum memories that can store qubits
for a sufficiently long time. Within this group, some studies
aim at experimentation of entanglement distribution using
atomic ensembles and linear optics [32]–[36]; some studies
aim at the design and analysis of entanglement distribution
protocols [31], [41]–[43]. Most existing protocols, e.g., in [42],
assume that two neighboring quantum repeaters stop generat-
ing entanglement once an entangled qubit pair is generated
between them, and this assumption may decrease the EDR.
Despite the extensive entanglement distribution protocols,
it still remains unclear whether the designed protocols can
achieve the maximum EDR, even in the scenario that con-
siders simple photon-loss quantum channels and probabilistic
entanglement swapping.

The consideration of imperfect quantum repeaters creates
a new research topic: how to design protocols that schedule
entanglement swapping to maximize the EDR in a quantum
network. These protocols are referred to as remote entangle-
ment distribution (RED) protocols in this paper. Note that
RED protocols differ from entanglement routing protocols
[25]–[27], [30]: entanglement routing protocols find paths
between two nodes and perform entanglement swapping at
each node sequentially along the path, whereas RED protocols
not only find the paths, but also determine the sequence of
entanglement swapping. In this way, entanglement routing can
be viewed as a special case of RED. To the best of the authors’
knowledge, how to develop the optimal RED protocol with
imperfect quantum repeaters remains unknown.

The fundamental questions related to RED in quantum
networks are:

• how entanglement swapping affects the EDR in quantum
networks; and

• how to exploit the structure of the homogeneous repeater
chains to maximize the EDR.

The answers to these questions will enable the distribution
of entanglement over long distances with noisy intermediate-
scale quantum (NISQ) technologies [2] and take an essential
step for the development of quantum networks.

The goal of this paper is to develop the optimal RED
protocols for quantum networks. We introduce the concept of
enodes, representing the entangled qubit pairs in the network.
Entanglement swapping can be viewed as an operation that
exchanges entangled qubit pairs among different enodes. The
introduction of enodes allows us to employ techniques from
linear programming and classical networks to design the RED
protocols in quantum networks.

In this paper, we establish a framework of designing RED
protocols for quantum networks. We transform the design of
the optimal RED protocols into linear programming problems.
The key contributions of this paper are as follows:

• we determine the maximum achievable EDR for quantum
networks;

• we determine the structural properties of the graph cor-
responding to the optimal solution of the linear program-
ming problem;

• we develop the optimal RED protocols for quantum
networks based on the solution of the linear programming
problem; and

• we determine the maximum EDR for homogeneous
repeater chains in a closed form.

The remaining sections are organized as follows. Section II
presents the system model and preliminary research results.
Section III introduces the concept of enodes and derives an
achievable upper bound for the maximum EDR. Section IV
considers the homogeneous repeater chains and determines
the maximum EDR in a closed form. The performance of
the proposed protocols is presented via numerical examples in
Section V. Finally, the conclusions are drawn in Section VI.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x; a random vector and its realization are
denoted by x and x; a random matrix and its realization
are denoted by X and X , respectively. Sets and random
sets are denoted by upright sans serif and calligraphic font,
respectively. For example, a random set and its realization
are denoted by X and X , respectively. The m-by-n matrix
of zeros (resp. ones) is denoted by 0m×n (resp. 1m×n);
when n = 1, the m-dimensional vector of zeros (resp. ones)
is simply denoted by 0m (resp. 1m). The m-by-m identity
matrix is denoted by Im: the subscript is removed when the
dimension of the matrix is clear from the context. The sets
of integers, even integers, odd integers, and positive integers
are denoted by Z, Ze, Zo, N+, respectively. The cardinality
of a set S is denoted by Card(S). The set {m, m + 1, . . . , n}
is denoted by Km:n. The notation

a.s.= denotes equal almost
surely. For an edge set E , the function 1E(i, j) is an indicator
function defined to be 1 if (i, j) ∈ E and 0 otherwise.
Throughout this paper, the state of a quantum system and its
corresponding density matrix will be used interchangeably; the
notion Ξx,y denotes a maximally entangled qubit pair between
two systems x and y, each corresponding to one qubit; the
notion Ξi:j denotes a maximally entangled qubit pair between
two systems, where one of the systems is in node i and the
other is in node j.

II. SYSTEM MODEL

Consider a quantum network consisting of nodes equipped
with quantum devices. Such a network can be abstracted by a
graph consisting of nodes and edges. Let N and E denote the
set of nodes and the set of edges, respectively. Each node in N
has the capability of performing quantum measurements and
storing qubits for a sufficiently long time. Consequently, each
node can serve as a quantum repeater.2 Each edge (i, j) ∈ E
represents a quantum channel, and this channel can be used
to generate entanglement between nodes i and j. We aim to

2We use “repeater” and “node” interchangeably in the rest of the paper.

Authorized licensed use limited to: MIT Libraries. Downloaded on April 02,2020 at 18:25:33 UTC from IEEE Xplore.  Restrictions apply. 



542 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 38, NO. 3, MARCH 2020

Fig. 1. An illustration of entanglement generation and entanglement
swapping. In (a), nodes i and k are connected by a quantum channel, and
so are nodes k and j. Purple lines represent generated entangled qubit pairs.
Entanglement can be generated between i and k. In (b), the node k performs
entanglement swapping using Ξi:k and Ξk:j to distribute Ξi:j . Blue lines
represent distributed entangled qubit pairs.

distribute entanglement at two remote nodes with the help
of quantum repeaters for general networks. Note that we
are particularly interested in homogeneous repeater chains,
a special case of quantum networks with desired properties,
and will discuss them in Section IV.

There are two essential operations in RED: entanglement
generation and entanglement swapping, as illustrated in Fig. 1.

• Entanglement generation - For (i, k) ∈ E , nodes i and
k are connected by a quantum channel. Nodes i and k
can attempt to generate3 entangled qubit pairs (grey dots
connected by purple dashed lines in Fig. 1(a)). Entan-
glement generation can be implemented, for example,
by locally preparing an entangled qubit pair at one of
the nodes (e.g., i) and sending one entangled qubit in
this pair to the other node (e.g., k) [44]. The entangled
qubits are stored in the nodes for a sufficiently long time.
The attempt of entanglement generation may not always
succeed. If the attempt succeeds, the density matrix of
the entangled qubit pair is

Ξia,kb
:=

1
2
(|00〉ia,kb

+ |11〉ia,kb
)(〈00|ia,kb

+ 〈11|ia,kb
)

where ia and kb represent physical systems in node i
and k, respectively; otherwise, no entangled qubit pair is
obtained.

• Entanglement swapping - Entanglement swapping [45],
[46] can be seen as a special case of teleportation [18].
Suppose there are three nodes i, k, and j. Node i
has one qubit, node k two, and node j one. Node i’s
qubit and node k’s first qubit are maximally entangled,
and so are node k’s second qubit and node j’s qubit.
Node k teleports the qubit entangled with the one in
node i to node j. Then, the node i’s qubit is entangled
with node j’s even though these two nodes have never
directly interacted with each other. This operation is
referred to as entanglement swapping. The attempt of
entanglement swapping may not always succeed. If the
attempt succeeds, one entangled qubit pair Ξi:j is distrib-

3In this paper, we use the term “generate/generation” to describe the opera-
tion of preparing an entangled qubit pair at one node and sending one of the
qubits through a quantum channel; we use the term “distribute/distribution” to
describe the operation of preparing entangled qubit pairs at two nodes that are
not directly connected by a quantum channel via entanglement generation and
entanglement swapping. Moreover, “distribution” in entanglement distribution
should not be confused with that in probability distribution.

uted; otherwise, no entangled qubit pair is obtained even
though the two entangled qubit pairs are consumed.

We consider a time-slotted system in which slots are indexed
by τ ∈ N+. Each time slot is divided into two phases described
below.

• Phase I: For any (i, k) ∈ E , nodes i and k can make an
attempt to generate an entangled qubit pair with success
probability of pi:k.4

• Phase II: For any i, j, k ∈ N , node k can attempt to
perform entanglement swapping with success probability
qk to distribute entanglement Ξi:j using Ξi:k and Ξk:j .

Note that the model for entanglement generation includes
the lossy optical channel, which is commonly used for quan-
tum communication. The results presented in this paper can be
extended to a general quantum channel by replacing pi:j with
the quantum channel capacity between i and j, ∀(i, j) ∈ E .

We are interested in designing efficient RED protocols for
scheduling entanglement swapping in the network so that
a large number of entangled qubit pairs can be distributed
between a source node s and a sink node t (s, t ∈ N ). The
node s may be remote from the node t. Once an entangled
qubit pair between s and t is distributed, it is stored and will
not be used for entanglement swapping. For a given network
described by N , E , and {pi:j}(i,j)∈E , our goal is to maximize
the EDR achieved by a protocol π, i.e.,

λπ = lim inf
T→∞

1
T

T∑
τ=1

E{gπ
s:t(τ)} (1)

where gπ
s:t(τ) denotes the number of entangled qubit pairs

(EQPs) generated and/or distributed between s and t distrib-
uted at time slot τ using an RED protocol π. The maximum
EDR over all RED protocols is denoted by λ∗.

III. IMPERFECT ENTANGLEMENT SWAPPING OPERATION

In this section, we determine the maximum EDR λ∗ and
design the optimal RED protocol.

A. Optimal EDR

Analyzing entanglement swapping directly on the original
network is cumbersome because the entanglement swapping
operation involve pairs of nodes rather than individual nodes.
Such difficulty motivates us to consider a new graph in which
each node represents a pair of nodes in N . Specifically,
we introduce a directed graph G as described below.

• A node in G corresponds to a pair of nodes in N , denoted
by ei:k for some i, k ∈ N . To distinguish the nodes in
G from those in N , we refer to ei:k, i, k ∈ N in G
as enodes. We do not differentiate the order of the two
nodes i and k in an enode, i.e., ei:k = ek:i. These enodes
represent the entangled qubit pairs.

• Let a nonnegative number f i:k
i:j denote the eflow from

ei:k to ei:j . If f i:k
i:j > 0, there is a directed edge

from the enode ei:k to the enode ei:j . The eflow f i:k
i:j

represents the amount of EQPs Ξi:k used for distributing

4Note that this probability does not rely on the order of i and k,
i.e., pi:k = pk:i.
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Fig. 2. An illustration of enodes and eflows. In (a), the node k performs
entanglement swapping using Ξi:k and Ξk:j to distribute Ξi:j . Correspond-
ingly, in (b), the enodes ei:k and ek:j contribute eflows to ei:j with f i:k

i:j and

fk:j
i:j , respectively.

Ξi:j via entanglement swapping. Since the order of the
two nodes in an enode is not differentiated, we have
f i:k

i:j = fk:i
i:j = f i:k

j:i = fk:i
j:i . However, f i:j

i:k is not
necessarily equal to f i:k

i:j .
An illustration of the enode and eflow is depicted in Fig. 2.

The next theorem provides an upper bound for the optimal
EDR. This upper bound is based on an optimization problem,
where the variables are the eflows.

Theorem 1: For a given graph with node set N ,
edge set E , entanglement generation success probability
{pi:j : (i, j) ∈ E}, and entanglement swapping success
probability {qk : k ∈ N}, the optimal EDR is upper-bounded
by the optimal value of the following problem P:

P : maximize
{fi:k

i:j :i,j,k∈N}
I(s, t)

subject to I(i, j) ≥
∑

k∈N\{i,j}
(f i:j

i:k + f i:j
k:j),

i, j ∈ N , {i, j} �= {s, t} (2)

f i:k
i:j = fk:j

i:j ≥ 0, i, j, k ∈ N (3)

fs:t
s:k = fs:t

k:t = 0, k ∈ N (4)

where for i, j ∈ N ,

I(i, j) = pi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f i:k
i:j + fk:j

i:j

2
.

Proof: See Appendix I. �
Remark 1: The objective function and the constrains of

P can be interpreted as follows. The objective function
I(s, t) represents the amount of Ξs:t generated/distributed
between the source node and the sink node. The constraint
(2) represents the entanglement balance corresponding to an
arbitrary enode ei:j . In particular, the left hand side of (2)
represents the amount of Ξs:t generated/distributed between
node i and node j; the right hand side of (2) represents the
amount of Ξi:j that is used for distributing other entanglement.
The constraint (3) represents the symmetry in entanglement
swapping. In particular, in entanglement swapping, the amount
of Ξi:k and Ξk:j consumed to distribute Ξi:j needs to be the
same. The constraint (4) represents the requirement that the
entanglement Ξs:t is not used for entanglement swapping.

Remark 2: The problem P is a linear programming prob-
lem. The computational complexity of P depends on the
numbers of variables and constraints, and both numbers are

poly(Card(N )) [47]–[50]. Therefore, the optimal solution of
the problem P can be obtained efficiently by standard linear
optimization algorithms. Note that optimization techniques
have been used to solve problems on quantum information
science [51]–[54].

We next determine some structural properties of a graph
that corresponds to an optimal solution of P .

B. Structural Properties

Definition 1 (Directed acyclic graph): A directed acyclic
graph (DAG) is a directed graph with no directed cycle.

Proposition 1: There exists an optimal solution of P such
that the graph G corresponding to this solution is a DAG.

Proof: See Appendix II. �
There are some standard concepts such as isolated node,

parent, child, ancestor, and descendant for DAGs and we can
employ them in the graph consisting of enodes.

Definition 2 (Efficiency): A directed graph consisting of
enodes is efficient if for every enode ei:j except for es:t, either
ei:j is isolated or ei:j is an ancestor of es:t.

Proposition 2: There exists an optimal solution of P such
that the graph corresponding to this solution is acyclic and
efficient.

Proof: See Appendix III. �
The constraint (2) in the problem P can be interpreted

as follows: the incoming flow into the enode ei:j is no less
than the outgoing flow. If the equality does not hold, some
of the entanglement will be wasted. To reduce such waste,
we introduce control variables {ui:j : (i, j) ∈ E} for limiting
the number of generated EQPs, which induces the following
problem Ps:

Ps : maximize
{fi:k

i:j :i,j,k∈N}
{ui:j :(i,j)∈E}

I(s, t)

subject to ui:jpi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f i:k
i:j + fk:j

i:j

2

=
∑

k∈N\{i,j}
(f i:j

i:k + f i:j
k:j),

i, j ∈ N , {i, j} �= {s, t} (5)

f i:k
i:j = fk:j

i:j ≥ 0, i, j, k ∈ N (6)

fs:t
s:i = fs:t

t:i = 0, i ∈ N (7)

0 ≤ ui:j ≤ 1, (i, j) ∈ E . (8)

Evidently, if {f̊ i:k
i:j : i, j, k ∈ N} and {ůi:j : (i, j) ∈ E}

is an optimal solution of Ps, then {f̊ i:k
i:j : i, j, k ∈ N} is a

feasible solution of P . The next theorem implies that P and
Ps are equivalent.

Theorem 2: The optimal value of Ps is the same as that
of P . Moreover, there exists an optimal solution of Ps such
that the graph corresponding to this solution is acyclic and
efficient.

Proof: See Appendix IV. �
Theorems 1 and 2 show that the optimal value of Ps is

an upper bound for the EDR. Next we will show that this
bound is tight; in particular, we will design an RED protocol
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that achieves this bound. The RED protocol will employ the
optimal solution of Ps.

C. Stationary Protocol

By Theorem 2, we can consider an optimal solution {f̊ i:k
i:j :

i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} of Ps such that the
graph corresponding to this solution is acyclic and efficient.
This solution will be used to develop the RED protocol. Note
that topological ordering is possible for a DAG consisting of
enodes, and we can find a linear ordering of all the enodes,
such that if f i:k

i:j > 0, the enode ei:k precedes the enode ei:j

in the ordering.
For each enode ei:k that has a descendant es:t in G,

we consider a set Mi:k, consisting of the EQPs between i
and k; we also consider a collection of sets, denoted as F i:k

i:j

and F i:k
j:k , j ∈ N \{i, k}, consisting of the EQPs between i and

k that will be used for distributing Ξi:j and Ξj:k, respectively.
This stationary protocol, denoted by π̊, is described below.

• In Phase I,
– For any (i, k) ∈ E , nodes i and k attempt to generate an

entangled qubit pair Ξi:k with the probability ůi:k.5 If
the attempt is successful, the entangled qubit pair Ξi:k

is moved to the set Mi:k.
– For every enode ei:k, if ei:k �= es:t, we move each

EQP Ξi:k in Mi:k to the set F i:k
i:j or the set F i:k

j:k ,
j ∈ N \ {i, k} randomly. In particular,

P{move Ξi:k to F i:k
i:j }=

f̊ i:k
i:j∑

l∈N\{i,k}(f̊
i:k
i:l +f̊ i:k

l:k )
(9)

P{move Ξi:k to F i:k
j:k}=

f̊ i:k
j:k∑

l∈N\{i,k}(f̊
i:k
i:l +f̊ i:k

l:k )
.

(10)

• In Phase II, for every i, j, k ∈ N , the node k performs
entanglement swapping to distribute Ξi:j using Ξi:k in
F i:k

i:j and Ξk:j in Fk:j
i:j until the set F i:k

i:j or Fk:j
i:j is empty.

The distributed EQPs between i and j are then moved to
Mi:j .

Note that the target entangled qubit pair Ξs:t is in Ms:t.
We claim that the number of entangled qubit pairs that the
enode ei:j has accumulated after sufficiently large time slot T
in G, denoted by ni:j(T ), satisfies

lim
T→∞

1
T

ni:j(T ) a.s.= ui:jpi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f̊ i:k
i:j + f̊k:j

i:j

2
.

(11)

This claim can be rewritten as follows: for any x ∈ K1:Card(G),
the equation (11) holds, where ei:j denotes the xth enode in
the topological order of G. This claim can be proved by the
strong mathematical induction on the position x of an enode
in the topological order determined by G [55].

Base case: If x = 1, then f̊ i:k
i:j = f̊k:j

i:j = 0 for ∀k ∈ N , and
by the strong law of large numbers, the number of the EQPs

5The control variable ůi:k is the probability of attempting to generate
entanglements. Note that only if they make the attempt and the attempt is
successful, can an entangled qubit pair be generated between nodes i and k.
Hence, an entangled qubit pair can be generated with probability ůi:kpi:k.

Ξi:j accumulated in the enode ei:j satisfies

lim
T→∞

1
T

ni:j(T ) a.s.= ui:jpi:j1E(i, j)

which equals (11) with f̊ i:k
i:j = f̊k:j

i:j = 0 for ∀k ∈ N .
Induction step: Suppose equation (11) holds for

x = 1, 2, . . . , r. We will prove (11) holds for x = r + 1. For
k ∈ N \ {i, j}, if f̊ i:k

i:j > 0, then the enode ei:k precedes ei:j

in the topological ordering, showing that the position of ei:k

is less than r + 1. By the induction hypothesis,

lim
T→∞

1
T

ni:k(T ) a.s.= ui:kpi:k1E(i, k) +
∑

l∈N\{i,k}
ql

f̊ i:l
i:k + f̊ l:k

i:k

2
.

(12)

Consequently, the number of the EQPs Ξi:k consumed for
distributing Ξi:j , denoted by di:k

i:j (T ), satisfies

lim
T→∞

1
T

di:k
i:j (T ) a.s.= lim

T→∞
1
T

[
ni:k(T ) P{move Ξi:k to F i:k

i:j }
]

a.s.= f̊ i:k
i:j (13)

where we have used (12) and (9) together with (5) to obtain
(13). Similarly, we have

lim
T→∞

1
T

dk:j
i:j (T ) a.s.= f̊k:j

i:j . (14)

Then

lim
T→∞

1
T

ni:j(T )
a.s.= ui:jpi:j1E(i, j)

+
∑

k∈N\{i,j}
qk lim

T→∞
1
T

min{di:k
i:j (T ), dk:j

i:j (T )}

a.s.= ui:jpi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f̊ i:k
i:j + f̊k:j

i:j

2

where the summand T ui:jpi:j1E(i, j) comes from direct
entanglement generation, and the rest of the summand comes
from entanglement swapping due to (13) and (14). This proves
that (11) holds for x = r + 1.

Note that

lim
T→∞

E

{ 1
T

ns:t(T )
}

= E

{
lim

T→∞
1
T

ns:t(T )
}

= ps:t1E(s, t) +
∑

k∈N\{s,t}
qk

f̊s:k
s:t + f̊k:t

s:t

2

= I̊(s, t)

where I̊(s, t) denotes the optimal value of Ps and the first
equality is due to the dominated convergence theorem [56].
protocol π̊ is

λπ̊ = lim inf
T→∞

1
T

E{ns:t(T )} = lim
T→∞

1
T

E{ns:t(T )} = I̊(s, t)

where the second equality is due to the existence of the limit.
This shows that the protocol π̊ achieves the maximum EDR.

IV. HOMOGENEOUS REPEATER CHAINS

In this section, we consider a special quantum network,
homogeneous repeater chains, and derive the solution for Ps

in a closed form.
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Fig. 3. Illustration of repeater chains. The purple dashed lines represent the
quantum channels between neighboring nodes.

A. Network Model

The model of homogeneous repeater chains is described in
several related works, e.g., [41]. A repeater chain is connected
by N quantum channels as illustrated in Fig. 3. Specifically,
the nodes are labeled as 0, 1, 2, . . . , N and the edge set
E = {(0, 1), (1, 2), (2, 3), . . . , (N−1, N)}. Each edge (i−1, i)
has associated probability pi−1:i describing the probability
of success in generating entangled qubit pair Ξi−1:i. The
node 0 and the node N are the source and sink nodes,
respectively. The enode es:t is then e0:N . In a homogeneous
repeater chain, the quantum channels between neighboring
nodes are the same, i.e., p := p0:1 = p1:2 = p2:3 = . . . =
pN−1:N . Furthermore, the success probability of entanglement
swapping in the chain is assumed to be the same for all nodes
and denoted by q.

Section III shows that designing the optimal RED protocol
is equivalent to solving the optimization problem Ps. Here,
we aim at solving Ps corresponding to homogeneous repeater
chains. We have the following result:

Claim 1: For homogeneous repeater chains connected by
N quantum channels, the maximal EDR is

(N − ξ(N)) pqn+1

2(N − 2n) + (2n+1 − N − ξ(N)) q
(15)

where n = 	log2 N
 − 1, and ξ(N) is a parity indica-
tor function of N : ξ(N) = 1 if N is odd, otherwise
ξ(N) = 0.

The proof of the claim and the design of the optimal
protocol will be discussed in the next subsections.

B. Scenarios With an Even N

We consider the scenario where N is even, i.e., N ∈ Ze.
We first present a solution of Ps, denoted by {f̊ i:k

i:j : i, j,
k ∈ N} and {ůi:j : (i, j) ∈ E}, and then prove that it is the
optimal solution of Ps.

Let n = 	log2 N
 − 1. If N = 2n+1, the solution {f̊ i:k
i:j :

i, j, k ∈ N} and {ůi:j : (i, j) ∈ E} of Ps is

ůk:k+1 = 1, k ∈ K0:N−1

f̊2ka:2ka+2k−1

2ka:2ka+2k = f̊2ka+2k−1:2ka+2k

2ka:2ka+2k = pqk−1

with a = 0, 1, 2, . . . , 2n+1−k − 1 and k = 1, 2, . . . , n + 1.

For example, if a = 1 and k = 2, then 2ka = 4, 2ka+2k−1 =
6, 2ka+2k = 8, and consequently f̊4:6

4:8 = f̊6:8
4:8 = pq. An illus-

tration of this solution for N = 8 is given in Fig. 4. This
solution corresponds to a graph with the structure of a perfect
binary tree. Specifically, the entanglement swapping is first
performed between the enodes e2a:2a+1 and e2a+1:2a+2, and
this gives the EQPs corresponding to the enode e2a:2a+2, for

Fig. 4. Illustration of the optimal RED protocol for N = 8 = 23. The
quantities near the edges represent the eflow.

a = 0, 1, 2, . . . , N/2 − 1. Then the entanglement swap-
ping is performed between e4a:4a+2 and e4a:4a+4, and this
gives the EQPs corresponding to the enode e4a:4a+4, for
a = 0, 1, 2, . . . , N/4 − 1. Such entanglement swapping can
continue until the EQPs corresponding to the enode e0:N are
obtained.

If N < 2n+1, the solution {f̊ i:k
i:j : i, j, k ∈ N} and {ůi:j :

(i, j) ∈ E} can be obtained in six steps described below.

1) ůk:k+1 = 1, k ∈ K0:N−1.
2) Consider the enode: e0:1, e1:2, . . . , eN−1:N and divide

them into N/2 pairs of enodes: e0:1 and e1:2, e2:3 and
e3:4, . . . , eN−2:N−1 and eN−1:N .

3) There are
(

N/2
N−2n

)
possible ways to choose (N − 2n) out

of N/2 enode pairs. These choices are labeled as 1, 2,
. . . ,

(
N/2

N−2n

)
.

4) For the choice l, we have (N − 2n) enode pairs chosen.
Entanglement swapping is performed between two enodes
in each chosen pair, resulting in an enode that is the
common child of these two enodes; now we have a chain
consisting of 2n quantum channels and we can relabel
the nodes in the chain as 0, 1, . . . , 2n.

5) For the newly labeled chain, determine the following
eflow:

f̊2ka:2ka+2k−1

2ka:2ka+2k
(l)

= f̊2ka+2k−1:2ka+2k

2ka:2ka+2k
(l)

=
1(

N/2
N−2n

) N/2
N − 2n + q(2n − N/2)

pqk

with a = 0, 1, 2, . . . , 2n−k − 1 and k = 1, 2, . . . , n + 1.
6) Repeat Steps 4 and 5 until all

(
N/2

N−2n

)
combinations are

iterated. Add all the eflows to obtain the optimal solution.

In Step 3, we transfer the problem from the scenario with
N ∈ Ze to the scenario where N is a power of two.
An illustration of this step is in Fig. 5. The method of
determining {f̊ i:k

i:j : i, j, k ∈ N} for N = 6 is illustrated
in Fig. 6.

Remark 3: The feasibility of the {f̊ i:k
i:j : i, j, k ∈ N} and

{ůi:j : (i, j) ∈ E} as a solution of Ps can be verified
by checking conditions (5)-(8). The value of the objective
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Fig. 5. Illustration of Step 3 for N = 6. In this case, n = �log2 6�−1 = 2.
We choose N − 2n = 2 pairs of enodes. In this figure, the two chosen pairs
are: e0:1 and e1:2; e2:3 and e3:4. Entanglement swapping between e0:1 and
e1:2 results in the enode e0:2; entanglement swapping between e2:3 and e3:4

results in the enode e2:4. We now have a chain consisting of 22 = 4 quantum
channels, separated by the repeaters 0, 2, 4, 5, and 6. These five repeaters are
relabelled as 0, 1, 2, 3, and 4.

function corresponding to this solution is

I̊(s, t) =
1(

N/2
N−2n

) N/2
N − 2n + q(2n − N/2)

pqn+1

(
N/2

N − 2n

)

=
Np

g(N)

where g(·) is a function defined as

g(L) =
2(L − 2l) + q(2l+1 − L)

ql+1
(16)

in which l = 	log2 L
 − 1.
We next determine an upper bound for the optimal value

of Ps for N ∈ Ze. If this upper bound coincides with
I̊(s, t), then the optimality of {f̊ i:k

i:j : i, j, k ∈ N} and
{ůi:j : (i, j) ∈ E} will be proved.

Note that the EQPs generated in Phase I correspond to the
term ui:jpi:j1E(i, j) in Ps. These EQPs are generated directly
from quantum channels instead of entanglement swapping.
In the rest of the section, these EQPs are referred to as “crude
entanglements.” We now consider a homogeneous repeater
chain with infinite quantum channels. For this chain, let h(L)
denote the minimum expected number of crude entanglements
required to distribute one EQP shared between nodes that are
connected by L quantum channels. The upper bound for the
optimal value of Ps relies on the lower bound for h(L). The
next proposition provides a lower bound for h(L).

Proposition 3: For N ∈ N+, the minimum expected num-
ber of crude entanglements required to distribute one EQP
shared between nodes that are connected by N quantum
channels, denoted by h(N), is lower bounded as

g(N) ≤ h(N) (17)

where g(N) is defined in (16).
Proof: See Appendix V. �

Theorem 3: For homogeneous repeater chains with N
quantum channels, if N ∈ Ze, the maximum EDR is

λ∗ =
Npqn+1

2(N − 2n) + q(2n+1 − N)

where n = 	log2 N
 − 1.
Proof: In the homogeneous repeater chain, the expected

number of available crude entanglements generated across N
quantum channels is at most pN per time slot. As a conse-
quence, the expected number of available crude entanglements

Fig. 6. An illustration of the solution for N = 6. The quantities near the
edges represent the eflow. In this case, n = �log2 6� − 1 = 2. We divide
six enodes into three pairs: e0:1 and e1:2, e2:3 and e3:4, as well as e4:5

and e5:6. There are three possible ways of choosing N − 2n = 2 out of
N/2 = 3 pairs. The choices are labeled as 1, 2, and 3, and are shown in
three red rectangles. In each rectangle, we perform the Steps 4 and 5. The
eflows in three rectangles can then be added to obtain the optimal solution
of Ps.

generated across N quantum channels is at most pNT after
T time slots. Moreover, by definition of h(·), it requires h(N)
crude entanglements on average to obtain one EQP between
nodes s and t. Therefore, the expected number of EQPs
between s and t is at most pNT/h(N) after T time slots.
This implies for any protocol π,

λπ = lim inf
T→∞

1
T

T∑
τ=1

E{gπ
s:t(τ)}

≤ lim inf
T→∞

1
T

pNT

h(N)
=

Np

h(N)
.
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Together with Proposition 3, we have the upper bound of the
EDR for any protocol:

λπ ≤ Np

g(N)
=

Npqn+1

2(N − 2n) + q(2n+1 − N)
.

Note that I̊(s, t) in Remark 3 coincides with the upper
bound above. Therefore, {f̊ i:k

i:j : i, j, k ∈ N} and {ůi:j :
(i, j) ∈ E} is the optimal solution of Ps, and this upper
bound is indeed the maximum EDR because of Theorem 2.

�

C. Scenarios With an Odd N

We consider the scenario where N is odd, i.e., N ∈ Zo.
We first present a solution of Ps, denoted by {f̊ i:k

i:j : i, j,
k ∈ N} and {ůi:j : (i, j) ∈ E}, and then prove that it is the
optimal solution of Ps.

Let n = 	log2 N
 − 1. The solution {f̊ i:k
i:j : i, j, k ∈ N}

and {ůi:j : (i, j) ∈ E} can be obtained in six steps described
below.

1) ůk:k+1 = 1, k ∈ K0:N−2 and

ůN−1:N = q
(N − 1)

2N − 2n+1 + q(2n+1 − N − 1)
.

2) Consider the enodes: e0:1, e1:2, . . . , eN−2:N−1 and divide
them into (N − 1)/2 pairs of enodes: e0:1 and e1:2, e2:3

and e3:4, . . . , eN−3:N−2 and eN−2:N−1.
3) There are

(
(N−1)/2

N−2n

)
possible ways to choose (N − 2n)

out of (N − 1)/2 enode pairs. These choices are labeled
as 1, 2, . . . ,

(
(N−1)/2

N−2n

)
.

4) For the choice l, we have (N − 2n) enode pairs chosen.
Entanglement swapping is performed between two enodes
in each chosen pair, resulting in an enode that is the
common child of these two enodes; now we have a chain
consisting of 2n quantum channels and we can relabel
the nodes in the chain as 0, 1, . . . , 2n.

5) For the newly labeled chain, determine the following
eflow:

f̊2ka:2ka+2k−1

2ka:2ka+2k
(l)

= f̊2ka+2k−1:2ka+2k

2ka:2ka+2k
(l)

=
1(

(N−1)/2
N−2n

) N − 1
2N − 2n+1 + q(2n+1 − N − 1)

pqk

with a = 0, 1, 2, . . . , 2n−k − 1 and k = 1, 2, . . . , n + 1.
6) Repeat Steps 4 and 5 until all

(
(N−1)/2

N−2n

)
combinations are

iterated. Add all the eflows to obtain the optimal solution.

In Step 3, we transfer the problem from the scenario with
N ∈ Zo to the scenario where N is a power of two. The
method of determining {f̊ i:k

i:j : i, j, k ∈ N} is illustrated
in Fig. 7.

Remark 4: The feasibility of the {f̊ i:k
i:j : i, j, k ∈ N} and

{ůi:j : (i, j) ∈ E} as a solution of Ps can be verified
by checking conditions (5)-(8). The value of the objective
function corresponding to the solution is

I̊(s, t) =
N − 1

2N − 2n+1 + q(2n+1 − N − 1)
pqn+1.

Fig. 7. An illustration of the solution for N = 5. The quantities near the
edges represent the eflow. In this case, n = �log2 5� − 1 = 2. We divide
four enodes to two pairs: e0:1 and e1:2; as well as e2:3 and e3:4. There are
two possible ways of choosing N − 2n = 1 out of (N − 1)/2 = 2 pairs.
The choices are labeled as 1 and 2, and are shown in two red rectangles. For
example in the first rectangle, the chosen pair is: e0:1 and e1:2. Entanglement
swapping between e0:1 and e1:2 results in the enode e0:2. We now have a
chain consisting of 22 = 4 quantum channels, separated by the repeaters 0,
2, 3, 4, and 5. These five repeaters are relabelled as 0, 1, 2, 3, and 4 and we
can perform the Steps 4 and 5. After we perform the Steps 4 and 5 in each
rectangle, the eflow in two rectangles can then be added to obtain the optimal
solution of Ps.

We next determine an upper bound for the objective function
of Ps for N ∈ Zo. If this upper bound coincides with
I̊(s, t), then the optimality of {f̊ i:k

i:j : i, j, k ∈ N} and
{ůi:j : (i, j) ∈ E} will be proved.

Recall that the EQPs generated in Phase I are referred
to as “crude entanglements.” We now refer to the crude
entanglements Ξ2k:2k+1, k ∈ Z as odd crude entanglements;
analogously, we refer to the crude entanglements Ξ2k−1:2k,
k ∈ Z as even crude entanglements. We now consider a
homogeneous repeater chain with infinite quantum channels.
For this chain, let ho(L) and he(L) denote the minimum
expected number of odd crude entanglements and even crude
entanglements required to distribute one entangled pair shared
between nodes that are connected by L quantum channels. The
upper bound for the optimal value of Ps relies on the lower
bounds for ho(L) and he(L). The next proposition provides
lower bounds for ho(L) and he(L).

Proposition 4: For N ∈ N+, the minimum expected num-
ber of odd crude entanglements and even crude entanglements
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required to distribute one entangled pair shared between nodes
that are connected by N quantum channels, denoted by ho(N)
and he(N), respectively, satisfy the following conditions:
ho(1) = 1, he(1) = 0, if N > 1,

go(N) ≤ ho(N) and ge(N) ≤ he(N)

where go(·) and ge(·) are functions defined as

go(L) =

⎧⎪⎪⎨
⎪⎪⎩

2(L − 2l) + (2l+1 − L − 1) q

2ql+1
+

1
ql

if L ∈ Zo

2(L − 2l) + (2l+1 − L) q

2ql+1
if L ∈ Ze

ge(L) =

⎧⎪⎪⎨
⎪⎪⎩

2(L − 2l) + (2l+1 − L − 1) q

2ql+1
if L ∈ Zo

2(L − 2l) + (2l+1 − L) q

2ql+1
if L ∈ Ze

where l = 	log2 L
 − 1.
Proof: See Appendix VII. �

Theorem 4: For homogeneous repeater chains with N
quantum channels, if N ∈ Zo, the maximum EDR is

λ∗ =
(N − 1) pqn+1

2(N − 2n) + q (2n+1 − N − 1)

where n = 	log2 N
 − 1.
Proof: In the homogeneous repeater chain, the expected

number of the available even crude entanglements generated
across N quantum channels is at most p(N − 1)/2 per time
slot. As a consequence, the expected number of available even
crude entanglements generated across N quantum channels is
at most p(N − 1)T/2 after T time slots. Moreover, by defi-
nition of he(·), it requires he(·) even crude entanglements on
average to obtain one entangled pair shared between nodes s
and t. Therefore, the expected number of EQPs shared between
s and t is at most (N −1)T/(2he(N)) after T time slots. This
implies for any protocol π,

λπ = lim inf
T→∞

1
T

T∑
τ=1

E{gπ
s:t(τ)}

≤ lim inf
T→∞

1
T

T (N − 1) p

2he(N)
=

(N − 1) p

2he(N)
.

Together with Proposition 4, we have an upper bound of the
EDR for any protocol:

λπ ≤ (N − 1) p

2ge(N)
=

(N − 1) pqn+1

2(N − 2n) + (2n+1 − N − 1) q
.

Note that I̊(s, t) in Remark 4 coincides with the upper
bound above. Therefore, {f̊ i:k

i:j : i, j, k ∈ N} and
{ůi:j : (i, j) ∈ E} is the optimal solution of Ps, and
this upper bound is indeed the maximum EDR because
of Theorem 2. �

Fig. 8. The average EDR in a random network.

V. NUMERICAL RESULTS

This section illustrates the performance of the proposed
RED protocols through numerical examples.

A. General Networks

We evaluate the maximum EDR for the following general
networks. Consider a region of 60 × 60 km2. The nodes are
deployed in this region according to a Poisson process. Let
N denote an instantiation of node deployment. For i, j ∈ N ,
(i, j) ∈ E if the distance between i and j, Di:j , is less than
30 km; the parameter pi:j for an edge (i, j) is

pi:j = 10−γDi:j/10

where γ = 0.2 dB/km is the loss rate [57]. The pair of source
node and sink node is randomly selected with equal probability
among the nodes in the network.

Consider the performance metric as the average EDR, i.e.,
the empirical mean of the EDR achieved by solving Ps

averaging over instantiations of node deployments. Fig. 8
shows the average EDR as a function of q for different values
of the average node number N .6 Theorem 2 is used to generate
results in Fig. 8. First, the average EDR increases with N .
For example, when q = 0.8, the average EDR is 1.10 ebit/slot
for N = 10, whereas it is 4.13 ebit/slot for N = 30. This
corresponds to an increase of 2.75 times. This is because more
nodes and more edges can provide more crude entanglements
for distributing the target EQP Ξs:t. Second, the average EDR
increases with q. For example, when N = 20, the average
EDR is 1.59 ebit/slot for q = 0.5, whereas it is 3.26 ebit/slot
for q = 1.0. This corresponds to an increase of 1.05 times.
This observation agrees with the intuition, since unsuccessful
entanglement swapping wastes the entanglements and larger q
implies less unsuccessful entanglement swapping.

We showed in Section III-C that the stationary protocol
approaches the maximum EDR for large time slot T . To char-
acterize the behavior of the stationary protocol as a function

6Here, the amount of entanglement is quantified by the bit of entanglement
(ebit), for example, one ebit corresponds to one entangled qubit pair.
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Fig. 9. The average entanglement distribution ratio in a random network.

of T , we consider the average entanglement distribution ratio
at the time slot T , i.e., the empirical mean of the following
random variable ηT :

ηT :=
∑T

τ=1 gπ̊
s:t(τ)

T λ∗

where gπ̊
s:t(τ) is the number of EQPs at the time slot τ

distributed by the stationary protocol π̊, and λ∗ is the optimal
value of Ps. The randomness of ηT originates from node
deployment, parameters pi:j , (i, j) ∈ E , and the probabilistic
nature of the protocol. Fig. 9 shows the average entanglement
distribution ratio as a function of T for different values of
N and q. First, the average entanglement distribution ratio
converges to one for different values of N and q. This verifies
that the proposed stationary protocol achieves the maximal
EDR. Second, the convergence speed decreases with N . For
example, when q = 0.6 and T = 3 · 104, the average
entanglement distribution ratio is 0.9848 for N = 25, whereas
it is 0.9905 for N = 15. This is because more edges implies
that there are more short paths from the source to the sink,
and short paths require less entanglement swapping, so that
the convergence speed can be increased.

B. Homogeneous Repeater Chains

We evaluate the maximal EDR in homogeneous repeater
chains. Let D (km) denote the distance of a quantum channel
in the repeater chain. Then the total distance L between the
node 0 and the node N is L = D N . Let the loss rate of the
channel be γ (dB/km). The parameter pi:j for an edge (i, j)
is determined by the distance D and the loss rate γ [57].
In particular,

pi:j = 10−γD/10.

The success probability of entanglement swapping in the
network is assumed to be the same for all nodes and denoted
by q. In this subsection, Claim 1 is used to generate results in
the figures.

Fig. 10 shows the EDR as a function of the total distance
L for γ = 0.2 dB/km. First, the EDR increases with q. This

Fig. 10. The EDR in a repeater chain with γ = 0.2 dB/km.

observation is consistent with the results in general networks.
For example, when D = 20 km and L = 1500 km, the EDR
is 0.016 ebit/slot for q = 0.6, whereas it is 0.205 ebit/slot
for q = 0.9. This corresponds to an increase of 12.212 times.
Second, the EDR decreases with L and the rate decreases
faster with smaller q. For example, for D = 10, the EDR
decreases 1.18 times as the total distance L increases from
1000 km to 3000 km when q = 0.9, whereas it decreases 2.24
times when q = 0.6.

We next consider the scenario where the total distance L
between the source and the sink is fixed. Fig. 11 shows the
EDR as a function of N for L = 200 km and γ = 0.2 dB/km.
A key observation is that the EDR first increases dramatically
and then decreases slowly as a function of N . For example,
when q = 0.6, the EDR is 10−4 ebit/slot, 0.0627 ebit/slot,
and 0.0288 ebit/slot for N = 1, N = 21, and N = 100,
respectively. This corresponds to an increase of 626 times
from N = 1 to N = 21, and a decrease of 54.1% from
N = 21 to N = 100. The EDR first increases with N because
the two neighboring quantum repeaters are far apart for a
small N , and increasing N can significantly decrease D; the
EDR then decreases with N because for a large N , increasing
N does not significantly reduce D, and the imperfectness of
quantum repeaters becomes the bottleneck of EDR. Therefore,
more repeaters may not necessarily increase the EDR. The
results in Fig. 11 provide guidance to the choice of repeater
density in a chain and can offer insights into the design and
implementation of general quantum networks.

VI. CONCLUSION

In this paper, we established a framework of designing
RED protocols. We developed the RED protocols that achieve
the maximum EDR for general quantum networks based on
the solutions of the linear programming problem. Moreover,
we determine the maximum EDR in a closed form for homo-
geneous repeater chains. The new vision developed in this
paper is the introduction of enodes and eflows. RED can be
seen as procedures that determine the eflows of EQPs among
different enodes. We transform the RED problem into linear
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Fig. 11. The EDR in a repeater chain with N quantum channels. The total
distance L = 200 km is fixed.

programming and employ concepts and methods from the
graph theory and classical flow networks. The performance of
the proposed protocols is evaluated by numerical examples.
The results for homogeneous repeater chains demonstrate that
the issue of significant decay of communication capacity can
be essentially solved by properly deploying quantum repeaters,
even if the quantum repeaters are imperfect. Our results enable
the distribution of entanglement over long distances with
NISQ technologies and provide insights into the design and
implementation of quantum networks.

We hope that our results may incite some future work.
For example, one may be interested in designing a protocol
that converges to the maximum EDR faster than the pro-
tocol proposed in this paper. It may also be worth inves-
tigating quantum networks in addition to the homogeneous
repeater chains and trying to determine a closed-form max-
imum EDR. It is also interesting to see how to extend
the results in this paper to other models. For example,
the parameters pi:j and qk may vary over time; more-
over, the entanglement generated or distributed may not
be perfect. One may wonder how to determine the max-
imum EDR and how to obtain optimal protocol in these
scenarios.

APPENDIX I
PROOF OF THEOREM 1

Consider the RED protocol π∗ that achieves the optimal
entanglement rate. Let Fi:k

i:j (τ) and Fk:j
i:j (τ) denote the number

of EQPs Ξi:k and Ξk:j used for distributing Ξi:j after τ
time slots, respectively; let hk

i:j(τ) denote the number of EQPs
Ξi:j distributed by entanglement swapping that consumes Ξi:k

and Ξk:j after τ time slots. If (i, j) ∈ E , let Pi:j(τ) denote
the number of EQPs Ξi:j generated in Phase I after τ time
slots. At the time slot T , since the number of EQPs Ξi:j is
nonnegative, we have

Pi:j(T )1E(i, j)+
∑

k∈N\{i,j}
hk

i:j(T ) ≥
∑

k∈N\{i,j}
(Fi:j

i:k(T )+ Fi:j
k:j(T )).

Taking the expectation on both sides and dividing them by T ,
we have

pi:j1E(i, j) +
1
T

∑
k∈N\{i,j}

E
{
hk

i:j(T )
}

≥ 1
T

∑
k∈N\{i,j}

[
E
{
Fi:j

i:k(T )
}

+ E
{
Fi:j

k:j(T )
}]

.

Note that the success probability for distributing Ξi:j by using
Ξi:k and Ξk:j is qk, and Fi:k

i:j (T ) = Fk:j
i:j (T ). Hence,

E
{
hk

i:j(T )
}

= qk

E
{
Fi:k

i:j (T )
}

+ E
{
Fk:j

i:j (T )
}

2

and we have

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk

E
{
Fi:k

i:j (T )
}

+ E
{
Fk:j

i:j (T )
}

2T

≥ 1
T

∑
k∈N\{i,j}

[
E
{
Fi:j

i:k(T )
}

+ E
{
Fi:j

k:j(T )
}]

. (18)

Let

f i:k
i:j =

1
T

E{Fi:k
i:j (T )}.

Evidently, f i:k
i:j satisfies the definition of the eflow. Moreover,

{f i:k
i:j : i, j, k ∈ N} defined above satisfies the constraint (2)

using (18). One can also easily verify that {f i:k
i:j : i, j, k ∈ N}

satisfies the constraints (3)-(4). Therefore, {f i:k
i:j : i, j, k ∈ N}

is a feasible solution of P .
Note that

T∑
τ=1

gπ∗
s:t(τ) = Ps:t(T )1E(s, t) +

∑
k∈N\{s,t}

hk
s:t(T )

and hence

1
T

T∑
τ=1

E{gπ∗
s:t(τ)}

=
1
T

E{Ps:t(T )}1E(s, t) +
1
T

∑
k∈N\{s,t}

E{hk
s:t(T )}

= ps:t1E(s, t) +
1
T

∑
k∈N\{s,t}

qk

E
{
Fs:k

s:t (T )
}

+ E
{
Fk:t

s:t (T )
}

2

= ps:t1E(s, t) +
∑

k∈N\{s,t}
qk

fs:k
s:t + fk:t

s:t

2

which is exactly the objective function of P . Let λ∗ denote
the optimal value for P . Since λ∗ is the upper bound for
the objective function that corresponds to a feasible solution,
we have

1
T

T∑
τ=1

E{gπ∗
s:t(τ)} ≤ λ∗

for all T and π∗. Taking the lim inf over T on the left side,
we arrive at the desired result.
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Fig. 12. One of the directed cycles in G.

APPENDIX II
PROOF OF PROPOSITION 1

Consider the optimal solution {f i:k
i:j : i, j, k ∈ N} such that

the graph G corresponding to {f i:k
i:j : i, j, k ∈ N} has the

minimum number of edges. If the graph G has no directed
cycles, the proof is finished. Otherwise, we will find another
optimal solution of P and the corresponding graph of the new
solution has fewer edges compared to {f i:k

i:j : i, j, k ∈ N}.
This will lead to a contradiction and finish the proof.

Consider one of the directed cycles in G as in Fig. 12,
consisting of nodes ex2l−1:x2l

, l ∈ K1:K , where K
is the number of nodes in the cycle. For notational
convenience, let x1 = x2K+1 and x2 = x2K+2. Note
that the structure of entanglement swapping requires
that Card({x2l−1, x2l} ∩ {x2l+1, x2l+2}) = 1 and
Card({y2l−1, y2l} ∩ {x2l+1, x2l+2}) = 1, where y2l−1

and y2l are shown in Fig. 12. From the definition of the edge,
we have that f

x2l−1:x2l
x2l+1:x2l+2 > 0, l ∈ K1:K .

Consider a number δ:

δ = min
{

fx2l−1:x2l
x2l+1:x2l+2

, l ∈ K1:K

}
. (19)

Evidently δ > 0. We construct a solution of P as follows:

f̃x2l−1:x2l
x2l+1:x2l+2

= fx2l−1:x2l
x2l+1:x2l+2

− δ, l ∈ K1:K

f̃y2l−1:y2l
x2l+1:x2l+2

= fy2l−1:y2l
x2l+1:x2l+2

− δ, l ∈ K1:K

f̃ i:j
i:k = f i:j

i:k , for other eflows.

We next show {f̃ i:k
i:j : i, j, k ∈ N} is an optimal solution of

P . Regarding the constraint (2), if {i, j} = {x2l−1, x2l},

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f̃ i:k
i:j + f̃k:j

i:j

2

= pi:j1E(i, j) − δ q{x2l−3,x2l−2}∩{x2l−1,x2l}

+
∑

k∈N\{i,j}
qk

f i:k
i:j + fk:j

i:j

2

≥ −δ q{x2l−3,x2l−2}∩{x2l−1,x2l} +
∑

k∈N\{i,j}
(f i:j

i:k + f i:j
k:j)

≥ −δ +
∑

k∈N\{i,j}
(f i:j

i:k + f i:j
k:j)

=
∑

k∈N\{i,j}
(f̃ i:j

i:k + f̃ i:j
k:j)

Fig. 13. Children of the non-isolated enode e1:2.

where the first inequality is because {f i:k
i:j : i, j, k ∈ N}

satisfies the constraint (2) and the second inequality is because
qk ≤ 1 for all k ∈ N . If {i, j} = {y2l−1, y2l},

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f̃ i:k
i:j + f̃k:j

i:j

2

= pi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f i:k
i:j + fk:j

i:j

2

≥ −δ +
∑

k∈N\{i,j}
(f i:j

i:k + f i:j
k:j)

=
∑

k∈N\{i,j}
(f̃ i:j

i:k + f̃ i:j
k:j)

where the inequality is because {f i:k
i:j : i, j, k ∈ N} satisfies

the constraint (2) and the fact δ > 0. If {i, j} �= {x2l−1, x2l}
and {i, j} �= {y2l−1, y2l}, then the constraint (2) trivially
holds. Regarding the constraint (3), since f

x2l−1x2l
x2l+1x2l+2 =

f
y2l−1y2l
x2l+1x2l+2 > 0 and δ is selected according to (19), the

constraint (3) holds.
The constraint (4) also trivially holds since fs:t

i:j = 0 and the
enode es:t does not belong to the set {ex2l−1:x2l

, ey2l−1:y2l
, l ∈

K1:K}. Using the same argument, one can show that the value
of the objective function remains unchanged if f i:k

i:j is replaced
with f̃ i:k

i:j . This proves that {f̃ i:k
i:j : i, j, k ∈ N} is an optimal

solution of P .
One can easily find that replacing {f i:k

i:j : i, j, k ∈ N}
with {f̃ i:k

i:j : i, j, k ∈ N} does not add additional edges
in the corresponding graphs. Moreover, due to (19), at least
one of the elements in

{
f̃

x2l−1:x2l
x2l+1:x2l+2 , l ∈ K1:K

}
is zero.

Consequently, the graph corresponding to the optimal solution
{f̃ i:k

i:j : i, j, k ∈ N} has fewer edges than that corresponding
to {f i:k

i:j : i, j, k ∈ N}. This gives the desired contradiction
that {f i:k

i:j : i, j, k ∈ N} has the minimum number of edges
and finishes the proof.
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APPENDIX III
PROOF OF PROPOSITION 2

Consider the optimal solution {f̊ i:k
i:j }i,j,k∈N that has the

minimum number of edges. Proposition 1 shows that the
associated graph is acyclic. We will prove that this optimal
solution is efficient by contradiction.

Suppose there exists a non-isolated enode e1:2 in G
that is not an ancestor of es:t. Consider the children of
e1:2, denoted as e1:x1 , e1:x2 , . . . , e1:xM , e2:y1, e2:y2 , . . . , e2:yN

shown in Fig. 13. We construct a solution {f̃ i:k
i:j : i, j, k ∈ N}

as follows:

f̃ i:k
i:j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if ei:k is a descendant of e1:2

0 if ei:j is a descendant of e1:2

0 if ei:j = e1:2

f i:k
i:j otherwise.

Evidently, the graph G̃ corresponding to {f̃ i:k
i:j : i, j, k ∈ N}

can be obtained from G by removing some edges so that the
enode e1:2 does not have descendants in G̃. We next show that
{f̃ i:k

i:j : i, j, k ∈ N} is an optimal solution of P . One can
find that the constraints (2)-(4) trivially hold. Regarding the
objective function, consider fs:k

s:t for some k ∈ N . If fs:k
s:t > 0,

then es:t is a descendant of es:k. Since es:t is not a descendant
of e1:2, es:k is not a descendant of e1:2. Consequently, f̃s:k

s:t =
fs:k

s:t . If fs:k
s:t = 0, then f̃s:k

s:t = fs:k
s:t trivially. This shows that

f̃s:k
s:t = fs:k

s:t for all k ∈ N . Similarly, f̃k:t
s:t = fk:t

s:t for all
k ∈ N . As a result,∑

k∈N\{s,t}
qk

f̃s:k
s:t + f̃k:t

s:t

2
=

∑
k∈N\{s,t}

qk
fs:k

s:t + fk:t
s:t

2

showing that {f̃ i:k
i:j : i, j, k ∈ N} is the optimal solution of P .

However, the graph G̃ corresponding to {f̃ i:k
i:j : i, j, k ∈ N}

has fewer edges than G, leading to the desired contradiction.

APPENDIX IV
PROOF OF THEOREM 2

The proof of Proposition 1 and Proposition 2 shows that
we can construct an optimal solution of P , denoted as {f i:k

i:j :
i, j, k ∈ N}, such that the graph G corresponding to {f i:k

i:j :
i, j, k ∈ N} is acyclic and efficient. We will show that given
{f i:k

i:j : i, j, k ∈ N}, we can provide an optimal solution of
Ps, denoted as {f̃ i:k

i:j : i, j, k ∈ N} and {ũi:j : (i, j) ∈ E}.
We will start from the solution {f̃ i:k

i:j : i, j, k ∈ N} and
{ũi:j : (i, j) ∈ E}, where f̃ i:k

i:j = f i:k
i:j , ∀i, j, k and ũi:j = 1,

∀i, j. Evidently, the solution {f̃ i:k
i:j : i, j, k ∈ N} satisfies the

constraints (2)-(4), but {f̃ i:k
i:j : i, j, k ∈ N} and {ũi:j : (i, j) ∈

E} may not satisfy the constraints in Ps. We next update each
of the enodes. Here, for an enode ei:j , updating ei:j means
updating the incoming eflow of ei:j f̃ i:k

i:j , k ∈ N \ {i, j} and
determining ũi:j . After updating an enode, we will make sure
that three requirements are satisfied: 1) conditions (5)-(8) hold
for all the updated enodes; 2) conditions (2)-(4) hold for all
the nodes; and 3) the value of the objective function remains
unchanged. In this way, after updating all the enodes, we will
obtain a solution of Ps with the same optimal value of P .

We first update isolated enodes. If ei:j is an isolated enode
in G, then we set f̃ i:j

i:k = f̃ i:j
k:j = f̃ i:k

i:j = f̃k:j
i:j = 0 and ũi:j = 0.

Note that such an update satisfies the three requirements in
the previous paragraph.

We then update the ancestors of es:t. Since G is acyclic,
we can determine a topological ordering of G starting from
es:t and update the nodes with the order. For an enode ei:j ,
since the condition (2) holds as required, we have

pi:j1E(i, j) +
∑

k∈N\{i,j}
qk

f̃ i:k
i:j + f̃k:j

i:j

2

≥
∑

k∈N\{i,j}
(f̃ i:j

i:k + f̃ i:j
k:j), i, j ∈ N .

We then determine ũi:j and update the incoming flow f̃ i:k
i:j and

f̃k:j
i:j as follows:

�i:j →
∑

k∈N\{i,j}(f̃
i:j
i:k + f̃ i:j

k:j)

pi:j1E(i, j) +
∑

k∈N\{i,j} qk(f̃ i:k
i:j + f̃k:j

i:j )/2

ũi:j → �i:j , f̃ i:k
i:j → �i:j f̃

i:k
i:j , f̃k:j

i:j → �i:j f̃
k:j
i:j .

One can easily verify that such an update satisfies the three
requirements. This finishes the proof.

APPENDIX V
PROOF OF PROPOSITION 3

We show that

h(N) ≥ g(N) (20)

for all N ∈ N+ by induction. The base case with N = 1
can be easily verified since h(1) ≥ 1. For the induction step,
suppose (20) holds for N = 1, 2, . . . , N1. We next show that
(20) holds for N = N1 + 1.

Evidently, the EQP Ξ0:N1+1 is distributed based on entan-
glement swapping between EQPs Ξ0:a and Ξa:N1+1 for some
a ∈ K1:N1 . Let xa denote the fraction of the EQPs Ξ0:N1+1

that is distributed based on entanglement swapping between
Ξ0:a and Ξa:N1+1. For a fixed a, we consider the expected
numbers of crude entanglements required to distribute one
EQP Ξ0:a and one EQP Ξa:N1+1. These two numbers can
be lower-bounded by h(a) and h(N1 + 1 − a). Then

h(N1 + 1) ≥ 1
q

∑
a∈K1:N1

xa

[
h(a) + h(N1 + 1 − a)

]

≥ 1
q

∑
a∈K1:N1

xa

[
g(a) + g(N1 + 1 − a)

]

≥ 1
q

∑
a∈K1:N1

xa q g(N1 + 1)

=
∑

a∈K1:N1

xa g(N1 + 1)

= g(N1 + 1)

where the first inequality has been explained, the second
inequality is because of the induction hypothesis, the third
inequality is because of Lemma 1 below, and the second
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equality is because
∑

a∈K1:N1
xa = 1. This completes the

proof for (20) for all N ∈ N+.
Lemma 1: For K , M ∈ N+,

g(K) + g(M)
q

≥ g(K + M). (21)

Proof: See Appendix VI. �

APPENDIX VI
PROOF OF LEMMA 1

Without loss of generality, we assume K ≤ M . We prove
(21) in three cases: K = M ; K = M − 1; and K ≤ M − 2.

Case 1: K = M .
Let k = 	log2 K
 − 1. Then

g(K) + g(M)
q

=
2
q

g(K)

=
2
q

2(K − 2k) + (2k+1 − K) q

qk+1

=
2(2K − 2k+1) + (2k+2 − 2K) q

qk+2

= g(2K)
= g(K + M)

where the fourth equality is because k = 	log2 2K
 − 2.
Therefore, the inequality (21) holds.

Case 2: K = M − 1.
Let k = 	log2 K
−1. We discuss two subcases: K = 2k+1

and K < 2k+1. If K = 2k+1, then

g(K) + g(M)
q

=
2(K − 2k) + (2k+1 − K) q

qk+2

+
2(K + 1 − 2k+1) + (2k+2 − K − 1) q

qk+3

=
2k+1

qk+2
+

2 + (2k+1 − 1) q

qk+3

=
2 + (2k+2 − 1) q

qk+3

=
2(2K + 1 − 2k+2) + (2k+3 − 2K − 1) q

qk+3

= g(2K + 1)
= g(K + M)

where the first equality is because k + 1 = 	log2 M
 − 1 and
the fifth equality is because k + 2 = 	log2 (K + M)
 − 1.
If K < 2k+1, then

g(K) + g(M)
q

=
2(K − 2k) + (2k+1 − K) q

qk+2

+
2(K + 1 − 2k) + (2k+1 − K − 1) q

qk+2

=
2(2K + 1 − 2k+1) + (2k+2 − 2K − 1) q

qk+2

= g(2K + 1)
= g(K + M)

where the third equality is because k + 1 =
	log2 (K + M)
 − 1. Therefore, the inequality (21) holds.

Case 3: K ≤ M − 2.
Note that

g(K + 1) − g(K) =
2 − q

q�log2 (K+1)�

≤ 2 − q

q�log2 M� = g(M) − g(M − 1) (22)

where the equalities can be verified by some calculation, and
the inequality is because K + 1 ≤ M and 2 − q > 0. The
inequality (22) implies

g(K) + g(M) ≥ g(K + 1) + g(M − 1).

Similarly, we have

g(K + 1) + g(M − 1) ≥ g(K + 2) + g(M − 2)

provided that K + 1 ≤ (M − 1) − 2. Such a process can be
repeated and we will have

g(K) + g(M)

≥

⎧⎪⎨
⎪⎩

2 g
(K + M

2

)
if K + M ∈ Ze

g
(K + M − 1

2

)
+ g

(K + M + 1
2

)
if K + M ∈ Zo.

The results from Case 1 and Case 2 show that

q g(K + M)

=

⎧⎪⎨
⎪⎩

2 g
(K + M

2

)
if K + M ∈ Ze

g
(K + M − 1

2

)
+ g

(K + M + 1
2

)
if K + M ∈ Zo.

Combining the results above, we have that the inequality (21)
holds in Case 3.

APPENDIX VII
PROOF OF PROPOSITION 4

We next show that

ho(N) ≥ go(N) (23)

he(N) ≥ ge(N) (24)

for all N ∈ N+ by induction. The base case with N = 1 can be
easily verified since ho(1) ≥ 1 and he(1) ≥ 0. For the induc-
tion step, suppose (23) and (24) hold for N = 1, 2, . . . , N1.
We next show that (23) and (24) hold for N = N1 + 1.

Evidently, the EQP Ξ0:N1+1 is distributed based on entan-
glement swapping between EQPs Ξ0:a and Ξa:N1+1 for some
a ∈ K1:N1 . Let xa denote the fraction of EQPs Ξ0:N1+1 that is
distributed based on entanglement swapping between Ξ0:a and
Ξa:N1+1. For a fixed a, we consider the expected numbers of
odd crude entanglements required to distribute one entangled
pair Ξ0:a and one EQP Ξa:N1+1. If a ∈ Zo, these two
numbers can be lower-bounded by ho(a) and he(N1 +1− a),
respectively; if a ∈ Ze, these two numbers can be lower-
bounded by ho(a) and ho(N1 + 1 − a), respectively. Then

ho(N1 + 1) ≥ 1
q

∑
a∈K1:N1∩Zo

xa

[
ho(a) + he(N1 + 1 − a)

]

+
1
q

∑
a∈K1:N1∩Ze

xa

[
ho(a) + ho(N1 + 1 − a)

]
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≥ 1
q

∑
a∈K1:N1∩Zo

xa

[
go(a) + ge(N1 + 1 − a)

]

+
1
q

∑
a∈K1:N1∩Ze

xa

[
go(a) + go(N1 + 1 − a)

]

≥ 1
q

∑
a∈K1:N1∩Zo

xa q go(N1 + 1)

+
1
q

∑
a∈K1:N1∩Ze

xa q go(N1 + 1)

=
∑

a∈K1:N1

xago(N1 + 1)

= go(N1 + 1) (25)

where the first inequality has been explained, the second
inequality is because of the induction hypothesis, the third
inequality is because of (27) and (29) in Lemma 2 below, and
the last equality is because

∑
a∈K1:N1

xa = 1. Similarly,

he(N1 + 1) =
1
q

∑
a∈K1:N1∩Zo

xa

[
he(a) + ho(N1 + 1 − a)

]

+
1
q

∑
a∈K1:N1∩Ze

xa

[
he(a) + he(N1 + 1 − a)

]

≥ 1
q

∑
a∈K1:N1∩Zo

xa

[
ge(a) + go(N1 + 1 − a)

]

+
1
q

∑
a∈K1:N1∩Ze

xa

[
ge(a) + ge(N1 + 1 − a)

]

≥ 1
q

∑
a∈K1:N1∩Zo

xa q ge(N1 + 1)

+
1
q

∑
a∈K1:N1∩Ze

xa q ge(N1 + 1)

=
∑

a∈K1:N1

xage(N1 + 1)

= ge(N1 + 1). (26)

Equations (25) and (26) complete the proof for (23) and (24)
for all N ∈ N+.

Lemma 2: For K, M ∈ N+. If K ∈ Ze, then

go(K) + go(M)
q

≥ go(K + M) (27)

ge(K) + ge(M)
q

≥ ge(K + M). (28)

If K ∈ Zo, then

go(K) + ge(M)
q

≥ go(K + M) (29)

ge(K) + go(M)
q

≥ ge(K + M). (30)

Sketch of the Proof: See Appendix VIII. �

APPENDIX VIII
SKETCH OF THE PROOF OF LEMMA 2

We only prove the first inequality (27) and the proof for the
remaining inequalities is similar.

Recall that K ∈ Ze. We prove (27) in three cases: M ∈ Ze;
M ∈ Zo and K ≥ M − 1; and M ∈ Zo and K < M − 1.

Case 1: M ∈ Ze.
Since K ∈ Ze and M ∈ Ze, K + M ∈ Ze. Then

go(K) + go(M)
q

=
g(K) + g(M)

2q
(31)

≥ g(K + M)
2

= go(K + M) (32)

where the equalities are due to the definition of g(·) in (16),
and the inequality is due to Lemma 1.

Case 2: M ∈ Zo and K ≥ M − 1.
We have that
go(K) + go(M)

q
=

go(K) + go(M + 1)
q

+
q − 1
qm+2

≥ go(K + M + 1) +
q − 1
qm+2

= go(K + M) +
1 − q

q�log2 (K+M)� +
q − 1
qm+2

≥ go(K + M)

where m = 	log2 M
 − 1. The equalities are due to the
expression of go(·) and the fact that M + 1 ∈ Ze and
M +K ∈ Zo; the first inequality is due to the proof in Case 1;
and the last inequality is because

	log2(K + M)
 ≥ 	log2(2M − 1)
 = 	log2(2M)
 = m + 2.

Case 3: M ∈ Zo and K < M − 1.
Since K ∈ Ze and M ∈ Zo, we have K ≤ M − 3.

go(K + 2) − go(K) =
2 − q

2q�log2(K+2)� +
2 − q

2q�log2(K+1)�

≤ 2 − q

q�log2(K+2)�

≤ 2 − q

q�log2(M−1)�

=
2 − q

q�log2(M−2)�

≤ 1
q�log2 M� +

1 − q

q�log2(M−2)�

= go(M) − go(M − 2) (33)

where the equalities can be verified by some calculation, and
the second inequality is because K ≤ M − 3 and 2 − q > 0.
The inequality (33) implies

go(M) + go(K) ≥ go(M − 2) + go(K + 2).

Similarly, we have

go(M − 2) + go(K + 2) ≥ go(M − 4) + go(K + 4)

provided that K + 2 ≤ (M − 2) − 3. Such a process can be
repeated and we will have

go(M) + go(K) ≥ go

(K + M − 1
2

)
+ go

(K + M + 1
2

)
.

Since M ∈ Zo and K ∈ Ze, one of (K + M ± 1)/2 is odd
and the other is even; their difference is no more than 1. The
result from Case 2 shows that

go

(K + M − 1
2

)
+ go

(K + M + 1
2

)
≥ q go(K + M) .
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Combining the results above, we have that the inequality (27)
holds in Case 3.
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[11] V. Havlíček et al., “Supervised learning with quantum-enhanced feature
spaces,” Nature, vol. 567, no. 7747, pp. 209–212, Mar. 2019.

[12] G. M. D’Ariano, P. L. Presti, and M. G. A. Paris, “Using entanglement
improves the precision of quantum measurements,” Phys. Rev. Lett.,
vol. 87, no. 27, p. 270404, Dec. 2001.

[13] P. Kömar et al., “A quantum network of clocks,” Nature Phys, vol. 10,
no. 8, pp. 582–587, Aug. 2014.

[14] Z. Huang, C. Macchiavello, and L. Maccone, “Usefulness of
entanglement-assisted quantum metrology,” Phys. Rev. A, vol. 94, no. 1,
Jul. 2016, Art. no. 012101.

[15] S. Khatri, C. T. Matyas, A. U. Siddiqui, and J. P. Dowling, “Practical
figures of merit and thresholds for entanglement distribution in quantum
networks,” Phys. Rev. Res., vol. 1, no. 2, Sep. 2019, Art. no. 023032.

[16] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, “Quantum repeaters
based on entanglement purification,” Phys. Rev. A, vol. 59, no. 1,
pp. 169–181, Jul. 2002.

[17] L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. V. Meter, and
M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A, vol. 79,
no. 3, Mar. 2009, Art. no. 032325.

[18] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, “Teleporting an unknown quantum state via dual clas-
sical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70,
no. 13, pp. 1895–1899, Jul. 2002.

[19] L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A, vol. 49,
no. 2, p. 1473, Feb. 1994.

[20] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and
A. Zeilinger, “Experimental quantum teleportation,” Nature, vol. 390,
pp. 575–579, Dec. 1997.

[21] C. H. Bennett, D. P. DiVincenzo, P. W. Shor, J. A. Smolin, B. M. Terhal,
and W. K. Wootters, “Remote state preparation,” Phys. Rev. Lett., vol. 87,
Jul. 2001, Art. no. 077902.

[22] C. H. Bennett, P. Hayden, D. W. Leung, P. W. Shor, and A. Winter,
“Remote preparation of quantum states,” IEEE Trans. Inf. Theory,
vol. 51, no. 1, pp. 56–74, Jan. 2005.

[23] W. Dai, T. Peng, and M. Z. Win, “Remote state preparation for multiple
parties,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Brighton, U.K., May 2019, pp. 7983–7987.

[24] S. Pirandola, “Capacities of repeater-assisted quantum communica-
tions,” Jan. 2016, arXiv:1601.00966. [Online]. Available: https://arxiv.
org/abs/1601.00966

[25] S. Pirandola, “End-to-end capacities of a quantum communication
network,” Nature Commun. Phys., vol. 2, p. 51, May 2019.

[26] S. Bäuml, K. Azuma, G. Kato, and D. Elkouss, “Linear programs for
entanglement and key distribution in the quantum Internet,” Sep. 2018,
arXiv:1809.03120. [Online]. Available: https://arxiv.org/abs/1809.03120

[27] L. Gyongyosi and S. Imre, “Decentralized base-graph routing for
the quantum Internet,” Phys. Rev. A, vol. 98, no. 2, Aug. 2018,
Art. no. 022310.
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