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Energy-Efficient Network Navigation Algorithms
Wenhan Dai, Student Member, IEEE, Yuan Shen, Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Network navigation is an emerging paradigm that
enables high-accuracy location awareness in GPS-challenged en-
vironments. Two important operations of network navigation,
location inference and power control, interrelate with each other,
thus motivating the design of joint inference and control algo-
rithms. In this paper, we develop efficient network navigation
algorithms with optimized energy allocation. In particular, we first
determine the confidence region for lzocation inference based
on Fisher information analysis, and then design robust energy
allocation strategies that minimize the position errors of the agents
within the confidence region. Based on these strategies, both cen-
tralized and distributed energy-efficient network navigation algo-
rithms are developed. Simulation results show that the proposed
algorithms significantly reduce the position errors compared to the
algorithms with uniform or non-robust power control.

Index Terms—Cooperative networks, energy allocation, infer-
ence algorithms, localization, navigation.

I. INTRODUCTION

N ETWORK NAVIGATION is critical for many future
wireless applications in commercial, military and social

sectors, and thus have attracted intensive research efforts in
recent years [1]–[14]. The objective of a navigation process is
to infer the positions of mobile nodes (agents) over a period
of time based on various measurements of the agents’ posi-
tion state. For example, commonly used GPS-based navigation
systems can determine the trajectories of moving vehicles by
consistently making pseudo-range measurements to the GPS
satellites [15]. On the other hand, in GPS-challenged environ-
ments, such an objective can be achieved by network navi-
gation, where agents cooperate with their neighboring nodes
by making inter-node range measurements and exchanging
position information [1]–[3].

Network navigation consists of two important operations:
location inference and power control. The former performs
inference algorithms to determine the agents’ positions using
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Fig. 1. Network navigation: agents (blue dots) communicate with neighboring
agents and anchors (red circles) to infer their positions. The previous positional
information along with the step size can be exploited for robust power control
in the next time slot. The confidence region of agent k is the grey ellipse after
the location inference at time tn−1, and becomes the green ellipse before the
location inference at time tn due to the movement.

range measurements, and the latter pertains to the allocation of
the transmitting energy for the range measurements.1 These two
operations highly interrelate with each other: in the navigation
process, the perceiving of the agents’ positions provides prior
knowledge for the energy allocation in the next time slot, while
the energy allocation of the localization network determines the
accuracy of agents’ position estimates. For example, in Fig. 1,
the position estimate and the confidence region2 of the agents
serve as the input of the energy allocation strategy, which in
turn affects the localization performance in the next time slot.

Existing studies commonly focus on only one of the opera-
tions in network navigation. Extensive efforts have been carried
out on the processing of range measurements and the design
of range-based localization algorithms [17]–[27]. For example,
the authors in [18]–[20] investigated the typical techniques used
in the measurements of the distances between nodes, i.e., time-
of-arrival (TOA) and received signal strength (RSS). Localiza-
tion algorithms can be categorized into centralized algorithms
(e.g., [21]–[23]) and distributed algorithms (e.g., [25]–[27]).
Centralized algorithms generally transform the localization
problems into optimization programs for determining the max-
imum likelihood estimates (MLEs), whereas distributed algo-
rithms typically adopt the methods of successive refinement.
Detailed reviews of localization algorithms can be found in
[28]–[30]. Though these studies provide various techniques

1Energy is considered as a resource for localization in this paper, but our
framework can account for the allocation of other transmitting resources such
as bandwidth and time for range measurements.

2A confidence region, calculated from a set of sample data, is an area that
is likely to include an unknown parameter of interest (in this paper, the agent’s
position) [16].
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and algorithms for range-based localization, they typically start
from given measurement results and few studies consider the
effect of the energy allocation on the localization accuracy and
efficiency.

The design of energy allocation strategies in localization
networks receives increasing research interest because the al-
location of transmitting energy is critical in determining the lo-
calization performance [6]–[8], [31]–[36]. Current approaches
typically formulate the energy allocation problem as an op-
timization program, aiming to achieve the optimal tradeoff
between the localization performance and the energy allocation.
For example, in [37]–[39], the energy allocation problems for
radar networks are investigated. The Cramér-Rao lower bound
(CRLB) for position errors are adopted as the performance
metric and suboptimal solutions of the original problem are
obtained via relaxed convex programs. Recent work [40]–[42]
proposed robust power allocation problems in wireless local-
ization networks, where the former two focused on nonco-
operative networks and the latter one considered cooperative
networks. However, all of these studies do not investigate the
performance improvement of localization algorithms with the
proposed power allocation strategies.

The interaction between the two operations motivates the
study of joint inference and control for network navigation,
where the challenge mainly lies in their coupling effect in time.
That is, the control (power control) depends on the position
errors of agents, while such a control decision determines their
position errors in the next time slot. Moreover, cooperation
among the agents adds another layer of difficulty since both the
inference and control process become further coupled in space.
To the best of the authors’ knowledge, there lacks such a frame-
work jointly designing energy allocation and position estima-
tion algorithms in cooperative network navigation. In addition,
since the CRLB only characterizes a lower bound for the mean
squared position errors [43], it is preferable to adopt the mean
squared position errors directly as the metric to evaluate the per-
formance of the proposed algorithms.

In this paper, we develop energy-efficient network navigation
algorithms that jointly consider location inference and power
control. We first determine the confidence region for location
inference based on Fisher information analysis, and develop ro-
bust energy allocation strategies to minimize the position errors
of the agents within the confidence region. We then propose
position estimation methods based on some of the existing
localization techniques (e.g., MLE [44] and particle filtering
techniques [45]). The main contributions of this paper are as
follows.

• We propose a robust energy allocation strategy in the
centralized setting and show that these strategies can be
transformed into semi-definite programs (SDPs). This is
an extension of the work in [40], [41], which consider the
robust energy allocation in noncooperative localization
networks.

• We propose a robust energy allocation strategy in the
distributed setting. Compared to the strategies in our
previous work [42], the proposed strategy adopts a tighter
upper bound for the CRLB as the performance metric and

can be transformed into an second-order cone program
(SOCP).

• We develop network navigation algorithms with opti-
mized energy allocation in both centralized and dis-
tributed settings, and demonstrate the efficiency and the
robustness of the proposed strategies.

The rest of the paper is organized as follows. Section II
presents the system model and formulates the network navi-
gation problem with optimized energy allocation. Sections III
and IV present the navigation algorithms with energy allocation
in the centralized and distributed setting, respectively. Finally,
numerical results are presented in Section V and conclusions
are drawn in the last section.

Notation: [A]ij denotes the element in the ith row and jth

column of matrix A. In denotes an n×n identity matrix. 0m,n

denotes a m× n matrix with all 0’s. 1n and 0n denote n-
dimensional vectors with all 1’s and 0’s, respectively. For 0m,n,
1n, and 0n, the subscript will be omitted if clear in the
context. ek is a unit vector with the kth element being 1
and all other elements being 0’s. ‖·‖0 denotes the number
of non-zero elements. Matrix Jr(φ) is denoted as Jr(φ)=
[cosφ sinφ]T[cosφ sinφ]. The function I{x} is the indicate
function defined to be 0 if x=0, and 1 otherwise. For vectors
x and y, the relations x�y and x�y denote that all elements
of x−y are nonnegative and positive, respectively. For square
matrices A and B, the relation A�B denotes that A−B is a
semidefinite matrix. For sets A,B⊂R

d, A+B denotes the set
{a+b :a∈A,b∈B}.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model and formulates the
network navigation problem with optimized energy allocation.

A. Network Model

Consider a time-slotted synchronized navigation network
with Nb anchors and Na agents. Anchors are fixed nodes
with known positions, whereas agents are mobile nodes with
unknown positions. Anchors and agents are deployed in a 2-D
region of interest R ⊆ R

2. Let Na = {1, 2, . . . , Na} and Nb

denote the set of agents and anchors, respectively and let T =
{tn}n=1,2,...,N denote the time slot set of interest. The position

of node k at time tn is denoted by p
(n)
k . Moreover, let φ(n)

jk and

d
(n)
jk denote the angle and distance from node k to node j at

time tn, respectively.
At each time slot, agents aim to determine their positions

based on range measurements to neighboring nodes. Let x(n)
jk

denote the transmit energy of the ranging signal from node
k ∈ Na to node j ∈ Na ∪Nb at time n. Let x(n) ={
x
(n)
jk

}
k∈Na,j∈Na∪Nb\{j},

denote the energy allocation strategy

set that consists of Na(Nb +Na − 1) variables. Let p̂(n) ={
p̂
(n)
k

}
k∈Na

denote the agent position estimates at time tn,
respectively.

In network navigation, the energy allocation and position
estimation can be interactive. In specific, the energy allocation
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strategy x(n) may be determined based on the position estimate
p̂(n0)(0 ≤ n0 ≤ n). Similarly, the position estimates may de-
pend on the energy allocation policies x(n0)(0 ≤ n0 ≤ n). In
this way, the joint energy allocation and position estimation
algorithms can run iteratively in the navigation process.

B. Measurement and Dynamic Model

Let z(n)jk denote the measurement made by node k to node j,
modeled as

z
(n)
jk = d

(n)
jk + w

(n)
jk

where w(n)
jk is the range error, modeled as a zero-mean Gaussian

random variable (RV) with variance given by
(
x
(n)
jk ξ

(n)
jk

)−1
, in

which ξ
(n)
jk is the equivalent ranging coeficient (ERC) that char-

acterizes the channel quality between node k and node j [41].
Moreover, we assume that w(n)

jk is independent over time tn.
Agents’ positions are described as deterministic unknown

variables, where no prior dynamic knowledge of the agent’s po-
sition distribution is available. Let z(n) denote the set consisting
of range measurements at time tn and the likelihood function
for agents’ positions can then be written as

f
(
z(n)|p(n)

)
=

∏
k∈Na

∏
j∈Na∪Nb\{k}

f
(
z
(n)
jk

∣∣p(n)
j ,p

(n)
k

)
(1)

where the likelihood function for the nodes’ positions with
respect to z

(n)
jk can then be given as follows3

f
(
z
(n)
jk |p(n)

j ,p
(n)
k

)
=

⎧⎪⎨⎪⎩
1, x

(n)
jk = 0√

x
(n)

jk
ξ
(n)

jk

2π exp

{
− x

(n)

jk
ξ
(n)

jk

(
z
(n)

jk
−d

(n)

jk

)2

2

}
, otherwise.

The agents’ speed are assumed to be upper bounded by a
constant number during the navigation process. Therefore, for
each agent, the distance between its positions in two consecu-
tive time instants is upper bounded by a constant, denoted by
the step size Δ, i.e.,∥∥p(n+1)

k − p
(n)
k

∥∥ ≤ Δ (2)

for k ∈ Na and n = 1, 2, · · · , N − 1.

C. Performance Metric and Problem Formulation

The performance of the position estimator can be quantified
by the mean squared error (MSE) of the position estimate, given
by

N∑
n=1

∑
k∈Na

E

{∥∥p(n)
k − p̂

(n)
k

∥∥2} .

Note that the MSE depends on the agents’ true positions, the
energy allocation strategy, and the position estimation methods.

3In the rest of this paper, the shorthand f
(
z
(n)
jk

|p(n)
j

)
will be used for

f
(
z
(n)
jk

|p(n)
j ,p

(n)
k

)
when j ∈ Nb.

The latter two factors can be designed so that the MSE is
minimized. Hence, the joint energy allocation and position
estimation problem in the centralized setting is

P : min
{x(n),p̂(n)}

N∑
n=1

∑
k∈Na

E

{∥∥p(n)
k − p̂

(n)
k

∥∥2}

s.t. x
(n)
jk ≥ 0, ∀ tn ∈ T (3)∑

k∈Na

∑
j∈Na∪Nb\{k}

x
(n)
jk ≤Xtot, ∀ tn ∈ T (4)

where (3) is the nonnegative constraint for the energy and (4)
denotes the total transmit energy constraint, which Xtot is the
amount of total available energy.

Note that in the distributed setting, constraint (4) is replaced
by the individual energy constraints∑

j∈Nb

x
(n)
jk ≤ Xk

anc, ∀ tn ∈ T ∀ k ∈ Na,∑
j∈Na\{k}

x
(n)
jk ≤ Xk

agt, ∀ tn ∈ T ∀ k ∈ Na,

where Xk
anc and Xk

agt are the total energy associated with agent
k for anchor transmission and agent transmission, respectively.
Moreover, in the distributed setting, each node has only es-
timates of local network parameters. This restriction further
reduces the feasible set of the inference and control policies.

III. CENTRALIZED NETWORK NAVIGATION

This section presents the robust network navigation algo-
rithm in the centralized setting, where both noncooperative and
cooperative networks are considered.

A. Uncertainty Model

We first consider the noncooperative network navigation,
where the range measurements are made only between anchors
and agents. For the ease of exposition, we focus on one of the
agents, denoted as agent k.

In the navigation process, the agent maintains its positional
information, including the estimated position p̂

(n)
k and its con-

fidence region. The confidence region is defined to be the area
in which p

(n)
k belongs to with high confidence. Let U (n)

k and
Ũ (n)
k denote the confidence region of agent k before and after

the position estimation at time tn, respectively. The confidence
region U (n)

k depends on the confidence region Ũ (n−1)
k and the

step size Δ, described as follows.
Consider the maximum likelihood estimation in high signal-

to-noise ration (SNR) regimes. The MLE p̂
(n−1)
k can be ap-

proximated as a Gaussian random vector with mean p
(n−1)
k and

covariance matrix J−1
(
p
(n−1)
k

)
[43], where J

(
p
(n−1)
k

)
is the

Fisher information matrix (FIM) for p(n−1)
k , given by [31]

J
(
p
(n−1)
k

)
=

∑
j∈Nb

x
(n−1)
jk ξ

(n−1)
jk Jr

(
φ
(n−1)
jk

)
.
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Fig. 2. Illustration of the confidence region in network navigation: the po-
sition of agent k, p(n−1)

k
, falls into grey ellipse with high confidence, and

p
(n)
k

falls into green ellipse with high confidence.

Hence, the probability that p(n−1)
k belongs to the confidence

region Ũ (n−1)
k is

P
{
p
(n−1)
k ∈ Ũ (n−1)

k

}
= 1− exp (−c/2)

where

Ũ (n−1)
k =

{
p :

(
p−p̂

(n−1)
k

)T
J
(
p
(n−1)
k

)(
p−p̂

(n−1)
k

)
≤c

}
(5)

in which c is a positive number that determines the confidence
level. For example, in Section V, we consider the confidence
level to be 0.95, in which case c = −2 ln 0.05. Due to the
movement of agent k, the confidence region at time tn before
position estimation is

U (n)
k = Ũ (n−1)

k + {δ : ‖δ‖ ≤ Δ} . (6)

The confidence region U (n)
k then leads to the uncertainty set

of the angles and distances as follows

φ
(n)
jk ∈

[
φ̂
(n)
jk − εφjk , φ̂

(n)
jk + εφjk

]
(7)

d
(n)
jk ∈

[
d̂
(n)
jk − εdjk , d̂

(n)
jk + εdjk

]
(8)

where φ̂
(n)
jk and d̂

(n)
jk denote the angles and distances corre-

sponding to the position p̂
(n)
k , and εφjk and εdjk denote the max-

imum uncertainty of the angles and distances, respectively.4

Fig. 2 shows an example of the confidence region and the
uncertainty set of angles and distances.

B. Robust Energy Allocation

The MSE of the position estimate p̂
(n)
k is often intractable.

Thus we consider the CRLB for the MSE of the agent

4Note that the uncertainty in distance leads to the upper and lower bounds
for the ERC ξ, which can be easily treated in the robust strategy design. We
omit detailed discussion for brevity and readers can refer to [40]–[42] for more
information.

k,5 given by

P
(
p
(n)
k

)
:= tr

{
J−1

(
p
(n)
k

)}
.

Then the goal of energy allocation operation at time tn is
to minimize the one-time worst-case CRLB in the confidence
region, i.e.,

min{
x
(n)

jk

} max
p

(n)

k
∈U(n)

k

P
(
p
(n)
k

)
s.t. x

(n)
jk ≥ 0, j ∈ Nb (9)∑

j∈Nb

x
(n)
jk ≤ Xtot. (10)

It is shown in [40] that the worst-case CRLB with respect to
angular uncertainty can be bounded by as follows

max
p

(n)

k
∈U(n)

k

P
(
p
(n)
k

)
≤ tr

{
Q−1

(
p̂
(n)
k

)}
provided that Q(p̂

(n)
k ) � 0, where

Q
(
p̂
(n)
k

)
=

∑
j∈Nb

xjkξjk
(
Jr(φ̂jk)− | sin εφjk| I

)
.

The robust energy allocation problem then becomes

P
(n)
R : min

{x(n)

jk
}

tr
{
Q−1

(
p̂
(n)
k

)}
s.t. (9) and (10)

which can be transformed into an SDP and hence solved
efficiently by optimization engine [40].

C. Position Estimation Method

At each time slot tn, the position estimate p̂(n)
k is determined

by the range measurements
{
z
(n)
jk

}
j∈Nb

, or equivalently, by the

likelihood function f
({

z
(n)
jk

}
j∈Nb

|p(n)
k

)
.

The MLE is asymptotically efficient, i.e., it can achieve the
CRLB for the MSE when the SNR tends to infinity. Therefore,
we try to find the MLE of the measurement model (1), i.e., solve
the following optimization problem

p̂∗
k = argmax

p
(n)

k
∈R

log f
({

z
(n)
jk

}
j∈Nb

|p(n)
k

)
= argmin

p
(n)

k
∈R

∑
j∈Nb

x
(n)
jk ξ

(n)
jk

(
z
(n)
jk − d

(n)
jk

)2
(11)

which is a non-linear least square problem. Such a problem has
many mature solvers, for example, the Levenberg-Marquardt
method, the Gauss-Newton method, and the method of gradient
descent [46]. The performance of the MLE solver largely
depends on the initial value. In the navigation process, the

5The CRLB is tight for high SNR scenarios and hence an important criteria
to evaluate the localization accuracy in the navigation process.
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initial value is set to be the estimated positions of agents at the
previous time.

Algorithm 1 Noncooperative Network Navigation with Opt-
mized Energy Allocation

Input:
{
p
(n)
j

}
j∈Nb

, p̂(0) and
{
U (0)
k

}
k∈Na

.

Output:
{
x
(n)
jk

}
j∈Nb

and p̂
(n)
k , 1 ≤ n ≤ T .

1: while n ≤ T do
2: Estimate the ERCs ξ(n)jk , j ∈ Nb;

3: Find the confidence region U (n)
k according to (6);

4: Determine the uncertainty set according to (7) and (8);
5: Solve the SDP P

(n)
R and obtain the energy allocation

strategy
{
x
(n)
jk

}
;

6: Make range measurements corresponding to the trans-
mit energy

{
x
(n)
jk

}
;

7: Determine the MLE p̂
(n)
k by solving the non-linear least

square problem (11);
8: Update the confidence region Ũ (n)

k ;
9: n ← n+ 1;

10: end while

Alternatively, one can resort to particle methods since the di-
mension of the unknown parameter p(n)

k ∈ R
2 is tractable. The

true distribution of the agent can be approximated by a collec-
tion of two-dimensional samples and the sample with the high-
est weight is selected as the estimation of the agent’s position.

At time tn, let {ξ(i)}Ns

i=1 denote Ns samples and let

{w(i)}Ns

i=1 denote the associated weights, given by

w(i) =
∑
j∈Nb

x
(n)
jk ξ

(n)
jk

(
z
(n)
jk −

∥∥ξ(i) − pj

∥∥)2
then the MLE for p(n)

k is approximated by

p̂
(n)
k = argmin{

ξ(i)
}

1≤ i≤Ns

w(i).

The performance of the particle methods depends on how the
samples are generated. Here, the samples can be deployed either
randomly or deterministically at the confidence region.

Remark 1: The non-linear least square methods may con-
verge to a local optimum and results in an biased position
estimate. On the other hand, the particle method does not have
this issue, but its performance relies on the number of particles,
leading to large computation complexity if the dimension of
unknown parameters is large.

After obtaining the position estimate of p̂(n)
k , the positional

information of agent k should be updated and such information
will serve as input for the energy allocation in the next time
slot. Details of the navigation algorithm with optimized energy
allocation is given in Algorithm 1.

D. Extension to Cooperative Network Navigation

In cooperative network navigation, the network FIM
J
(
p(n−1)

)
is given by (12), shown at the bottom of the page,

where

JA
(
p
(n−1)
k

)
=

∑
j∈Nb

x
(n−1)
jk ξ

(n−1)
jk Jr

(
φ
(n−1)
jk

)
Ckj =

(
x
(n−1)
kj ξ

(n−1)
kj + x

(n−1)
jk ξ

(n−1)
jk

)
Jr

(
φ
(n−1)
jk

)
.

Therefore, the confidence regions of the agents are highly corre-
lated and complicated for joint evaluation. To address this issue,
we decouple the confidence region for each agent by equivalent
Fisher information analysis. In particular, the equivalent Fisher
information matrix (EFIM) for p(n−1)

k is given by [33]

Je

(
p
(n−1)
k

)
=

([
J−1

(
p(n−1)

)]
pk

)−1

(13)

where [A]pk
denotes the kth 2 × 2 submatrix on the diagonal

of A. Consequently, the confidence region Ũ (n−1)
k for agent k

can be obtained by replacing J
(
p
(n−1)
k

)
with Je

(
p
(n−1)
k

)
in (5)

and then U (n)
k can be obtained by (6) accordingly.

The uncertainty set of the angles and distances can be
similarly obtained as (7) and (8). Note that compared to the
noncooperative case, the uncertainty of the angles and distances
among agents needs to be considered.

We next extend the result in [40] to the cooperative network
in the centralized setting, providing the upper bound for the
worst-case network CRLB.

Proposition 1: Under the uncertainty model (7) and (8), the
worst-case CRLB can be upper bounded by

max{
p

(n)

k
∈U(n)

k

}
k∈Na

∑
k∈Na

P
(
p
(n)
k

)
≤ tr

{
Q−1

(
p̂(n)

)}
in which

Q
(
p̂(n)

)
=

∑
k∈Na

∑
j∈Na∪Nb\{k}

x
(n)
jk ξ

(n)
jk V

(n)
jk

where

V
(n)
jk =

⎧⎨⎩
(
ek e

T
k

)
⊗
(
Jr

(
φ̂
(n)
jk

)
− δ

(n)
jk I

)
, j ∈ Nb

(ek−ej)(ek− ej)
T⊗

(
Jr

(
φ̂
(n)
jk

)
−δ

(n)
jk I

)
, otherwise

J
(
p(n−1)

)
=

⎡⎢⎢⎢⎢⎣
JA

(
p
(n−1)
1

)
+
∑

j∈Na\{1}C1,j −C1,2 · · · −C1,Na

−C2,1 JA
(
p
(n−1)
2

)
+
∑

j∈Na\{2}C2,j −C2,Na

...
. . .

−CNa,1 −CNa,2 JA
(
p
(n−1)
Na

)
+
∑

j∈Na\{Na}CNa,j

⎤⎥⎥⎥⎥⎦ (12)
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in which δ
(n)
jk = | sin εφjk|, provided that Q

(
p̂(n)

)
� 0.

Proof: See Appendix A. �
The centralized energy allocation problem is to minimize the

upper bound for the worst-case CRLB as

P
(n)
R-C : min

x(n)
tr
{
Q−1

(
p̂(n)

)}
s.t. x

(n)
jk ≥ 0, k ∈ Na, j ∈ Nb ∪ Na (14)∑

k∈Na

∑
j∈Na∪Nb\{k}

x
(n)
jk ≤ Xtot. (15)

Using the same technique in [40], one can show that the
problem P

(n)
R-C can be transformed into the following SDP:

P
(n)
R-C-SDP : min

{x(n)

jk
}

tr{M}

s.t.

[
M I
I Q

(
p̂(n)

)] � 0

(14) and (15).

With the range measurements z(n), one can find the MLE of
agents’ positions as

p̂∗ = argmax
p(n)

log f
(
z(n)|p(n)

)
= argmin

p(n)

∑
k∈Na

∑
j∈Na∪Nb\{k}

x
(n)
jk ξ

(n)
jk

(
z
(n)
jk − d

(n)
jk

)2
which is a non-linear least squares problem. Note that the MLE
for agents’ positions in cooperative network navigation has a
higher dimension of unknown parameters, and hence the parti-
cle methods proposed in Section III-C may not be amenable due
to computation complexity.

Remark 2: In the centralized setting, solving the energy
allocation problem and determining the MLE for agents require
knowing the ERCs and the confidence regions for all the agents
in the network, which is usually impractical to fufill, especially
when the network is large and ad-hoc. Hence, the distributed
strategies are developed in the next section.

E. Complexity Analysis

The computation complexity of the proposed centralized
algorithm consists of two parts: solving P

(n)
R-C-SDP and deter-

mining p̂∗. Using the existing optimization engines, the SDP
P

(n)
R-C-SDP can be solved in O

(√
NaNb +N2

a

)
iterations and

the amount of work per iteration is O
(
(NaNb +N2

a )
3
)
, and the

worst-case complexity of solving P
(n)
R-C-SDP is O

(
N7

a +

N3.5
a N3.5

b

)
[47].

The computation complexity to determine p̂∗ is affected by
many factors, e.g., the number of iterations, the initial point
and the solution accuracy. Among these factors, the number
of nonlinear items in the summation, denoted as L, plays an
important role. For example, one of the widely used techniques,
the Gauss-Newton method, is iterative and the asymptotic com-
plexity in each iteration is O

(
L3

)
[48]. The next proposition

reveals the sparsity of the energy allocation, leading to an upper

bound for L in the centralized setting for cooperative naviga-
tion.

Proposition 2: There exists an optimal solution {x∗
kj} for

P
(n)
R-C-SDP such that∑

k∈Na

∑
j∈Na∪Nb\{k}

I{x∗
jk} ≤ Na(Na + 3)

provided that P
(n)
R-C-SDP has a feasible solution.

Proof: See Appendix C. �
Proposition 2 is an extension of the sparsity property for non-

cooperative networks discovered in [49]. Such sparsity property
implies that L ≤ Na(Na + 3) and that the computation com-
plexity of the MLE does not depend the number of anchors.

IV. DISTRIBUTED COOPERATIVE NAVIGATION

This section presents the robust network navigation algo-
rithm in the distributed setting, where each agent has only
estimates of local network parameters.

A. Phase Decomposition

Note that in the cooperative case, the CRLB for the MSE of
p̂
(n)
k is

P
(
p
(n)
k

)
= tr

{
J−1
e

(
p
(n)
k

)}
and thus optimizing P(p

(n)
k ) requires knowing the energy allo-

cation strategies of other agents, which are also to be optimized.
Moreover, the likelihood function for agent k is

f
({

z
(n)
jk

}
j∈Na∪Nb\{k}|p

(n)
k

)
=

∏
j∈Nb

f
(
z
(n)
jk

∣∣p(n)
k

)
×

∏
j∈Na\{k}

f
(
z
(n)
jk

∣∣p(n)
k

)
which depends on other agents’ positions that are unknown
to agent k. Therefore, the method proposed in Section III-D
cannot be used directly in the distributed setting.

To circumvent the difficulties above, the original problem is
decomposed into a sequential two-phase problem. In the first
phase (infrastructure phase), each agent k determines the trans-
mitting energy from agent k to anchors, i.e.,

{
x
(n)
jk

}
j∈Nb

, and
then make range measurements to anchors and update confid-
ence region. In the second phase (cooperation phase), based on
the range measurements made in the first phase, each agent
k determines its transmitting energy to neighboring agents,
i.e.,

{
x
(n)
jk

}
j∈Na\{k}

, and then make range measurements. Note

that with this decomposition, the FIM for agent k at time
tn−1 is different from that in the centralized setting, given by
J
(
p(n−1)

)
with x

(n−1)
ij = 0 for k �∈ {i, j}.

B. Infrastructure Phase

In the infrastructure phase, each agent k first determines the
anchor energy allocation strategy and makes range measure-
ments to anchors. It then estimates its position based on these
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range measurements. The energy allocation problem is then to
minimize the worst-case CRLB for p

(n)
k with x

(n)
jk = 0 for

j ∈ Na \ {k}, i.e.,

P
(k)
R-D-anc : min

{xjk}j∈Nb

max
p

(n)

k
∈U(n)

k

tr
{[

JA
(
p
(n)
k

)]−1
}

s.t. x
(n)
jk ≥ 0, j ∈ Nb∑

j∈Nb

x
(n)
jk ≤ Xk

anc

which can be solved by the methods proposed in [41]. The so-
lution of P

(k)
R-D-anc is used as the anchor power control strategy

for agent k to make the range measurements {z(n)jk }
j∈Nb

. Then,

the MLE ofp(n)
k is given by the non-linear least squares problem

p̂
(n)
A,k = argmin

p
(n)

k

∑
j∈Nb

x
(n)
jk ξ

(n)
jk

(
z
(n)
jk −

∥∥p(n)
k − p

(n)
j

∥∥)2.
(16)

With the range measurements in the first phase, the position
estimate p̂

(n)
k and confidence region U (n)

k are updated to p̂
(n)
A,k

and Ũ (n)
A,k , respectively.

C. Cooperation Phase

In the cooperation phase, each agent k first determines the
energy allocation strategy based on the positional information
of its neighboring agents obtained in the infrastructure phase.

Proposition 3: The CRLB Pd(p
(n)
k ) is

Pd

(
p
(n)
k

)
= tr

{[
JA

(
p
(n)
k

)
+

∑
j∈Na\{k}

x
(n)
jk χ

(n)
jk Jr

(
φ
(n)
jk

)]−1
}

where

χ
(n)
jk = ξ

(n)
jk /

(
1 + x

(n)
jk ξ

(n)
jk μ

(n)
jk

)
μ
(n)
jk = tr

{[
JA

(
p
(n)
j

)]−1 · Jr

(
φ
(n)
jk

)}
.

Proof: Refer to [42] for the proof. �
We next present an upper bound for the worst-case CRLB

Pd(p
(n)
k ) over confidence regions as follows.

Proposition 4: For a sufficiently large integer M and M =
{0, 1, 2, . . . ,M − 1},

max{
pj∈Ũ(n)

A,j

}
j∈Na

Pd

(
p
(n)
k

)
≤PM(

p
(n)
k

)
:=max

m∈M

4·f (n)
k(

f
(n)
k

)2

−
(
g
(n)
k,m

)2

where

f
(n)
k =

∑
j∈Nb

ξ
(n)
jk x

(n)
jk +

∑
j∈Na\{k}

ξ
(n)
jk y

(n)
jk

g
(n)
k,m =

∑
j∈Nb

h
(n)
jk,mξ

(n)
jk x

(n)
jk +

∑
j∈Na\{k}

h
(n)
jk,mξ

(n)
jk y

(n)
jk

in which

y
(n)
jk =

x
(n)
jk

1 + x
(n)
jk ξ

(n)
jk μ

(n)
jk

(17)

h
(n)
jk,m = max

|ε|≤εφ
jk

cos
(
2φ̂

(n)
kj − (2m+ 1) · π/M + ε

)
cos (π/M)

μ
(n)
jk = max{∣∣φ(n)

lj
−φ̂

(n)

lj

∣∣≤εφ
lj

}
l∈{k}∪Nb

μ
(n)
jk .

Proof: See Appendix B. �
We can then obtain a relaxation problem for the agent energy

allocation by adopting the above upper bound as the objective
function, leading to

P
(k)
R-D-agt : min{

x
(n)

jk

}
j∈Na\{k}

PM(
p
(n)
k

)
s.t. x

(n)
jk ≥ 0, j ∈ Na \ {k} (18)∑

j∈Na\{k}
x
(n)
jk ≤ Xk

agt. (19)

This problem can be transformed into a SOCP as shown in the
next proposition.

Proposition 5: The problem P
(k)
R-D-agt is equivalent to the

SOCP

min
�,
{
x
(n)

jk
,y

(n)

jk

}
j∈Na\{k}

− �

s.t.
∥∥[2� g

(n)
k,m

]T∥∥≤f
(n)
k −2�, ∀m∈M (20)∥∥[√2 1−y

(n)
jk ξjkμjk 1+x

(n)
jk ξjkμjk

]T∥∥
≤ 2 +

(
x
(n)
jk − y

(n)
jk

)
ξjkμjk (21)

y
(n)
jk ≥ 0, j ∈ Na\{k}

(18) and (19).

Proof: (Outline) First, we can replace the objective func-

tion with 1/� and add a new constraint PM(
p
(n)
k

)
≤1/�, which

is equivalent to the set of constraints (20). Second, due to the
monotonicity of y(n)jk in x

(n)
jk , one can verify that in P

(k)
R-D-agt

the relationship (17) between y
(n)
jk and x

(n)
jk can be replaced by

0 ≤ y
(n)
jk ≤

x
(n)
jk

1 + x
(n)
jk ξjkμ

(n)
jk

where the second inequality can be transformed into the
second-order cone (SOC) form (21). �
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Algorithm 2 Distributed Network Navigation

Input:
{
p
(n)
j

}
j∈Nb

, p̂(0) and
{
U (0)
k

}
k∈Na

.

Output: x(n) and p̂(n), 1 ≤ n ≤ T .
1: while n ≤ T do
2: //INFRASTRUCTURE PHASE

3: for k ∈ Na do
4: Estimate the ERCs

{
ξ
(n)
jk

}
j∈Nb∪Na\{k}

;

5: Determine the confidence region U (n)
k ;

6: Solve P(k)
R-D-anc;

7: Make range measurements with
{
x
(n)
jk

}
j∈Nb

;
8: Determine the MLE p̂

(n)
A,k by solving (16);

9: Update the confidence region Ũ (n)
A,k ;

10: Agent k broadcasts its position range measurements
with respect to anchors

{
z
(n)
jk

}
j∈Nb

;
11: end for
12: //COOPERATION PHASE

13: for k ∈ Na do
14: Solve P(k)

R-D-agt;
15: Make range measurements with

{
x
(n)
jk

}
j∈Na\{k}

;

16: Determine the MLE p̂
(n)
k by solving (22);

17: Update the confidence region Ũ (n)
k ;

18: end for
19: n ← n+ 1;
20: end while

Solving P
(k)
R-D-agt gives the agent energy allocation strategy

of agent k to make range measurements. Together with the
range measurements and position estimates of neighboring
agents in the infrastructure phase, the MLE of p(n)

k is

p̂
(n)
k = argmin

p
(n)

k

[ ∑
j∈Nb

x
(n)
jk ξ

(n)
jk

(
z
(n)
jk −

∥∥p(n)
k − p

(n)
j

∥∥)2
+

∑
j∈Na\{k}

x
(n)
jk χ

(n)
jk

(
z
(n)
jk −

∥∥p(n)
k − p̂

(n)
A,j

∥∥)2]. (22)

Details of the distributed network navigation algorithm are
given in Algorithm 2, where both energy allocation and position
estimation involve only local network parameters.

D. Complexity Analysis

The computation complexity of the proposed distributed algo-
rithm consists of two parts: solving P

(k)
R-D-anc and P

(k)
R-D-agt and

determining p̂(n)
A,k and p̂(n)

k . The complexity of solvingP
(k)
R-D-anc

(using the SOCP-based method in [41]) andP
(k)
R-D-agt depend on

thechoiceofM .Theworst-casecomplexityof solvingP
(k)
R-D-anc

andP
(k)
R-D-agt areO

(
M1.5N3.5

b

)
andO

(
M1.5N3.5

a

)
, respectively.

The computation complexity to determine p̂
(n)
A,k and p̂

(n)
k

largely depend on the number of nonlinear items in (16) and
(22), respectively. For the infrastructure phase, the sparsity
property is proved in [42], [49], showing that there no more
than three nonlinear items in (16) as the uncertainty vanishes.
However, such sparsity property do not always exist in the

Fig. 3. The cooperative network: anchors (red circles) and agents (blue dots).

cooperation phase and thus the number of nonlinear items in
(22) can be up to (Na +Nb − 1).

V. NUMERICAL RESULTS

This section evaluates the performance of the proposed
energy-efficient navigation algorithms. The simulation setup is
first described and the numerical results are then presented.

A. Network Setting and Algorithms

We consider a two-dimensional network where 19 anchors
are placed in the vertices of equilateral triangles with circum-
radius of 50 meters (see Fig. 3). Initially, agents are uniformly
distributed in the area of [−100 m, 100 m]× [−100 m, 100 m].
The ERCs are obtained according to the formulas in [33]. The
ranging signals with carrier frequency fc = 2.1 GHz and band-
width of 100 MHz. The noise power density is −168 dBm/Hz.
The ranging signal propagation model is [50]

Path loss [dB] = A+B log10 d [m] + C log10 fc [GHz].

We also consider W ∼ N (0, σ2) accounting for the shadow
fading. The choice of A, B, C, and σ is generated according to
the models of Indoor Hotspot (InH) and Urban Macro (UMa),
corresponding to agent transmission and anchor transmission,
respectively. Moreover, the extended typical urban model is
used for the power dispersion profile [51]. For each of the
agent, the total power of anchor transmission is 0.4 Watt and
the total power of agent transmission is 1.6 Watt. The measured
ERC ξ̂

(n)
jk is assumed to be a RV uniformly distributed in

[0.9ξ
(n)
jk , 1.1ξ

(n)
jk ].

To evaluate the proposed robust algorithm, we compare
its performance with three other algorithms. In all these al-
gorithms, the localization part adopts the methods proposed
Section III and Section IV.

• Uniform Algorithm: This algorithm adopts the uni-
form energy allocation strategy, which allocates the
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Fig. 4. Position error as a function of the number of agents in the centralized setting: (a) root average squared error of all the navigation trajectories; (b) root
maximum squared error among all the navigation trajectories.

transmitting power to each link equally. In specific, for
the centralized setting,

x
(n)
jk =

Xtot

NbNa +Na(Na − 1)
, ∀ k, j

and for distributed setting,

x
(n)
jk = Xk

anc/Nb, j ∈ Nb, k ∈ Na

x
(n)
kj = x

(n)
jk = Xk

agt/(Na − 1), k, j ∈ Na.

• Non-robust Algorithm: This algorithm adopts the non-
robust energy allocation strategy, which uses the agents’
positions in the last time slot to compute the network
parameters (e.g., angles, distances, and ERCs among
agents), and assumes the uncertainties to be zeros. In
specific, assume d

(n+1)
jk = d̂

(n)
jk and φ

(n+1)
jk = φ̂

(n)
jk , and

compute the energy allocation strategies accordingly.
• Genie-aided Algorithm: This algorithm adopts a genie-

aided energy allocation strategy, which uses the agents’
true position (provided by a genie) and the precise net-
work parameters. This genie-aided algorithm provides a
benchmark for evaluating the performance of the pro-
posed algorithm.

B. Cooperative Network Navigation

We first consider a navigation network where agents move
randomly. For any k and n, p(n)

k is modeled as a 2-D RV that is
uniformly distributed in a circular area with radius of Δ = 25 m
and the center p

(n−1)
k . For each navigation process, the total

number of time slots is set to be N = 200.
Fig. 4 plots the localization performance in the centralized

setting. Fig. 4(a) and (b) show the root average and root
maximum squared errors (among all the navigation trajectories)
as a function of the number of agents, respectively. First, the ro-
bust algorithm significantly outperforms the uniform algorithm,
reducing the root average squared errors by at least 30% and the
root maximum squared errors by at least 40%. Second, the non-

robust algorithm performs poorly in terms of the root maximum
squared error (more than 10 meters). This shows the necessity
of the robust energy allocation design that can guarantee the
worst-case performance. Third, the root average squared errors
typically decrease with the number of agent for every algo-
rithm while the root maximum squared errors of the uniform
algorithm and the non-robust algorithm do not show this trend.
These different behaviors show that increasing the number of
agents in a navigation network may lead to a better average
localization performance though the robustness of the network
may not be improved.

Fig. 5 plots the localization performance in the distributed
setting. Fig. 5(a) and (b) show the root average and root maxi-
mum squared errors (among all the navigation trajectories) as a
function of the number of the agents. First, the robust algorithm
outperforms both the uniform and non-robust algorithms and
the performance of the robust algorithm is close to that of the
genie-aided algorithm. Second, the root average squared errors
and root maximum squared errors are greater than those in the
centralized setting, due to the restriction of the algorithm that
each node has only estimates of local network parameters.

C. Effect of Step Size

We then investigate the effect of the step size in network
localization. For any k, p

(1)
k is modeled as a 2-D random

variable that is uniformly distributed in a circular area with
radius of Δ and the center is p(0)

k .
Fig. 6 plots the root maximum squared error averaged over

all the sample points of p
(1)
k . Fig. 6(a) and (b) plots the root

maximum squared error as a function of the step size in the
centralized and distributed setting, respectively. First, the robust
algorithm outperforms the non-robust and the uniform algo-
rithms. Compared to the genie-aided algorithm, the perfor-
mance gap is not significant in the centralized setting for Δ ≤
16 m and in the distributed setting for all Δ. This demonstrates
the robustness of the proposed algorithm. Second, for all the



DAI et al.: ENERGY-EFFICIENT NETWORK NAVIGATION ALGORITHMS 1427

Fig. 5. Position error as a function of the number of agents in the distributed setting: (a) root average squared error of all the navigation trajectories; (b) root
maximum squared error among all the navigation trajectories.

Fig. 6. Root maximum squared errors as a function of step size Δ for cooperative networks: (a) centralized setting; (b) distributed setting.

algorithms, the root average squared position errors increase
with the step size, since the uncertainty in the parameters
affects the performance of the energy allocation strategy and
the deviation of the initial value from the true agent position
influences the accuracy of the localization method. Third, al-
gorithms in the centralized setting have better performance
than their distributed counterparts, because the measurements
among all the agents are available in the centralized setting.

VI. CONCLUSION

In this paper, we developed energy-efficient network navi-
gation algorithms that jointly consider location inference and
power control. For both centralized and distributed settings,
the cooperative navigation algorithms with energy allocation
are proposed. In particular, we first determine the confidence
regions of agents’ positions and then design robust energy al-
location strategies and position estimation methods. The upper

bounds for the worst-case CRLB are derived as the performance
metric for energy allocation. Simulation results show that the
proposed algorithm significantly outperform the navigation
algorithms with uniform or non-robust power control. The
outcome of this paper provides guidelines for the operations
in energy-efficient network navigation.

APPENDIX A
PROOF OF PROPOSITION 1

Let φ+
jk = φ

(n)
jk + φ̂

(n)
jk and φ−

jk = φ
(n)
jk − φ̂

(n)
jk . Note that

Je

(
p(n)

)
−Q

(
p̂(n)

)
=

∑
k∈Na

∑
j∈Nb

x
(n)
jk ξ

(n)
jk ek e

T
k ⊗ Jjk

+
∑
k∈Na

∑
j∈Na\{k}

x
(n)
jk ξ

(n)
jk (ek − ej)(ek − ej)

T ⊗ Jjk
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where

Jjk =

[
δ
(n)
jk − sinφ+

jk sinφ
−
jk cosφ+

jk sinφ
−
jk

cosφ+
jk sinφ

−
jk δ

(n)
jk + sinφ+

jk sinφ
−
jk

]
.

In [40], it is shown that Jkj � 0. For any y ∈ R
2Na , let yk =

[ y2k−1 y2k ]
T and yj = [ y2j−1 y2j ]

T, then we have

yT
[
(ek−ej)(ek−ej)

T⊗Jjk

]
y=(yk−yj)

TJjk (yk−yj)≥0

where the last inequality is due to the fact that Jjk � 0. This
shows that (ek − ej)(ek − ej)

T ⊗ Jjk � 0. One can verify
that ek eTk ⊗ Jjk � 0 in an analogous way. Consequently,

Je

(
p(n)

)
� Q

(
p̂(n)

)
for φ(n)

jk in (7). Since tr{(·)−1} is a monotonically decreasing
function, we have

max
{p(n)

k
∈U(n)

k
}k∈A

∑
k∈Na

P
(
p
(n)
k

)
≤ tr

{
Q−1

(
p̂(n)

)}
when Q(p̂(n)) � 0.

APPENDIX B
PROOF OF PROPOSITION 4

Note that tr{[·]−1} is an decreasing function. Thus, for
any p

(n)
k , Pd

(
p
(n)
k

)
is upper bounded by P

(
p
(n)
k

)
, which is

obtained by replacing μ
(n)
jk with μ

(n)
jk in Pd

(
p
(n)
k

)
. Therefore,

after some algebra, one can show that

max
{pj∈ŨA,j}j∈Na

Pd
(
p
(n)
k

)
≤ max

{pj∈ŨA,j}j∈Na

P
(
p
(n)
k

)
(23)

=
4 · f (n)

k(
f
(n)
k

)2 − (Sk)
2

where

Sk =

∥∥∥∥ ∑
j∈Nb

ξ
(n)
jk x

(n)
jk

[
cosφ∗

jk

sinφ∗
jk

]
+

∑
j∈Na\{k}

ξ
(n)
jk y

(n)
jk

[
cosφ∗

jk

sinφ∗
jk

]∥∥∥∥
in which {φ∗

jk} are the optimal angles that achieve the maxi-
mum of P(p

(n)
k ) in (23). Then, to prove Proposition 4, we only

need to show that

Sk ≤ g
(n)
k,m ≤ f

(n)
k

for sufficiently large M , which can be proved in the same way
shown in [41, Proposition 4].

APPENDIX C
PROOF OF PROPOSITION 2

It suffices to show that there exists an optimal solution {x∗
jk}

such that ∑
j∈Nb

I
{
x∗
jk

}
≤ 4, ∀ k ∈ Na. (24)

Suppose{xjk}is an optimal solution forP(n)
R-C-SDP, we next con-

struct an optimal solution {x∗
jk} satisfying (24) based on {xjk}.

Consider the following solution {x∗
jk} such that

x∗
jk =

{
yjk, j ∈ Nb, k ∈ Na

xjk, otherwise

where {yjk ∈ R
+}j∈Nb, k∈Na

is the set with the minimum
number of nonzero elements that satisfies that ∀j ∈ Na∑

j∈Nb

(yjk − xjk)ξ
(n)
jk

(
Jr

(
φ̂
(n)
jk

)
− δ

(n)
jk I

)
= 0

∑
j∈Nb

(yjk − xjk) = 0.

Using the same method developed in [52], one can verify that∑
j∈Nb

I{yjk} ≤ 4, ∀ k ∈ Na

which completes the proof.

ACKNOWLEDGMENT

The authors would like to thank A. Conti for his valuable
suggestions and careful reading of the manuscript.

REFERENCES

[1] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,
and M. Chiani, “Network localization and navigation via cooperation,”
IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[2] Y. Shen, S. Mazuelas, and M. Z. Win, “Network navigation: Theory and
interpretation,” IEEE J. Sel. Areas Commun., vol. 30, no. 9, pp. 1823–
1834, Oct. 2012.

[3] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.

[4] K. Pahlavan, X. Li, and J.-P. Mäkelä, “Indoor geolocation science
and technology,” IEEE Commun. Mag., vol. 40, no. 2, pp. 112–118,
Feb. 2002.

[5] J. J. Caffery and G. L. Stüber, “Overview of radiolocation in CDMA
cellular systems,” IEEE Commun. Mag., vol. 36, no. 4, pp. 38–45,
Apr. 1998.

[6] A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless
location: Challenges faced in developing techniques for accurate wire-
less location information,” IEEE Signal Process. Mag., vol. 22, no. 4,
pp. 24–40, Jul. 2005.

[7] D. B. Jourdan, D. Dardari, and M. Z. Win, “Position error bound for
UWB localization in dense cluttered environments,” IEEE Trans. Aerosp.
Electron. Syst., vol. 44, no. 2, pp. 613–628, Apr. 2008.

[8] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V.
Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: A look
at positioning aspects for future sensor networks,” IEEE Signal Process.
Mag., vol. 22, no. 4, pp. 70–84, Jul. 2005.

[9] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor
networks: Research challenges,” Ad Hoc Netw., vol. 3, no. 3, pp. 257–279,
May 2005.

[10] E. Masazade, R. Niu, and P. K. Varshney, “Dynamic bit allocation for
object tracking in wireless sensor networks,” IEEE Trans. Signal Process.,
vol. 60, no. 10, pp. 5048–5063, Oct. 2012.

[11] R. Niu and P. K. Varshney, “Target location estimation in sensor net-
works with quantized data,” IEEE Trans. Signal Process., vol. 54, no. 12,
pp. 4519–4528, Dec. 2006.

[12] X. Shen and P. K. Varshney, “Sensor selection based on generalized
information gain for target tracking in large sensor networks,” IEEE
Trans. Signal Process., vol. 62, no. 2, pp. 363–375, Jan. 2014.

[13] R. Niu, R. S. Blum, P. K. Varshney, and A. L. Drozd, “Target localization
and tracking in noncoherent multiple-input multiple-output radar sys-



DAI et al.: ENERGY-EFFICIENT NETWORK NAVIGATION ALGORITHMS 1429

tems,” IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 2, pp. 1466–1489,
Apr. 2012.

[14] T. Hazim, G. K. Karagiannidis, and T. A. Tsiftsis, “Probability of early
detection of ultra-wideband positioning sensor networks,” IET Wireless
Sensor Syst., vol. 1, no. 3, pp. 123–128, Sep. 2011.

[15] E. Kaplan, Ed., Understanding GPS: Principles and Applications.
Norwood, MA, USA: Artech House, 1996.

[16] J. L. Devore, Probability and Statistics for Engineering and the Sciences,
8th ed. Boston, MA, USA: Brooks/Cole, 2011.

[17] L. Lu and H.-C. Wu, “Novel robust direction-of-arrival-based source
localization algorithm for wideband signals,” IEEE Trans. Wireless
Commun., vol. 11, no. 11, pp. 3850–3859, Nov. 2012.

[18] L. Lu, H. Zhang, and H.-C. Wu, “Novel energy-based localization tech-
nique for multiple sources,” IEEE Syst. J., vol. 8, no. 1, pp. 142–150,
Mar. 2014.

[19] A. Rabbachin, I. Oppermann, and B. Denis, “GML ToA estimation based
on low complexity UWB energy detection,” in Proc. IEEE Int. Symp.
Pers., Indoor Mobile Radio Commun., Helsinki, Finland, Sep. 2006,
pp. 1–5.

[20] K. Yu, J.-P. Montillet, A. Rabbachin, P. Cheong, and I. Oppermann,
“UWB location and tracking for wireless embedded networks,” Signal
Process., vol. 86, no. 9, pp. 2153–2171, Sep. 2006.

[21] M. R. Gholami, H. Wymeersch, E. G. Ström, and M. Rydström, “Wire-
less network positioning as a convex feasibility problem,” EURASIP
J. Wireless Commun. Netw., vol. 2011, pp. 161-1–161-15, Nov. 2011.

[22] R. Moses, D. Krishnamurthy, and R. Patterson, “A self-localization
method for wireless sensor networks,” EURASIP J. Adv. Signal Process.,
vol. 2003, no. 4, pp. 348–358, 2003.

[23] K. K. Mada, H.-C. Wu, and S. S. Iyengar, “Efficient and robust EM algo-
rithm for multiple wideband source localization,” IEEE Trans. Veh.
Technol., vol. 58, no. 6, pp. 3071–3075, Jul. 2009.

[24] K. Das and H. Wymeersch, “Censoring for Bayesian cooperative position-
ing in dense wireless networks,” IEEE J. Sel. Areas Commun., vol. 30,
no. 9, pp. 1835–1842, Oct. 2012.

[25] A. T. Ihler, J. W. Fisher, III, R. L. Moses, and A. S. Willsky, “Nonpara-
metric belief propagation for self-localization of sensor networks,” IEEE
J. Sel. Areas Commun., vol. 23, no. 4, pp. 809–819, Apr. 2005.

[26] U. A. Khan, S. Kar, and J. M. F. Moura, “Distributed sensor lo-
calization in random environments using minimal number of anchor
nodes,” IEEE Trans. Signal Process., vol. 57, no. 5, pp. 2000–2016,
May 2009.

[27] U. A. Khan, S. Kar, and J. M. F. Moura, “DILAND: An algorithm
for distributed sensor localization with noisy distance measurements,”
IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1940–1947,
Mar. 2010.

[28] N. Patwari et al., “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[29] G. Han, H. Xu, T. Duong, J. Jiang, and T. Hara, “Localization algorithms
of wireless sensor networks: A survey,” Telecommun. Syst., vol. 52, no. 4,
pp. 2419–2436, Apr. 2013.

[30] G. Mao, B. Fidan, and B. D. O. Anderson, “Wireless sensor network
localization techniques,” Comput. Netw., vol. 51, no. 10, pp. 2529–2553,
Jul. 2007.

[31] Y. Shen and M. Z. Win, “Fundamental limits of wideband localization—
Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 4956–4980, Oct. 2010.

[32] L. Mailaender, “On the geolocation bounds for round-trip time-of-arrival
and all non-line-of-sight channels,” EURASIP J. Adv. Signal Process.,
vol. 2008, pp. 1–10, Jan. 2008.

[33] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wideband
localization—Part II: Cooperative networks,” IEEE Trans. Inf. Theory,
vol. 56, no. 10, pp. 4981–5000, Oct. 2010.

[34] Y. Qi, H. Kobayashi, and H. Suda, “Analysis of wireless geolocation in
a non-line-of-sight environment,” IEEE Trans. Wireless Commun., vol. 5,
no. 3, pp. 672–681, Mar. 2006.

[35] D. Dardari, A. Conti, U. J. Ferner, A. Giorgetti, and M. Z. Win, “Rang-
ing with ultrawide bandwidth signals in multipath environments,” Proc.
IEEE, vol. 97, no. 2, pp. 404–426, Feb. 2009.

[36] Y. Yan and Y. Mostofi, “Impact of localization errors on wireless channel
prediction in mobile robotic networks,” in Proc. Globecom, Atlanta, GA,
USA, Dec. 2013, pp. 1374–1379.

[37] H. Godrich, A. P. Petropulu, and H. V. Poor, “Power allocation strategies
for target localization in distributed multiple-radar architectures,” IEEE
Trans. Signal Process., vol. 59, no. 7, pp. 3226–3240, Jul. 2011.

[38] N. Garcia, A. M. Haimovich, M. Coulon, and M. Lops, “Resource
allocation in MIMO radar with multiple targets for non-coherent local-

ization,” IEEE Trans. Signal Process., vol. 62, no. 10, pp. 2656–2666,
May 2014.

[39] S. Jeong, O. Simeone, A. Haimovich, and J. Kang, “Beamforming design
for joint localization and data transmission in distributed antenna system,”
IEEE Trans. Veh. Technol., vol. 64, no. 1, pp. 62–76, Jan. 2015.

[40] W. W.-L. Li, Y. Shen, Y. J. Zhang, and M. Z. Win, “Robust power
allocation for energy-efficient location-aware networks,” IEEE/ACM
Trans. Netw., vol. 21, no. 6, pp. 1918–1930, Dec. 2013.

[41] Y. Shen, W. Dai, and M. Z. Win, “Power optimization for network
localization,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1337–1350,
Aug. 2014.

[42] W. Dai, Y. Shen, and M. Z. Win, “Distributed power allocation for co-
operative wireless network localization,” IEEE J. Sel. Areas Commun.,
vol. 33, no. 1, pp. 28–40, Jan. 2015.

[43] H. L. Van Trees, Detection, Estimation and Modulation Theory, Part 1.
New York, NY, USA: Wiley, 1968.

[44] N. Patwari, A. Hero, M. Perkins, N. S. Correal, and R. J. O’Dea, “Relative
location estimation in wireless sensor networks,” IEEE Trans. Signal
Process., vol. 51, no. 8, pp. 2137–2148, Aug. 2003.

[45] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” Proc. Inst. Elect.
Eng.—F, vol. 140, no. 2, pp. 107–113, Apr. 1993.

[46] D. P. Bertsekas, Nonlinear Programming. Belmont, MA, USA: Athena
Scientific, 2003.

[47] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications
of second-order cone programming,” Linear Algebra Appl., vol. 284,
pp. 193–228, Nov. 1998.

[48] C. A. Floudas and P. M. Pardalos, Encyclopedia of Optimization, 2nd ed.
New York, NY, USA: Springer-Verlag, 2009.

[49] W. Dai, Y. Shen, and M. Z. Win, “On the minimum number of active
anchors for optimal localization,” in Proc. IEEE Global Telecomm. Conf.,
Anaheim, CA, USA, Dec. 2012, pp. 4951–4956.

[50] “Technical specification group radio access network; Evolved Universal
Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA
physical layer aspects (Release 9),” 3rd Generation Partnership Project
(3GPP), Sophia-Antipolis, France, 3GPP TR 36.814 V9.0.0 (2010-03),
Mar. 2010.

[51] “Technical specification LTE; Evolved Universal Terrestrial Radio Access
(E-UTRA); User Equipment (UE) radio transmission and reception,” 3rd
Generation Partnership Project (3GPP), Sophia-Antipolis, France, 3GPP
TS 136.101 V11.2.0 (2012-11), Nov. 2012, release 11.

[52] W. Dai, Y. Shen, and M. Z. Win, “Resource allocation for network local-
ization: A computational geometry framework,” IEEE Trans. Inf. Theory,
submitted.

Wenhan Dai (S’12) received the B.S. degrees in
electronic engineering and in mathematics from
Tsinghua University, Beijing, China, in 2011, and
the M.S. degree in aeronautics and astronautics at
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 2014.

He is a Research Assistant with Wireless Com-
munication and Network Sciences Laboratory, MIT,
where he is currently pursuing the Ph.D. degree.
His research interests include communication the-
ory, stochastic optimization, and their application to

wireless communication and network localization. His current research focuses
on resource allocation for network localization, cooperative network operation,
and ultra-wide bandwidth communications.

Mr. Dai received the academic excellence scholarships from 2008 to 2010
and the Outstanding Thesis Award in 2011 from Tsinghua University. He
served as a reviewer for IEEE TRANSACTIONS ON WIRELESS COMMUNI-
CATIONS and IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS

and is recognized as an Exemplary Reviewer of IEEE COMMUNICATIONS

LETTERS.



1430 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 7, JULY 2015

Yuan Shen (S’05–M’14) received the Ph.D. degree
and the S.M. degree in electrical engineering and
computer science from the Massachusetts Institute of
Technology (MIT), Cambridge, MA, USA, in 2014
and 2008, respectively, and the B.E. degree (with
highest honor) in electronic engineering from
Tsinghua University, Beijing, China, in 2005.

He is an Associate Professor with the Depart-
ment of Electronic Engineering, Tsinghua Univer-
sity. Prior to joining Tsinghua University, he was a
Research Assistant and then Postdoctoral Research

Associate with the Laboratory for Information and Decision Systems (LIDS),
MIT in 2005–2014. He was with the Wireless Communications Laboratory, The
Chinese University of Hong Kong in summer 2010, the Hewlett-Packard Labs
in winter 2009, the Corporate R&D at Qualcomm Inc. in summer 2008, the
A&D Center at Texas Instruments in summer 2004, and the Intelligent Sensing
Laboratory, Tsinghua University in 2003–2005. His research interests include
statistical inference, network science, communication theory, information the-
ory, and optimization. His current research focuses on network localization and
navigation, inference techniques, resource allocation, intrinsic wireless secrecy,
and cooperative networks.

Dr. Shen was a recipient of the China’s Youth 1000-Talent Program (2014),
the Marconi Society Paul Baran Young Scholar Award (2010), the MIT EECS
Ernst A. Guillemin Best S.M. Thesis Award (1st place) (2008), the Qualcomm
Roberto Padovani Scholarship (2008), and the MIT Walter A. Rosenblith
Presidential Fellowship (2005). His papers received the IEEE Communications
Society Fred W. Ellersick Prize (2012) and three Best Paper Awards from
the IEEE Globecom (2011), the IEEE ICUWB (2011), and the IEEE WCNC
(2007). He is elected Secretary (2015–2017) for the Radio Communications
Committee of the IEEE Communications Society. He serves as a track co-
chair of the Technical Program Committee (TPC) for the European Signal
Processing Conference (EUSIPCO) (2016), and as a TPC member for numer-
ous international conferences since 2009. He serves as Editor for the IEEE
Communications Letters and Guest-Editor for the International Journal of
Distributed Sensor Networks (2015).

Moe Z. Win (S’85–M’87–SM’97–F’04) received
both the Ph.D. in electrical engineering and the M.S.
in applied mathematics as a Presidential Fellow at the
University of Southern California (USC) in 1998. He
received the M.S. in electrical engineering from USC
in 1989 and the B.S. (magna cum laude) in electrical
engineering from Texas A&M University in 1987.

He is a Professor at the Massachusetts In-
stitute of Technology (MIT) and the Founding
Director of the Wireless Communication and Net-
work Sciences Laboratory. Prior to joining MIT,

he was with AT&T Research Laboratories for five years and with
the Jet Propulsion Laboratory for seven years. His research encom-
passes fundamental theories, algorithm design, and experimentation for a
broad range of real-world problems. His current research topics include network
localization and navigation, network interference exploitation, intrinsic wireless
secrecy, adaptive diversity techniques, and ultra-wide bandwidth systems.

Professor Win is an elected Fellow of the AAAS, the IEEE, and the IET,
and was an IEEE Distinguished Lecturer. He was honored with two IEEE
Technical Field Awards: the IEEE Kiyo Tomiyasu Award (2011) and the
IEEE Eric E. Sumner Award (2006, jointly with R. A. Scholtz). Together
with students and colleagues, his papers have received numerous awards,
including the IEEE Communications Society’s Stephen O. Rice Prize (2012),
the IEEE Aerospace and Electronic Systems Society’s M. Barry Carlton Award
(2011), the IEEE Communications Society’s Guglielmo Marconi Prize Paper
Award (2008), and the IEEE Antennas and Propagation Society’s Sergei A.
Schelkunoff Transactions Prize Paper Award (2003). Highlights of his inter-
national scholarly initiatives are the Copernicus Fellowship (2011), the Royal
Academy of Engineering Distinguished Visiting Fellowship (2009), and the
Fulbright Fellowship (2004). Other recognitions include the International Prize
for Communications Cristoforo Colombo (2013), the Laurea Honoris Causa
from the University of Ferrara (2008), the Technical Recognition Award of
the IEEE ComSoc Radio Communications Committee (2008), and the U.S.
Presidential Early Career Award for Scientists and Engineers (2004).

Dr. Win was an elected Member-at-Large on the IEEE Communications
Society Board of Governors (2011–2013). He was the Chair (2004–2006) and
Secretary (2002–2004) for the Radio Communications Committee of the IEEE
Communications Society. Over the last decade, he has organized and chaired
numerous international conferences. He is currently an Editor-at-Large for the
IEEE WIRELESS COMMUNICATIONS LETTERS. He served as Editor (2006–
2012) for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, and
as Area Editor (2003–2006) and Editor (1998–2006) for the IEEE TRANSAC-
TIONS ON COMMUNICATIONS. He was Guest-Editor for the PROCEEDINGS

OF THE IEEE (2009) and for the IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS (2002).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues false
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


