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Efficient Network Localization
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Abstract— Network localization is an emerging paradigm
for providing high-accuracy positional information in
GPS-challenged environments. To enable efficient network
localization, we propose node prioritization strategies for
allocating transmission resources among network nodes. This
paper develops a computational geometry framework for
determining the optimal node prioritization strategy. The
framework consists of transforming each node prioritization
strategy into a point in a Euclidian space and exploiting geometric
properties of these points. Under this framework, we prove the
sparsity property of the optimal node prioritization vector (NPV)
and reduce the search space of the optimal NPV. Our approach
yields exact optimal solutions rather than ε-approximate
solutions for efficient network localization. Numerical results
show that the proposed approach can significantly reduce
the computational complexity of prioritization strategies and
improve the accuracy of network localization.

Index Terms— Computational geometry, localization, sparsity,
wireless networks.

I. INTRODUCTION

NETWORK LOCALIZATION is a promising paradigm
for providing high-accuracy positional information

in GPS-challenged scenarios [1]–[11]. Such information
is crucial for many location-based applications, including
autonomous logistics, building security, as well as search-and-
rescue [8]–[16]. In network localization, there are two types
of nodes, referred to as anchors and agents. The former have
known positions and the latter have unknown positions. The
position of an agent can be inferred from range measurements
based on wireless signals transmitted by neighboring anchors
(see Fig. 1).
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Fig. 1. Network localization scenario: agents (blue dots) determine
their positions based on range measurements with respect to anchors
(red circles).

The performance of network localization depends on various
factors, such as transmission power, signal bandwidth, network
geometry,1 and propagation conditions [8]–[10], [17]–[20].
Among them, the allocation of transmission resources (e.g.,
power and bandwidth) plays a critical role since it not only
affects network lifetime and throughput, but also determines
the localization performance. For example, range measure-
ments with anchors that give rise to poor network geometry
can consume a significant amount of energy while provid-
ing diminishing localization accuracy improvement. Thus,
it is essential to design node prioritization strategies for
allocating transmission resources so that the best tradeoff
between resource consumption and localization accuracy can
be achieved [21], [22].

Extensive work has been carried out on maximizing com-
munication and networking performance subject to resource
constraints [23]–[26]. However, strategies designed for data
networks are not suitable for localization networks since the
performance metrics are different. In particular, a critical
difference is that the performance metric in communication
networks does not fully consider network geometry. Therefore,
node prioritization calls for new formulations that account for
the structure of the localization performance metric [27]–[30].
Two fundamental questions related to node prioritization are
as follows:

1) How does localization performance depend on node
prioritization strategies?

2) How can network nodes be prioritized for optimally
allocating transmission resources?

1Network geometry refers to the relative positions among nodes in a
localization network.
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The answers to these questions will reveal the essence of node
prioritization and guide the design of prioritization strategies
for efficient network localization.

Current studies on efficient network localization [29]–[33]
adopt certain functions of the Fisher information matrix
(FIM) as the performance metrics. Typical functions include
the trace of the inverted FIM [29]–[32], and the smaller
eigenvalue of the FIM [32], [33]. These studies typically
optimize the performance metric for given resource constraints
using standard optimization programs. In [31], the problem
of allocating transmission power for target localization is
investigated, where the authors employed a relaxation method
and obtained suboptimal solutions. In [32], the trace of the
inverted FIM and the smaller eigenvalue of the FIM are
shown as convex functions of the transmission power, and the
corresponding power optimization problems for network local-
ization are converted to conic programs. In [33], the ranging
energy optimization problem for sensor positioning networks
is formulated and a practical algorithm is proposed based on
semi-definite programs (SDPs). Recent work [29] unifies the
power optimization problem for active and passive localization
and shows that the problem can be transformed into a second-
order cone program (SOCP). All these approaches obtain
ε-approximate solutions and rely on standard optimization
engines [34], [35].

In this paper, we establish a computational geometry frame-
work for node prioritization, aiming to achieve the opti-
mal localization performance under resource constraints. We
uncover an essential property, namely low-dimensionality of
the localization performance metric. Such a property enables
a linear transformation that maps each node prioritization
strategy into a point in a three-dimensional Euclidian space.
We determine several geometric properties based on this trans-
formation and derive the optimal node prioritization strategies
by exploiting these properties. The key contributions of this
paper are as follows:
• We establish a computational geometry framework for

node prioritization, exploiting the low-dimensionality of
the performance metric;

• We determine the sparsity property of the optimal node
prioritization vector (NPV), i.e., the optimal localization
performance can be achieved by allocating resources to
only a small subset of anchors;

• In the absence of individual resource constraints,2 we
develop efficient node prioritization strategies via geomet-
ric methods with complexity O(n log n) for an n-anchor
network;

• In the presence of individual resource constraints, we
transform the node prioritization problem into that of
finding the set generated by the linear combination of
vectors with bounded coefficients (LCVBC) and develop
an optimal strategy with complexity O(n3 log n).

The remaining sections are organized as follows. Section II
introduces the system model and formulates node prioritiza-
tion problems. Section III presents the geometric framework

2Individual resource constraints refer to the allowable resource consumption
for each anchor.

and demonstrates the sparsity property for the optimal NPV.
Sections IV and V respectively provide the optimal solution
for the node prioritization problem in the absence and presence
of individual resource constraints. A discussion of several
related issues is given in Section VI. Finally, the efficiency and
the performance gain of the proposed strategies are presented
via simulation in Section VII, and conclusions are drawn in
Section VIII.

Notation: [ · ]T denotes the transpose; [A]ij denotes the
element in the ith row and jth column of matrix A;
tr{A} denotes the trace of a square matrixA; rank{ · } denotes
the rank; Sn+ denotes the set of n × n positive-semidefinite
matrices; ‖x‖ denotes the Euclidean norm of vector x; ‖x‖0
denotes the number of nonzero elements of vector x; for
vectors x and y, the relations x � y and x � y denote that all
elements of x− y are nonnegative and positive, respectively;
matrices A � B denotes that A−B is positive semidefinite;
for a set of points A, Hc{A} denotes the convex hull of A; In
denotes an n×n identity matrix, 0m,n denotes an m×n matrix
with all 0’s, and 1n and 0n denote n-dimensional vectors with
all 1’s and 0’s, respectively, where the subscript will be omitted
if clear from the context; ek is a unit vector with the kth

element being 1 and all other elements being 0’s; and matrix
Jr(φ) := [cosφ sinφ]T [cosφ sinφ].

II. PRELIMINARIES

This section introduces the system model, presents the
performance metric, and formulates the node prioritization
problem for network localization.

A. Problem Formulation

Consider a wireless localization network with n anchors
and multiple agents. Anchors are nodes with known positions,
whereas agents are nodes with unknown positions. Each
agent aims to determine its position based on point-to-point
range measurements made with respect to the anchors. Let
Nb = {1, 2, . . . , n} denote the set of anchors and pk ∈ R2

denote the position of anchor k ∈ Nb. Since the node
prioritization problem for each agent has an identical structure,
we focus on one agent located at p0 ∈ R2 in the network
without loss of generality.

Let Je(p0;x) denote the FIM for p0, and it is derived
in [10] and given as3

Je(p0;x) = J0 +
∑
k∈Nb

ξk xk Jr(φk) (1)

where J0 is the FIM for the prior positional knowledge,
xk is the amount of resources allocated to anchor k, ξk is
the equivalent ranging coefficient (ERC) depending on the
received waveforms, φk is the angle from pk to p0, and x is
the NPV, denoted by

x :=
[
x1 x2 . . . xn

]T
.

3If there is no prior positional knowledge, then J0 = 02,2; otherwise, (1)
provides an approximation of the FIM in the far field scenario. The exact form
of the FIM is discussed in Section VI and we will show such approximation
does not change the structure of the problem.
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Equation (1) can accommodate various node prioritization
problems based on different types of resources manifested
in the NPV x, and ERCs ξk take corresponding values
depending on the type of the resource. The formulation for
node prioritization problems based on power and bandwidth
resources is given in Appendix I.

The mean squared error of any unbiased estimator p̂0 for
position p0 can be lower bounded by the squared position
error bound (SPEB) defined as

P(x) = tr
{
J−1e (p0;x)

}
. (2)

The SPEB is obtained based on the information inequality
and is asymptotically achievable by the maximum likelihood
estimators in a high signal-to-noise ratio regime (over 10 ∼
15dB) [36]–[38]. Hence, we adopt the SPEB as the perfor-
mance metric for network localization. The node prioritization
problem is then formulated as follows

P : minimize
x∈Rn

P(x)

subject to 1T x ≤ 1 (3)
x � 0 (4)
x � xmax (5)

where (3) is the normalized total resource constraint, (4) is the
nonnegative constraint for the amount of resources, and (5) is
the individual resource constraint.

Remark 1: Parameters such as angles and ERCs are
required to solve the node prioritization problems. In appli-
cations such as navigation and tracking, these parameters can
be estimated from previous time steps. For example, at each
step agents estimate those parameters based on the range
measurements from anchors, and then use these parameter
estimates to determine the node prioritization strategy for the
next time step.4

Remark 2: The methods developed in this paper are also
applicable to the problems using other performance metrics
(e.g., the smaller eigenvalue or the determinant of the FIM)
and to some other formulations of the node prioritization
problems (e.g., minimizing the total resource consumption
subject to a given localization performance requirement).

In the following sections, the problem without the individual
resource constraint (5) is first investigated, and the generaliza-
tion to the problem with the individual resource constraint is
given in Section V. For the ease of exposition, the problem P
without the individual constraint (5) is denoted as P0.

B. Properties of SPEB

This subsection introduces two important properties of the
SPEB.

Proposition 1 (Convexity [32]): The SPEB P(x) is a
convex function of x � 0.

Remark 3: This proposition implies that the node prioriti-
zation problem P is a convex program and can be solved
by standard convex optimization engines. In addition, the

4Note that the estimated parameters may be subject to uncertainties.
In Section VI, we will present a robust formulation to deal with these
uncertainties.

problem P can be transformed into SDP [32] and SOCP [29],
which have more efficient solvers than general convex
programs.

Proposition 2 (Monotonicity [39]): For two NPVs x and
y, if x � y, then P(x) ≤ P(y).

Remark 4: Proposition 2 implies that (3) can be replaced
with the equality 1T x = 1. Moreover, if 1T xmax ≤ 1, the
optimal solution can be trivially obtained as x = xmax due
to the monotonicity. Hence, we only consider the case where
1T xmax > 1.

III. GEOMETRIC FRAMEWORK AND SPARSITY PROPERTY

This section formulates the geometric framework for the
node prioritization problem P0 and shows the sparsity prop-
erty of the optimal NPV.

A. Reduced Dimension of NPV

The following proposition gives a fractional expression of
the SPEB defined in (2).

Proposition 3: The SPEB P(x) can be written as follows

P(x) =
4 y3

y23 − y21 − y22
(6)

where

y1 = cTRx− [J0]22 + [J0]11

y2 = sTRx+ 2[J0]12

y3 = 1TRx+ tr{J0}

in which R = diag{ξ1, ξ2, . . . , ξn}, and

c = [ cos 2φ1 cos 2φ2 . . . cos 2φn ]T

s = [ sin 2φ1 sin 2φ2 . . . sin 2φn ]T.

Proof: Note that the FIM can be written as

Je(p0;x) = J0 +
∑
k∈Nb

ξk xk Jr(φk)

= J0 +
∑
k∈Nb

ξk xk

[
cos2 φk sinφk cosφk

sinφk cosφk sin2 φk

]
= J0 +

∑
k∈Nb

ξk xk
2

[
1 + cos 2φk sin 2φk

sin 2φk 1− cos 2φk

]
=

[
(y3 + y1)/2 y2/2

y2/2 (y3 − y1)/2

]
.

Consequently, the SPEB P(x) can be written as

P(x) = tr

{[
(y3 + y1)/2 y2/2

y2/2 (y3 − y1)/2

]−1}
which is equivalent to (6) after some algebra.

Remark 5: The following observation, essential for the
design of efficient node prioritization strategies, can be made
from Proposition 3: the SPEB can be written as a function of
only three variables, each of which is an affine function of
(possibly high-dimensional) an NPV.
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Fig. 2. Convex polyhedron Y and one side of two-sheeted hyperboloid
prescribed by (8).

Equation (6) suggests an affine transformation that maps an
NPV x to a point in three-dimensional space

y = Ax+ b

where A = [ c s 1 ]TR and

b =
[
− [J0]22 + [J0]11 − 2 · [J0]12 tr{J0}

]T
.

Proposition 3 implies that

Q(y) :=
4 y3

y23 − y21 − y22
= P(x). (7)

This leads to the geometric representation of the SPEB in the
next proposition.

Proposition 4: Given an NPV x, the point y = Ax + b
lies on a hyperboloid, given by(

y3 − 2λ−1
)2 − y21 − y22 − 4λ−2 = 0 (8)

where λ = P(x).
Proof: For λ = P(x), we have Q(y) = λ. Note that for

a given λ > 0 and y ∈ R3, Q(y) = λ depicts a quadratic
curve, identical to curve (8) except at y = 0.

Denote the feasible NPV set and its image set, respectively,
by

X =
{
x ∈ Rn : 1T x = 1,0 � x

}
and

Y =
{
y ∈ R3 : y = Ax+ b, x ∈ X

}
.

Note that each element x ∈ X can be written as a convex
combination of elements in

E := {e1, e2, . . . , en}.

The next proposition provides a geometric property of Y .
Proposition 5: The image set Y is a convex polyhedron,

given by Hc{Ae+ b : e ∈ E}.
Proof: For any x ∈ X , y =

∑n
k=1 xk(Aek + b) with∑n

k=1 xk = 1. Thus, y is a convex combination of Aek + b,
k = 1, 2, . . . , n. Therefore, Y is the convex hull of points
Hc{Ae+ b : e ∈ E}.

This proposition implies that for x ∈ X with the corre-
sponding SPEB λ = P(x), Ax + b is in the intersection of
Y and curve (8), as illustrated in Fig. 2.

Fig. 3. Illustration of the sparsity: resources can be optimally allocated to
only three active anchors. Most anchors will not be used due to unfavorable
channel qualities or poor network geometry.

B. Geometric Properties of the Optimal NPV

Based on the above geometric observations, some properties
of the optimal NPV are obtained in this section.

Proposition 6: If x∗ is an optimal solution for P0, then
y∗ = Ax∗+b lies on the surface of the convex polyhedron Y .

Proof: Suppose y∗ is an interior point of Y , then by the
definition of interior points, there exists ε > 0 such that

{y : ‖y − y∗‖ ≤ ε} ⊆ Y.

Let δ = ε/(2 · ‖A1‖) and xδ = x∗ + δ1.5 Clearly,

|Axδ + b− y∗| ≤ ε.

Therefore, yδ = Axδ + b ∈ Y , and by Proposition 5, there
exists x̃ ∈ X such that yδ =

∑
k∈Nb

x̃k(Aek+b) = Ax̃+b.
Equation (7) gives

P(xδ) = Q(Axδ + b)

= Q(Ax̃+ b) = P(x̃)

where the second equality is becauseAxδ+b = yδ = Ax̃+b.
Since x∗ is the optimal NPV, P(x∗) ≤ P(x̃). Thus we have
P(x∗) ≤ P(xδ). This is a contradiction since xδ = x∗ + δ1,
implying that P(xδ) < P(x∗).

With Proposition 6, we determine the sparsity property of
the optimal NPV.

Theorem 1: In two-dimensional networks, there exists an
optimal NPV x for P0 such that ‖x‖0 ≤ 3.

Proof: Suppose x∗ is an optimal solution for P0. By
Proposition 6, y∗ = Ax∗ + b lies on the surface of Y , and
hence inside a triangle with three vertices, denoted byAei+b,
Aej + b, and Aek + b. Thus y∗ can be written as a convex
combination: y∗ = xi(Aei+b)+xj(Aej+b)+xk(Aek+b)
for nonnegative xi, xj and xk such that xi+xj +xk = 1. Let
x = xiei + xjej + xkek, then Ax = Ax∗ and

P(x) = Q(Ax+ b)

= Q(Ax∗ + b) = P(x∗).

Hence, x is also an optimal solution for P0 with
‖x‖0 ≤ 3.

Remark 6: Theorem 1 implies that the total transmission
resources can be allocated to only three anchors without loss
of optimality in two-dimensional networks. We intuit that
most anchors will not be used due to unfavorable channel
qualities or poor network geometry. For example in Fig. 3,

5One can verify that A1 6= 0 and hence δ is well defined.
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Anchor 1 is not active since it is farther away from the
agent compared to other anchors. Therefore, the same amount
of resources allocated to other anchors contribute more in
reducing the SPEB. Anchor 2 forms almost a straight line
with the agent and Anchor 4, and thus, Anchor 2 and Anchor
4 provide information along the similar direction. However,
since Anchor 4 is closer than Anchor 2 to the agent, the same
amount of resources in Anchor 4 provides more information
along the aforementioned direction, and thus Anchor 2 is not
used.

C. More Results on the Sparsity Property

Theorem 1 reveals the sparsity property of the optimal NPV
for two-dimensional networks. In fact, this sparsity property
is also retained for networks in high dimension. Note that in
the high-dimensional case, the FIM is

Je(p0;x) = J0 +
∑
k∈Nb

ξk xk uk u
T
k (9)

where uk = (pk−p0)/‖pk−p0‖ and the corresponding SPEB
is P(x) = tr

{
J−1e (p0;x)

}
.

Theorem 2: There exists an optimal NPV x for P0 such
that ‖x‖0 ≤ D in d-dimensional networks, where D =

(
d+1
2

)
.

Proof: For any symmetric d × d matrix M , we denote
a one-to-one function f : Rd×d → RD, such that f(M) is a
D×1 vector obtained by rearranging D elements in the upper
triangular part of M .

Note that Je(p0;x) is a symmetric d× d matrix and each
element of Je(p0;x) is an affine function of x. Hence, there
exists a matrix B and vector c such that

Bx+ c = f
(
Je(p0;x)

)
.

Consequently, we can rewrite the SPEB as

P(x) = tr
{(
f (−1)(Bx+ c)

)−1}
=: g(Bx+ c)

where f (−1)(·) is the inverse function of f(·).
Let YD = {y ∈ RD : y = Bx + c, x ∈ X}. One can

verify that YD is a convex polytope, given by

Hc{B e1 + c, B e2 + c, . . . ,B en + c}.

Similarly to Proposition 6, if x∗ is an optimal solution for P0,
then y∗ = Bx∗ + c lies on the boundary of the convex
polytope YD, and hence inside a (D − 1)-simplex with D
vertices, denoted by B ek1 + c,B ek2 + c, . . . ,B ekD + c.
Thus, y∗ can be written as a convex combination:

y∗ =

D∑
j=1

xj(B ekj + c)

for nonnegative xj(1 ≤ j ≤ D) such that
∑D
j=1 xj = 1. Let

x =
∑D
j=1 xjekj . Then Bx = Bx∗ and

P(x) = g(Bx+ c)

= g(Bx∗ + c) = P(x∗).

Hence, x is also an optimal solution for P0 with
‖x‖0 ≤ D.

Theorem 2 is a generalization of Theorem 1. For two-
dimensional case, a stronger result is provided as follows.

Proposition 7: For two-dimensional node prioritization
problem P0, there exists an optimal solution x∗ such that
‖x∗‖0 ≤ rank{Λ}, where

Λ = 11T − c cT − s sT.

Note that rank{Λ} ≤ 3 since Λ = 11T−c cT−s sT. It can
be shown that this inequality is strict for certain topologies.
Consequently, Proposition 7 provides a tighter upper bound
than Theorem 1. An alternative proof of Theorem 2 and the
proof of Proposition 7 via algebraic methods are shown in
Appendix II and Appendix III, respectively.

IV. GEOMETRIC METHODS FOR DETERMINING
THE OPTIMAL NPV

This section presents the geometric methods for determining
the optimal NPV of P0. The sparsity property implies that
the quest for the optimal NPV can be restricted to the small
networks with three anchors, referred to as simple networks.
The simple network that the optimal NPV corresponds
to is referred to as the optimal simple network. We first
design the optimal node prioritization strategies for simple
networks in Section IV-A, and then propose a geometric
method to efficiently find the optimal simple network in
Sections IV-B and IV-C. The discussion on computational
complexity is presented in Section IV-D.

A. Optimal NPVs in Simple Networks

Given three feasible NPVs x1, x2 and x3, consider a
set V consisting of all NPVs that can be written as a convex
combination of these three NPVs, i.e.,

V :=
{
x =

3∑
k=1

ωk xk :

3∑
k=1

ωk = 1, ωk ≥ 0
}
.

The goal is to determine an NPV with the smallest SPEB
among this set, i.e.,

PS : minimize
x∈R3

P(x)

subject to x ∈ V.

Note that the solution of P0 in a simple network can be
obtained from that of PS by setting xk = ek, k ∈ {1, 2, 3}.

The geometric interpretation of SPEB in Proposition 4 is
used to solve the problem PS. Let U denote the image set of
NPVs from V under transformation Ax+ b, i.e.,

U := {Ax+ b : x ∈ V} .

Clearly, U consists of all vectors that can be written as a
convex combination of uk = Axk + b, k ∈ {1, 2, 3}.
Moreover, for λ > 0, let

H(λ) =
{
y ∈ R3 : y1, y2, and y3 satisfy (8)

}
.
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Fig. 4. Illustration of different cases for solving PG: in Case 1, U is a triangle and y◦ is an interior point of U ; in Case 2, U is a triangle and y◦ is on
the edge of U , but not a vertex of U ; and in Case 3, U is a triangle and y◦ is a vertex of U . Case 4 is not illustrated since it is similar to Case 2 and 3.

The next proposition shows that the solution of the prob-
lem PS can be obtained from that of the following problem

PG : minimize
λ1>0

λ1

subject to U ∩H(λ1) 6= ∅.

Proposition 8: For any x◦ ∈ V , if Ax◦ + b ∈ H(λ◦1),
where λ◦1 is the optimal solution for PG, then x◦ is an optimal
solution for PS.

Proof: Suppose x∗ is an optimal solution for PS. By
Proposition 4, y∗ = Ax∗ + b ∈ H(λ∗1), where λ∗1 = P(x∗).
Clearly, y∗ ∈ U . Hence, U ∩H(λ∗1) 6= ∅, implying that λ∗1 is
a feasible value of PG. Therefore, λ◦1 ≤ λ∗1 since λ◦1 is the
optimal value for PG.

It can be shown that Ax◦ + b ∈ H(λ◦1) implies that
P(x◦) = λ◦1. Since x◦ ∈ V , x◦ is a feasible solution of PS.
Therefore, P(x∗) ≤ P(x◦) since x∗ is the optimal solution
for PS. Equivalently, λ∗1 ≤ λ◦1. Consequently, P(x∗) =
P(x◦) and hence x◦ is also an optimal solution for PS.

Note that with the optimal solution of PG, λ◦1, and a point
y◦ ∈ U ∩ H(λ◦1), one can obtain nonnegative ω◦1 , ω◦2 and ω◦3
such that y◦ =

∑3
k=1 ω

◦
kuk and

∑3
k=1 ω

◦
k = 1. Consider a

vector x◦ =
∑3
k=1 ω

◦
k xk, then one can verify that x◦ ∈ V

and Ax◦ + b ∈ H(λ◦1), and hence x◦ is an optimal solution
for PS by Proposition 8.

Next we determine an optimal solution λ◦1 of PG and
y◦ ∈ U ∩ H(λ◦1) using the geometric method. The approach
of finding an optimal solution can be divided into four cases,
depending on the shape of U and the position of y◦ relative
to U . The illustration of different cases are shown in Fig. 4.
• Case 1: U is a triangle and y◦ is an interior point of U .

Any point [x1 x2 x3 ]T on the plane containing U satisfies

c3 x1 + c2 x2 + c1 x3 + c0 = 0

where the coefficients ck depend on U and assume that
c0 > 0. Since y◦ is an interior point of U , the triangle U
is tangent to H(λ◦1) at y◦. Thus, normal vectors of U
and H(λ◦1) are aligned at y◦, implying that there exists
t such that

t c =
[
− y◦1 − y◦2 (y◦3 − 2/λ◦1)

]T
(10)

where c = [ c3 c2 c1 ]T. Moreover, since y◦ lies in both
U and H(λ◦1),

c3 y
◦
1 + c2 y

◦
2 + c1 y

◦
3 + c0 = 0(

y◦3 − 2/λ◦1
)2 − y◦21 − y◦22 − 4(λ◦1)−2 = 0. (11)

Solving the equations above gives

λ◦1 =
2
√
c21 − c22 − c23 − 2 c1

c0
(12)

t =
c0 + 2c1/λ

◦
1

c23 + c22 − c21
(13)

and y◦ can be obtained by substituting (12) and (13)
into (10).

• Case 2: U is a triangle and y◦ is on the edge of U , but
not a vertex of U .
Without loss of generality, suppose the edge containing
y◦ connects u1 and u2, and therefore y◦ can be written
as

y◦ = u1 + t (u2 − u1) (14)

for some t ∈ ( 0, 1 ). Let [ a1 a2 a3 ]T = u1 and
[ b1 b2 b3 ]T = u2 − u1. Since y◦ is an interior point
of the edge, u1 − u2 is orthogonal to the normal vector
of H at y◦, i.e.,

−y◦1 b1 − y◦2 b2 + (y3 − 2/λ◦1)b3 = 0. (15)

Substituting (14) into (15) and (11) gives

A2 t
2 +A1 t+A0 = 0 (16)

where

A2 = b3 (b23 − b22 − b21)

A1 = 2 a3 (b23 − b22 − b21)

A0 = 2 a3 (a3b3 − a2b2 − a1b1)− b3 (a23 − a22 − a21).

Then a closed-form solution of t can be obtained. The
expression of y◦ can be obtained accordingly.

• Case 3: U is a triangle and y◦ is a vertex of U .
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Algorithm 1 Solution to Problem PG

Input: U
Output: λ◦1 and y◦

1: if U is a triangle then
2: Compute λ◦1 from (12) and the corresponding y◦;
3: if y◦ is in U then
4: Output λ◦1 and y◦;
5: else
6: Compute λ◦1 from (14)-(16) and the corresponding

y◦;
7: if y◦ is in one of U’s edges but not a vertex then
8: Output λ◦1 and y◦;
9: else

10: Obtain λ◦1 and y◦ according to Case 3;
11: Output λ◦1 and y◦;
12: end if
13: end if
14: else
15: Obtain λ◦1 and y◦ according to Case 4;
16: end if

In this case, y◦ is the vertex with the smallest λ◦1.
• Case 4: U degenerates to a segment or a point.

The solution can be obtained similarly to that in Case 2
or Case 3.

The observations made in the above four cases lead to
Algorithm 1 for finding λ◦1 and y◦.

Remark 7: In node prioritization problems, Karush-Kuhn-
Tucker (KKT) conditions often play an important role in deter-
mining the optimal solutions [40]. In particular, Appendix IV
provides an alternative way of solving P0 in simple networks
via checking KKT conditions.

B. Optimal Simple Networks

We next show how to efficiently find the optimal simple
network. Let x∗ be an optimal NPV for P0 (if there are mul-
tiple optimal NPVs, any one can be chosen). By Proposition
6, y∗ = Ax∗ + b lies on the surface of Y . Hence, the quest
for an optimal strategy can be restricted only to those simple
networks that correspond to the triangles on the surface of Y .
This observation leads to Algorithm 2, which gives an optimal
node prioritization strategy.

Computational complexity of Node Prioritization via Geo-
metric Methods (NPGM): In Algorithm 2, the complexity of
Line 1 is O(n). The complexity of Line 2 is O(n log n) using
an optimal output-sensitive algorithm [41] to generate convex
hulls. Note that the cardinality of the set K is no greater than
(6n− 12) according to Proposition 9. Hence, the complexity
for Line 3 is O(n) since triangulating a convex polygon with
nv vertices can be completed with complexity O(nv) [42].
Moreover, there are no more than 6n cycles in the iteration
from Line 4 to Line 13 and each cycle can be completed
with complexity O(1), implying that the complexity of the
iteration is O(n). Hence, the total computational complexity
is O(n log n).

Algorithm 2 Node Prioritization via Geometric Methods
(NPGM)
Input: ξk and φk, k ∈ Nb

Output: Optimal NPV x∗ for P0

1: Initialization: x∗ ← 1/n and Ptmp ← P(1/n);
2: Construct Y = Hc{Ae+ b : e ∈ E};
3: Find a triangulation for the faces of Y and let K denote

the set consisting of all the resulting triangles;
4: repeat
5: Find an element Ki ∈ K and let Aei1 + b, Aei2 + b

and Aei3 + b denote the vertices of Ki;
6: Find the optimal NPV xtmp according to Proposition 8

and Algorithm 1 for the simple network {i1, i2, i3};
7: if P(xtmp) ≤ Ptmp then
8: Ptmp ← P(xtmp);
9: x∗ ← xtmp;

10: end if
11: K ← K \ {Ki};
12: until K = ∅
13: Output x∗.

Proposition 9: Consider a triangulation for the faces of Y
and let K denote the set consisting of all the resulting triangles.
Then |K| ≤ 6n− 12.

Proof: Let E denote the number of edges of Y . Then
E ≤ 3n− 6 by Euler’s formula. Let l1, l2, . . . , lF denote the
number of edges for the faces of Y , where F is the number
of faces of Y . Then

F∑
k=1

lk = 2 · E ≤ 6n− 12.

Note that a convex polygon with ne edges can be divided into
(ne − 2) triangles. Hence,

|K| ≤
F∑
k=1

lk ≤ 6n− 12

which gives the desired result.

C. Visibility-Inspired Approaches

More geometric properties can be exploited to further
reduce the candidate set K in NPGM. Intuitively, Ax∗ + b
belongs to the triangle facing the hyperboloid of (8) (the red
faces in Fig. 5). To formalize this claim, the definition of
visibility is given as follows.

Definition 1 [42]: Given a convex polyhedron C and a
point p outside C. Let hf denote the open half space that
is generated by the plane containing a face f of C and does
not contain C. Then f is visible from the point p if p belongs
to hf .

Consider a point yµ = [ 0, 0, µ ]T (µ is an arbitrary negative
number). The next proposition shows that y∗ lies in a face that
is not visible from yµ.

Proposition 10: Y has a face f∗ that is not visible from yµ
and contains y∗.

Proof: See Appendix VI.
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Fig. 5. Illustration of visibility. For the optimal NPV x∗, Ax∗ lies in the
red faces, which is not visible from yµ.

Algorithm 3 Node Prioritization Inspired by Visibility (NPIV)
Input: ξk and φk, k ∈ Nb

Output: Optimal NPV x∗ for P0

1: Initialization: yµ ← ( 0, 0, µ ) where µ < 0 and |µ| is
sufficiently large; x∗ ← 1/n and Ptmp ← P(1/n);

2: Construct Ỹ = Hc{yµ, Ae+ b : e ∈ E};
3: Find a triangulation for the faces of Ỹ that do not contain

the point yµ and let K̃ denote the set consisted of all
the resulting triangles;

4: repeat
5: Find an element Ki ∈ K̃ and let Aei1 + b, Aei2 + b

and Aei3 + b denote the vertices of Ki;
6: Find the optimal NPV xtmp according to Proposition 8

and Algorithm 1 for the simple network {i1, i2, i3};
7: if P(xtmp) ≤ Ptmp then
8: Ptmp ← P(xtmp);
9: x∗ ← xtmp;

10: end if
11: K̃ ← K̃ \ {Ki};
12: until K̃ = ∅
13: Output x∗.

The next proposition shows that y∗ lies on the surface
of Ỹ , where Ỹ is obtained by generating the convex hull of
yµ and Y .

Proposition 11: f∗ stated in Proposition 10 is a face of Ỹ ,
where Ỹ = Hc{yµ, Ae+ b : e ∈ E}.

Proof: Since f∗ is not visible from yµ, f∗ lies on the
surface of the new convex hull generated by the old convex
hull Y and the new point yµ [42].

Remark 8: Proposition 11 implies that the quest for an
optimal strategy can be performed on simple networks cor-
responding to the triangles on the surface of Ỹ . Moreover, the
search can be limited to the faces that do not contain yµ since
yµ is not in f∗. These observations lead to Algorithm 3, which
gives a more efficient and optimal node prioritization strategy.

D. Discussion on Computational Complexity

Regardless of the specific methodology (based either on
geometry or on KKT conditions), the node prioritization
strategies for simple networks shown in Section IV-A can
be naturally extended to networks of arbitrary size based on
the sparsity property. In particular, for a network of size n,
there are

(
n
3

)
ways to select three out of n anchors. Each

Fig. 6. Vertex number of Y and Ỹ and cardinality of K and K̃.

combination forms a simple network, the optimal solution
of which can be obtained efficiently using Algorithm 1. The
optimal solution for the entire network can then be obtained
by selecting the one with the minimum SPEB among all(
n
3

)
simple networks. This requires the evaluation of the

SPEB for every simple network and its complexity is O(n3).
Comparatively, other strategies that obtain ε-approximate solu-
tions using optimization packages (e.g., the SDP and SOCP
formulation) have the worst-case complexity O(n3.5) [43].

The insight obtained from geometric methods results
in NPGM, which enables the reduction of complexity to
O(n log n) without loss of optimality. Moreover, exploiting
more geometric properties gives NPIV. Note that NPIV has
lower computational complexity than NPGM due to the fol-
lowing reason. The complexity of generating the convex hull
is O(n log h), where h is the number of vertices in the output
convex hull [41]. In NPGM, h is equal to n; whereas in NPIV,
h is much smaller than n since many vertices of Y become
interior points of Ỹ . Moreover, the number of iterations from
Line 4 to Line 13 decreases significantly since the search in
NPIV is limited to faces of Ỹ that do not contain yµ. Fig. 6
shows the number of vertices of the output convex hulls Y
and Ỹ , and the cardinality of the triangle sets K and K̃ (i.e.,
the number of cycles from Line 4 to Line 13) as a function
of the number of anchors.6 It can be observed that both the
number of vertices of Y and the cardinality of K increase
linearly with respect to n. Moreover, the number of vertices
of Ỹ and the cardinality of K̃ almost remain a constant as n
increases. Such an observation demonstrates the reason for the
efficiency improvement of NPIV.

V. NODE PRIORITIZATION WITH
INDIVIDUAL CONSTRAINTS

This section provides the optimal strategies for the node
prioritization problem with the individual constraint (5).

6Consider that an agent and a set of anchors are placed randomly in the
square region with uniform distribution. The scenario is the same as the one
used by Case 1, in Section VII-B.
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A. Dimension Augmentation and Projection

Denote the feasible NPV set and its image set, respectively,
by

XI = {x ∈ Rn : 1T x = 1,0 � x � xmax}

and

Ye = {y ∈ R3 : y = Ax+ b,x ∈ XI}. (17)

For k ∈ Nb, xk has two boundary constraints xk ≥ 0 and
xk ≤ xmax

k , where xmax
k is the kth element of xmax. Note that

each element x ∈ XI can be written as a convex combination
of elements in

EI := {x ∈ Rn : 1T x = 1 and at least (n− 1)

boundary constraints are active}.

Similarly to Proposition 5, the next proposition provides a
geometric property of Ye.

Proposition 12: The image set Ye is a convex polyhedron,
given by Hc{Ae+ b : e ∈ EI}.

Proposition 12 can be proved similarly to Proposition 5. One
can also verify that if x∗ is the optimal solution for P , then
the image point Ax∗+b lies on the surface of Ye. Therefore,
the quest for the optimal strategy of P can be restricted to the
NPVs whose image points lie on the surface of Ye. However,
the complexity of determining the surface of Ye via generating
the convex hull of {Ae + b : e ∈ EI} is exponential with
respect to n because EI can have O(n ·2n−1) vertices. Hence,
an efficient method to determine Ye is required.

Consider a new affine transformation that maps an NPV x
to a point in a four-dimensional space, given by

ye = Ae x+ be

where

Ae =

[
A
1T
n

]
and be =

[
b
0

]
.

Note that Ye in (17) can be written as

Ye =

{
y :

[
y
y0

]
=

[
Ax+ b
1Tx

]
,x ∈ XI

}
=

{
y :

[
y
y0

]
=
[
Ae x+ be

]
, y0 = 1,0 � x � xmax

}
=

{
y :

[
y
y0

]
∈ XF ∩ YF

}
where

XF = {Ae x+ be : 0 � x � xmax} (18)

YF =

{[
y
1

]
: y ∈ R3

}
.

The relationship among Ye, XF and YF is illustrated with a
three-dimensional example in Fig. 7.

Such an observation provides an alternative way to deter-
mine the surface of Ye: one can first generate XF and intersect
it with YF; the resulting polytope is a 3-facet, whose projection
onto R3 is Ye. Therefore, it is sufficient to determine the edges

Fig. 7. Illustration of the relationship among Ye, XF and YF. Ye (red part)
is the projection of XF ∩ YF onto R3.

of XF in order to determine Ye. Note that XF in (18) can be
written as

XF =

{( n∑
k=1

xkαk

)
+ be, 0 ≤ xk ≤ xmax

k

}
=

{
z + be : z =

n∑
k=1

xkαk, 0 ≤ xk ≤ xmax
k

}
where αk = [ ξk cos 2φk ξk sin 2φk ξk 1 ]T. The edges of
XF can be determined by solving the LCVBC problem, shown
as follows.

B. LCVBC Problem

LCVBC Problem: Given N vectors y1, y2, . . . , yN ∈ Rd,
the goal is to determine the vertices and edges of the poly-
tope YB, given by YB =

{∑N
k=1 ckyk : 0 ≤ ck ≤ 1

}
.

Without loss of generality, we assume that vectors y1,
y2, . . . , yN are not parallel to each other. It can be shown
that any vertex y of YB can be written as y =

∑N
i=1 wkyk,

where wk ∈ {0, 1} is the weight for yk. Therefore, deter-
mining the edges of YB is equivalent to finding two vertices
and their corresponding weights for each edge of YB. Let
W =

{
{wk}Nk=1 :

∑N
i=1 wkyk is a vertex of YB

}
denote the

weight set whose elements correspond to vertices of YB.
1) Two-Dimensional Case (d = 2): Without loss of general-

ity, we assume none of vectors y1, y2, . . . , yN is parallel to the
vertical axis. The polytope YB is determined by Algorithm 4.
The process can be divided into two major steps: Line 1 to
Line 3 determine the relative position of YB; Line 4 to Line 6
find the absolute position of YB. Fig. 8 provides an illustration
of the proposed algorithm. We claim that Algorithm 4 obtains
the desired YB and the proof is given in Appendix VII.

2) General Cases (d > 2): YB can be determined by
induction on d. The base case (d = 2) has been solved by
Algorithm 4. Built on that, the higher-dimensional cases can
be solved. For ease of exposition, the induction method is
demonstrated only for d = 3.

One can show that each edge of YB is parallel to one of the
vectors y1, y2, . . . , yN . We first determine those edges that
are parallel to y1 as follows:
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Algorithm 4 LCVBC: Two-Dimensional Case
Input: N vectors in R2: y1, y2, . . . , yN
Output: Vertices and edges of YB: for each edge, determine

its two vertices and their corresponding weights
1: Find vectors −y1, −y2, . . . , −yN ;
2: Label the 2N vectors y1, −y1, y2, −y2, . . . , yN , −yN

in a clockwise order, denoted as y(1), y(2), . . . , y(2N);
3: Connect y(1), y(2), . . . , y(2N), resulting in a polygon ỸB;
4: Among vectors y1, y2, . . . , yN , search the vectors with

positive x components;
5: Sum up these vectors to obtain a point, denoted as yR;
6: Translate ỸB by yR− ỹR, where ỹR denotes the rightmost

vertex of ỸB;
7: Output the vertices and the edges of the resulting polygon.

Fig. 8. Illustration of LCVBC in a two-dimensional space. The original
vectors are y1 to y4. First find the inverse-vectors, i.e., −y1 to −y4, and
then sort all the vectors in a clockwise order. In this case, the order is
(y1, −y4, y2, y3, −y1, y4, −y2, −y3). Connect the edges (original and
inverse ones) in such clockwise order, resulting in a polygon ỸB. The vectors
with positive x-components are y2 and y3, so yR = y2 + y3.

• Generate a normal plane Y1
n of vector y1;

• Project vectors y2 to yN onto Y1
n, resulting in N − 1

vectors in a two-dimensional space, denoted as
z12 , z13 , . . . , z1N ;

• For these N − 1 vectors in the two-dimensional space,
solve the LCVBC problem by Algorithm 4 and determine
the weight set W1 for the vertices of the resulting
polygon, denoted as Y1

B,n;
• For any weight [w1

2 w1
3 . . . w1

N ] ∈ W1, the segment{∑N
k=2 w

1
kyk + t · y1, 0 ≤ t ≤ 1

}
, parallel to y1, is an

edge of YB. All the edges of YB that are parallel to y1
can be found in this way due to the following lemma.

Lemma 1: If an edge e of YB is parallel to y1, then the
projection of e onto Y1

n is a vertex of Y1
B,n; if v is a vertex

of Y1
B,n, then YB has an edge e such that e is parallel to y1

and the projection of e onto Y1
n is v.

The proof of Lemma 1 is straightforward and omitted for
brevity. Fig. 9 provides an illustration of the steps above.
Following a similar process, one can obtain the edges of YB
that are parallel to y2, y3, . . . , yN , and in this way, all the
edges of YB can be determined. Details of the procedure are
given in Algorithm 5. One can verify that the complexities
are O(N logN) and O(Nd−1 logN) for Algorithm 4 and
Algorithm 5, respectively.

Fig. 9. Illustration of LCVBC in three-dimensional space: N = 4.

C. Optimal Strategy Design

Note that 1) the quest for the optimal strategy of P can
be restricted to the strategies corresponding to the surface
of Ye and 2) the solutions for the LCVBC problem provides
an efficient method to determine the triangles on the surface
of Ye. These observations lead to Algorithm 6, which gives
an optimal node prioritization strategy for P . The design of
Algorithm 6 can be divided into two major parts: Line 2 to
Line 5 determine the triangles on the surface of Ye; Line 6
to Line 14 select the strategy corresponding to the triangles
on the surface of Ye with the minimum SPEB. In particular,
Line 8 determines the optimal node prioritization strategy
corresponding to a triangle on the surface of Ye, which is
solved in Section IV.7

Computational Complexity of Node Prioritization with Indi-
vidual Constraints (NPIC): The complexity of Line 1 is
O(n). The complexity of Line 2 and Line 3 is O(n3 log n)
by calling Algorithm 5. Note that Ye has O(n3) edges and
O(n3) vertices. Hence, the complexities for Line 4 and Line 5
are O(n3 log n) and O(n3), respectively. Moreover, there are
no more than O(n3) cycles in the iteration from Line 6 to
Line 14 and each cycle has complexity O(1), implying that
the complexity of the iteration is O(n3). Consequently, the
total complexity is O(n3 log n).

VI. DISCUSSION

This section presents the discussions on several related
issues: (i) robust formulation; (ii) exact SPEB with prior
knowledge; and (iii) other node prioritization strategies.

A. Robust Formulation

The design of node prioritization strategies is determined
by the network parameters, which cannot always be perfectly
estimated. The estimated values are subject to uncertainties,
and the use of these values may result in suboptimal solu-
tions. Hence, it is necessary to construct robust formulations

7Note that in Section IV-A, we formulate the problem of PS for general
NPVs xk (k = 1, 2, 3) without assuming the structure of xk , and therefore,
the proposed geometric solution to the problem of PS in Section IV-A
provides the optimal node prioritization strategy corresponding to a particular
triangle on the surface of Ye.
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Algorithm 5 LCVBC: General Cases
Input: N vectors in Rd with d > 2: y1, y2, . . . , yN
Output: Vertices and edges of YB: for each edge, determine

its two vertices and their corresponding weights
1: Initialization: k = 1;
2: while k ≤ N do
3: Generate a normal (d− 1)-plane Ykn of yk;
4: Project vectors y1, y2, . . . , yk−1, yk+1, . . . , yN onto

Ykn , resulting N −1 vectors in a (d−1)-dimensional
space, denoted as zk1 , zk2 , . . . ,zkk−1, zkk+1, . . . , zkN ;

5: if d = 3 then
6: Call Algorithm 4 with input zk1 , zk2 , . . . ,zkk−1, zkk+1,

. . . , zkN ;
7: Record the weight set Wk for the vertices of the

resulting polygon;
8: else
9: Call Algorithm 5 with input zk1 , zk2 , . . . ,zkk−1, zkk+1,

. . . , zkN ;
10: Record the weight set Wk for the vertices of the

resulting polytope;
11: end if
12: repeat
13: Find [wk1 w

k
2 . . . w

k
k−1 w

k
k+1 . . . wkN ] ∈ Wk;

14: Add the following segment to the edge set of YB ∑
1≤j≤N,j 6=k

wkj yj + t · yk, 0 ≤ t ≤ 1


15: Wk ←Wk \ [wk1 w

k
2 . . . w

k
k−1 w

k
k+1 . . . wkN ];

16: until Wk = ∅;
17: k ← k + 1;
18: end while

accounting for the parameter uncertainties. We consider that
ξk ∈ Sξk and φk ∈ Sφk , where

Sξk :=
[
ξ̂k − εξk, ξ̂k + εξk

]
=
[
ξ
k
, ξk

]
Sφk :=

[
φ̂k − εφk , φ̂k + εφk

]
=
[
φ
k
, φk

]
in which ξ̂k and φ̂k denote the nominal values of the ERC
and angles; εξk and εφk denote ERC and angle uncertainties.8

In this setting, the worst-case SPEB is given by

PR(x) = max
ξk∈Sξk,φk∈S

φ
k

P(x) = max
ξk=ξk

,φk∈Sφk
P(x)

where the second equation is due to the fact that the SPEB
monotonically decreases in ξk.9

Direct maximization over φk is non-trivial. To address this
problem, an auxiliary matrix is introduced as

Qe(p0;x) = J0 +
∑
k∈Nb

ξ
k
xk · (Jr(φ̂k)− δk · I)

8Note that with such constraints, the estimation of p0 becomes a constrained
estimation problem. However, the corresponding SPEB is not affected by the
constraints since the considered parameters are regular, as shown in [44].

9The monotonicity of SPEB in ERC can be proved similarly to
Proposition 2.

Algorithm 6 Node Prioritization with Individual Constraints
(NPIC)
Input: ξk and φk, k ∈ Nb; xmax ∈ Rn
Output: Optimal NPV x∗ for P
1: Initialization: Ptmp is assigned to a sufficiently large

number;
2: Call Algorithm 5 with inputs yk = xmax

k Ae ek, k ∈ Nb,
and translate the resulting polytope by be, providing XF;

3: Intersect XF with YF and project the results onto R3 to
obtain the vertices of Ye;

4: Generate the convex hull for the vertices of Ye;
5: Find a triangulation for the faces of Ye and let K denote

the set consisted of all the resulting triangles;
6: repeat
7: Find an element Ki ∈ K;
8: Find the optimal NPV xtmp corresponding to Ki based

on the solution for PS;
9: if P(xtmp) ≤ Ptmp then

10: Ptmp ← P(xtmp);
11: x∗ ← xtmp;
12: end if
13: K ← K \ {Ki};
14: until K = ∅
15: Output x∗.

where δk = | sin εφk |. It has been shown in [32] that for any
φk ∈ Sφk , ξk ∈ Sξk ,

Qe(p0;x) � Je(p0;x)

and consequently,

PR(x) := tr
{
Q−1e (p0;x)

}
≥ tr

{
J−1e (p0;x)

}
= P(x)

provided that Qe(p0;x) � 0. With this observation, the
robust node prioritization problem, denoted as PR, can be
formulated as

PR : minimize
x∈Rn

PR(x)

subject to 1T x ≤ 1

x � 0

x � xmax

Qe(p0;x) � 0.

Note that PR is a convex problem and the optimal solution
exists [40]. We next show how to solve PR with geometric
methods. Consider an affine transformation

y = Ax+ b

where A = [ c s 1− 2δ ]TR, in which δ = [ δ1 δ2 . . . δn ]T

and R = diag{ξ
1
, ξ

2
, . . . , ξ

n
}. Consider the following sets

X̃I = {x ∈ Rn : 1T x ≤ 1,0 � x � xmax}
ỸI = {y ∈ R3 : y = Ax+ b, x ∈ X̃I}.

The function Qe(x) may not be an increasing function for
x � 0 and hence we need to consider 1T x ≤ 1 rather
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than 1T x = 1. We have the following counterpart of
Proposition 6.

Proposition 13: If x∗ is an optimal solution for PR,
then y∗ = Ax∗ + b lies on the surface of the convex
polyhedron ỸI.

Proof: Let Ỹe denote the image set of feasible NPVs
of PR. Note that

Qe(p0;x) � 0 ⇔
[

(y3 + y1)/2 y2/2
y2/2 (y3 − y1)/2

]
� 0

⇔ y3 ≥ |y1| and y23 ≥ y21 + y22

⇔ y3 ≥ 0 and y23 ≥ y21 + y22 .

Then

Ỹe = ỸI ∩
{
y ∈ R3 : y3 ≥ 0 and y23 ≥ y21 + y22

}
.

We first prove that y∗ lies on the boundary of Ỹe by
contradiction. Let λ∗ = PR(x∗). Suppose y∗ is an interior
point of Ỹe, then by the definition of interior point, there exists
ε > 0 such that {y : ‖y − y∗‖ < ε} ⊆ Ỹe. Consider the set

Yλ∗ =

{
y ∈ R3 : y3 > 0 and 0 <

4 y3
y23 − y21 − y22

< λ∗
}

and it can be verified that Yλ∗ is an open set and y∗ lies on the
boundary of Yλ∗ . Therefore, {y : ‖y− y∗‖ < ε} ∩Yλ∗ 6= ∅.
Consequently, Ỹe ∩ Yλ∗ 6= ∅. Let xδ denote a feasible NPV
such that Axδ + b ∈ Ỹe ∩ Yλ∗ . Equation (7) gives

0 < PR(xδ) = Q(Axδ + b) < λ∗.

This is a contradiction since x∗ is an optimal solution for PR.
Note that the boundary of Ỹe belongs to the union of the

surface of ỸI and the boundary of{
y ∈ R3 : y3 ≥ 0 and y23 ≥ y21 + y22

}
.

However, y∗ does not lies on the latter since

0 < Q(y∗) =
4y∗3

y∗3
2 − y∗1

2 − y∗2
2 <∞.

Consequently, y∗ lies on the surface of ỸI, which completes
the proof.

Proposition 13 implies that the quest for the optimal strategy
of PR can be restricted to the strategies that correspond to the
surface of ỸI. The geometric methods proposed in Section III
to Section V can be used to solve the robust node prioritization
problem PR.10

B. Exact SPEB With Prior Knowledge

Recall that in Section II-A, if J0 6= 02,2, Je(p0;x) provides
an approximation of the FIM and P(x) = tr

{
J−1e (p0;x)

}
is an approximation of the SPEB. We next show that the
geometric methods developed in this paper can be used to
solve node prioritization problems that adopt the exact SPEB
in the case where J0 6= 02,2 as the performance metric.

10Note that in Algorithm 1, the output y◦ needs to satisfy y◦
3 > 0 and

(y◦3)
2 > (y◦1)

2 + (y◦2)
2.

Derivation of the exact FIM involves averaging over the
prior knowledge and the exact FIM is given by [10]

Ja,e = J0 +
∑
k∈Nb

xk Ja,k

where Ja,k = E{ξk Jr(ϕk)}, in which the expectation is
taken with respect to the joint distribution of the agent’s prior
positional knowledge and the prior ERC knowledge through
ξk and ϕk. Consequently, the exact SPEB is

Pa(x) = tr
{
J−1a,e (x)

}
.

Note that by eigenvalue decomposition, the FIM Ja,k can
be decomposed as

Ja,k = ξ
(1)
k Jr

(
ϕ
(1)
k

)
+ ξ

(2)
k Jr

(
ϕ
(2)
k

)
where ξ

(1)
k , ξ(2)k ≥ 0 are the eigenvalues of Ja,k and ϕ

(1)
k ,

ϕ
(2)
k = ϕ

(1)
k + π/2 are the angles of the corresponding

eigenvectors. Consider an affine transformation

y = Aa x+ b

where

Aa = [ ca sa 1 ]T R(1) − [ ca sa −1 ]T R(2)

in which

R(i) = diag
{
ξ
(i)
1 , ξ

(i)
2 , . . . , ξ(i)n

}
, i = 1, 2

and

ca =
[

cos 2ϕ
(1)
1 cos 2ϕ

(1)
2 . . . cos 2ϕ(1)

n

]T
sa =

[
sin 2ϕ

(1)
1 sin 2ϕ

(1)
2 . . . sin 2ϕ(1)

n

]T
.

With this transformation, the methods proposed in
Section III to Section V can be used to solve the node
prioritization problem with the exact FIM. Note that the exact
SPEB involves the integration over the distribution of the
agent’s prior knowledge and does not admit a closed-form
expression. Hence, the approximate SPEB is more favorable
to be used as the performance metric.

C. Heuristic Node Prioritization Strategies

We next propose some heuristic node prioritization strate-
gies in network localization. The performance of these strate-
gies will be evaluated in Section VII.

1) No Individual Constraints: The following three strategies
are proposed to solve P0.
• Uniform Strategy: allocate transmission resources equally

among anchors;
• Strategy I: select three anchors corresponding to the

largest ERCs and then find the optimal NPV for this
simple network;

• Strategy II: divide the anchors k ∈ Nb into three
groups G1, G2, and G3 in the following way: k ∈ G1 if
φk ∈ [0, 2π/3); k ∈ G2 if φk ∈ [2π/3, 4π/3); and
k ∈ G3 if φk ∈ [4π/3, 2π); select the anchor with the
maximum ERC in each group; and then find the optimal
NPV for this simple network;

• Strategy III: search all
(
n
3

)
simple networks and select the

one with the minimum SPEB, proposed in Section IV-D.
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Algorithm 7 Strategy IV and V
Input: ξk and φk, k ∈ Nb; xmax ∈ Rn
Output: An NPV x for P
1: Uc ← ∅;
2: repeat
3: Determine a solution x of PM for given Uc (either

adopting NPIV or Uniform Strategy);
4: for k ∈ Nb \ Uc do
5: if xk > xmax

k then
6: Uc ← Uc ∪ {k};
7: end if
8: end for
9: until x � xmax

k

10: Output x.

TABLE I
COMPUTATIONAL COMPLEXITY FOR STRATEGIES WITH (P0) AND

WITHOUT (P) INDIVIDUAL CONSTRAINTS

2) With Individual Constraints: The following strategies are
proposed to solve P:

• Strategy IV operates in an iterative way and it maintains
an upper bound anchor set Uc, which contains the indexes
of anchors that have violated the individual constraints (5)
in the iterations. Details are given in Algorithm 7. Note
that in Line 3, Strategy IV adopts NPIV to solve the
following problem:

PM : minimize
x∈Rn

P(x)

subject to 1T x ≤ 1

xk = xmax
k , k ∈ Uc

x � 0.

• Strategy V follows the same procedure as Strategy IV
except that Strategy V adopts Uniform Strategy to
solve PM in Line 3. Note that there are no more
than n cycles in the iteration from Line 4 to Line 9.
Hence, the complexities are O(n2 log n) and O(n2) for
Strategy IV and V, respectively.

• Strategy VI first finds the triangles on the surface of Ye
by determining EI and Ye = Hc{EI}, and then follows
Line 6 to 15 in Algorithm 6 to provide an optimal
NPV. One can verify that the complexity of Strategy VI
is O(n · 2n).

The computational complexities of all the proposed
strategies are given in Table I.

Fig. 10. The optimal strategy for P0 uses B and C if the agent is in region I;
it uses A and B if the agent is in region II; it uses A and C if the agent is in
region III; and it uses A, B and C if the agent is in region IV.

VII. NUMERICAL RESULTS

This section provides numerical results to illustrate the
sparsity property of the optimal NPV and the performance
of the proposed strategies.

A. Anchor Selection and Sparsity Property

We consider two examples of anchor selection where the
agent is located at different positions. Free-space pathloss is
used as the signal propagation model.

In Fig. 10, three anchors (A, B and C) are deployed at the
vertices of an equilateral triangle. The plane is divided into
four types of regions labeled as I, II, III, and IV. The node
prioritization strategy that achieves the optimal localization
performance requires different sets of anchors corresponding
to the agent’s position. For instance, the resources are allocated
to all the three anchors if the agent is in region IV. First,
the area of region IV is relatively small, implying that in
most cases only two anchors are required to achieve the
optimal localization performance. Second, if the agent is in
the “far field” region, i.e., it is sufficiently far away from all
the anchors, the optimal strategy for P0 requires two active
anchors. Third, if the agent lies on the line formed by two
anchors, the anchor farther to the agent will not be used to
achieve the optimal localization performance. This is intuitive
since allocating resources to the closer anchor is more efficient
for improving the localization performance.

In Fig. 11, seven anchors are deployed at the vertices of
a heptagon and nine agents are deployed in nine different
positions. The directions of the arrows show the anchors
activated for a particular agent. For example, the optimal
strategy uses anchors A and B for agent C. The length of
the arrow corresponds to the amount of allocated resources.
Fig. 11 demonstrates the sparsity property of the optimal
NPV. It can be observed that active anchors for an agent
depend on the distances and angles between anchors and the
agent.
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Fig. 11. Illustration of optimal node prioritization with anchors deployed at
the vertices of a heptagon.

Fig. 12. Average SPEB as a function of the number of anchors for the
optimal strategy, Strategy I, Strategy II, and Uniform Strategy without prior
positional knowledge.

B. Performance of Node Prioritization Strategies

In this section, consider that x is the NPV based on power
(with power unit Watt) as in Appendix I-A. The simulation
is carried out in a two-dimensional network where an agent
and a set of anchors are placed randomly in a square region
(100 m × 100 m) with a uniform distribution. Consider that
{ξkd2k}k∈Nb

are modeled as independent Rayleigh random
variables with mean 6.3× 103.11

Case 1) No Prior Knowledge, No Individual Constraints:
The performance of the optimal strategy and three other
efficient strategies (i.e., Uniform Strategy, Strategy I and
Strategy II) are compared. Fig. 12 shows the SPEB as a
function of the number of anchors for different strategies.

11The mean of the Rayleigh random variable is obtained based on the
following choice of parameters: carrier frequency 5 GHz, bandwidth 500 MHz
and β = 1. Moreover, the Extended Typical Urban model is used for the
power dispersion profile [45]. The unit of the random variable is (Watt)−1.

Fig. 13. Average SPEB as a function of the number of anchors for the optimal
strategy, Strategy I, Strategy II and Uniform Strategy with prior positional
knowledge.

First, the achieved SPEB decreases with the number of anchors
for each strategy since more anchors provide more degrees
of freedom, resulting in a higher diversity gain. Second,
the optimal strategy outperforms all the heuristic strategies,
e.g., reducing the SPEB by more than 50%, 40%, and 20%
compared to Uniform Strategy, Strategy I and Strategy II,
respectively, when n = 10. Third, Strategy II outperforms
Strategy I, and they both perform better than Uniform Strategy.
This agrees with intuition because Strategy II accounts for the
effects of both angles and ERCs while Strategy I considers
only ERCs.

Case 2) Prior Knowledge, No Individual Constraints: The
performances of the optimal strategy and three efficient strate-
gies (i.e., Uniform Strategy, Strategy I and Strategy II) are
compared. The prior positional knowledge of the agent follows
a Gaussian distribution N (p0, σ

2I2), where σ is the standard
deviation of the prior position distribution with the unit m.
Fig. 13 shows the SPEB as a function of the number of anchors
for different strategies with σ2 = 100 and σ2 = 20. First, it
can be observed that the SPEB decreases with the number of
anchors for all strategies due to the diversity gain. Second,
the optimal strategy, Strategy I, and Strategy II all outperform
Uniform Strategy significantly, e.g., reducing the SPEB by
more than 25% when n = 10. Third, the SPEB increases with
the variance σ2 of the prior knowledge. Moreover, the SPEBs
of Strategy I and II are closer to that of the optimal strategy
when σ2 is smaller. This is because smaller variance σ2 trans-
lates into more prior positional knowledge and thus, ranging
measurements contribute less to the localization performance.

Case 3) Individual Resource Constraints: The performance
of the optimal strategy, Strategy IV, and Strategy V are
compared.

Consider that the upper bound of the individual resource
follows an i.i.d. uniform distribution over different anchors,
i.e., xmax

k is an instantiation of a random variable with uniform
distribution from 0 and P , ∀k ∈ Nb, where P is a parameter
to be selected. Fig. 14 shows the SPEB as a function of the
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Fig. 14. Average SPEB as a function of the number of anchors for the
optimal strategy, Strategy IV and Strategy V.

number of anchors for different strategies with P = 0.2 and 1.
First, the SPEB decreases with the number of anchors due
to the diversity gain. Second, Strategy IV and the optimal
strategy provide almost the same performance, significantly
outperforming Strategy V, e.g., reducing the SPEB by more
than 40% when n = 10. Third, the SPEB decreases with P for
the optimal strategy and Strategy IV because larger P implies a
larger feasible set for the optimal strategy and Strategy IV, and
therefore leads to smaller SPEB. Fourth, the SPEB achieved by
Strategy V has almost the same value for P = 0.2 and 1. This
is because Strategy V usually allocates the resources evenly
among anchors and hence individual resource constraints are
often inactive, leading to almost the same performance of
Strategy V for different values of P .

Now consider that the upper bound of the individual
resource is a constant for all anchors, i.e., xkmax = P ,
∀k ∈ Nb. Fig. 15 shows the SPEB as a function of P for
different strategies with n = 10 and 20. First, the SPEB
decreases with P for both Strategy IV and the optimal strategy
because larger P implies more relaxed individual constraints.
This decreasing trend vanishes as P increases because the
individual constraints are inactive for large P . Second, it
can be observed that Strategy V provides almost the same
SPEB for different values of P , similarly to Fig. 14. Third,
Strategy IV and the optimal strategy provide almost the same
performance, outperforming Strategy V significantly. Fourth,
the SPEB for n = 20 is less than that for n = 10 due to the
diversity gain.

Case 4) Robust Strategy: We denote ∆/100 as the
normalized uncertainty set size (NUSS), where the true
position of the agent can be anywhere in the circle centered
at its nominal position with radius ∆. Thus, the maximum
uncertainty in dk is ∆ and in φk is arc sin(∆/dk). The
performance of non-robust strategy (the nominal values are
used as the input), robust strategy proposed in Section VI-A,
and Uniform Strategy are compared.

Fig. 16 and Fig. 17 show the worst-case SPEB and average
SPEB as a function of the NUSS, respectively, with n = 4.

Fig. 15. Average SPEB as a function of P for the optimal strategy,
Strategy IV and Strategy V.

Fig. 16. Worst-case SPEB as a function of NUSS.

First, for the worst-case performance, the robust strategy
outperforms Uniform Strategy and the non-robust strategy, par-
ticularly when NUSS is large. Second, the worst-case SPEBs
achieved by all three strategies increase with the NUSS. This is
because a larger NUSS translates to a larger range of possible
network parameters and consequently a larger worst-case
SPEB. Third, for the average performance, the robust strategy
and the non-robust strategy have similar performances, both
outperforming Uniform Strategy, especially when NUSS is
small.

C. Efficiency of Geometric Methods

The efficiency of the proposed strategies is compared in this
section under the same network setting as Section VII-B. The
proposed strategies are run on a 2-GHz personal computer.

Case 1) Without Individual Constraints: Fig. 18 shows the
running time as a function of the number of anchors for
Strategy III, NPGM, and NPIV. First, the increasing speed
differs for different strategies. This agrees with the computa-
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Fig. 17. Average SPEB as a function of NUSS.

Fig. 18. Running time as a function of the number of anchors for
Strategy III, NPGM and NPIV.

tional complexity analysis in Section IV-D. Second, in terms
of the running time, NPIV outperforms NPGM, and they both
outperform Strategy III. Note that when n is large, NPIV
and NPGM outperform Strategy III significantly (the running
time is reduced by more than 90%). When n is small (e.g.,
n < 10), Strategy III is also efficient and may be adopted in
practice since it is relatively easier for implementation. Third,
the running time for NPIV almost remains a constant as n
increases. This is because the running time of NPIV consists
of two terms: O(n log h) for generating the convex hull and
O(h) for searching the set K̃. When n is small, the second
term dominates the running time. Since h remains almost the
same when n is small, as shown in Fig. 6, the running time for
the second term does not increase and hence the total running
time is almost a constant.

Case 2) With Individual Constraints: Fig. 19 shows the
running time as a function of the number of anchors for NPIC,
Strategy IV, and Strategy VI. First, Strategy IV and NPIC
outperform Strategy VI significantly in the running time, e.g.,

Fig. 19. Running time as a function of the number of anchors for Strategy
VI, Strategy IV and NPIC.

reducing the running time by more than 98% when n = 15.
Second, the running time gap between Strategy VI and the
other three strategies increases with the number of anchors.
When n > 7, the linearity of the curve for Strategy VI shows
that the computational complexity grows exponentially with n,
which agrees with the analysis in Section V-A and shows that
Strategy VI is impractical to implement. Third, Strategy IV
has much less running time than the optimal strategy NPIC.
Considering its near-optimal performance shown in Figs. 14
and 15, Strategy IV is a promising strategy since it achieves
a good tradeoff between performance and complexity.

VIII. CONCLUSION

This paper established a computational geometry framework
to determine node prioritization strategies for efficient network
localization. For node prioritization problems in the absence of
individual constraints, we proved the sparsity property of the
optimal NPV using geometric methods. We also designed effi-
cient node prioritization strategies with complexity O(n log n).
For node prioritization problems in the presence of individual
constraints, we designed an efficient strategy with complex-
ity O(n3 log n) via the method of dimension augmentation
and projection. Simulation results verified that the proposed
approach provides significant improvement in localization
accuracy and leads to reduction in computational complex-
ity of the optimal NPV search. Our results provide a new
methodology for node prioritization as well as insights into
the optimization problems with similar structures.

APPENDIX I
APPLICATION OF THE NODE PRIORITIZATION PROBLEMS

We use wideband localization as an example to show the
applications of the proposed method. Consider wideband
waveforms transmitted from anchors to the agent as an



DAI et al.: COMPUTATIONAL GEOMETRY FRAMEWORK FOR EFFICIENT NETWORK LOCALIZATION 1333

example. The waveform received at the agent is modeled as

r(t) =
∑
k∈Nb

√
Ek

dβk

Lk∑
l=1

α
(l)
k sk(t− τ (l)k ) + zk(t)

where dk = ‖pk − p0‖, Ek is the transmission power of
anchor k, β is the amplitude loss exponent, {sk(t) : k ∈ Nb}
is a set of orthonormal transmission wideband waveforms,
Lk is the number of multipath components associated with the
channel from anchor k to the agent, α(l)

k and τ (l)k are the path
amplitude and delay of the l-th path, respectively, and zk(t) is
the additive white complex Gaussian noise process with two-
side power spectral density N0/2. The path delay is given by

τ
(l)
k =

1

ctr
‖pk − p0‖+ b

(l)
k

where ctr is the propagation speed of the transmission signal
and b(l)k is a range bias.

Starting from the received waveform r(t), the fundamental
limit of localization accuracy can be derived. The FIM is given
by [10]

Je = J0 +
∑
k∈Nb

%k Ek

(∫ +∞

−∞
f2|Sk(f)|2df

)
Jr(φk)

in which

%k =
8π2|α(1)

k |2(1− χk)

N0c2tr d
2β
k

with Sk(f) denoting the Fourier transform of sk(t) and
χk ∈ [0, 1] denoting the path-overlap coefficient. Next we
show that node prioritization problems based on power and
bandwidth can be converted to P .

1) Node Prioritization based on Power: The node prior-
itization problem based on power is equivalent to P with
xk = Ek and

ξk = %k

∫ +∞

−∞
f2|Sk(f)|2df.

2) Node Prioritization based on Bandwidth: Let F be
the support of a given aggregated signal S(f) in the fre-
quency domain, and F1, F2, . . . , Fn be a n−partition
of F such that ∪k∈Nb

Fk = F and Fk ∩ Fj = ∅,
1 ≤ k 6= j ≤ n. Node prioritization based on bandwidth
is to find the n-partition of a given aggregate signal S(f) so
that the corresponding SPEB is minimized. Hence, the node
prioritization problem based on bandwidth is equivalent to P
with

xk =

∫
Fk f

2|S(f)|2df∫ +∞
−∞ f2|S(f)|2df

and ξk = %kEk.

APPENDIX II
ALTERNATIVE PROOF OF THEOREM 2

The following lemma will be used in the proof.
Lemma 2: Given n ∈ N and y, z ∈ Rn, if y � 0 and z 6=

0, there exists t̃ ∈ R such that y+ t̃ z � 0 and ‖y+ t̃ z‖0 < n.

Proof: This lemma can be proved by considering a
mapping f : R→ Rn

f(t) = y + t z.

Note that (i) f(0) = y is a vector with all positive
elements; (ii) for sufficiently large M , if t > M , then
either f(t) or f(−t) has at least one negative element;
(iii) f(·) is continuous on t. Thus, there exists t̃ such that
f(t̃) � 0 with f(t̃) containing at least one zero element,
i.e., ‖f(t̃)‖0 < n.

Let x∗ denote an optimal NPV for P0 with the minimum
number of positive elements and let m = ‖x∗‖0. If m ≤ D,
the proof is completed. We next show that m > D will lead
to contradiction.

Without loss of generality, consider that the first m elements
of x∗ are positive, i.e.,

x∗ = [xT 0T
D−m ]T.

Let Q(y) denote a function of y ∈ Rm

Q(y) = J0 +

m∑
k=1

ykCk

where Ck = ξkuk u
T
k is a symmetric d × d matrix. Then

Je(p0;x∗) can be written as

Je(p0;x∗) = J0 +

m∑
k=1

x∗kCk = Q(x)

Let [Ck]ij = clk denote the elements of Ck, where l =
(
j
2

)
+ i

and let cl = [ cl1 cl2 . . . clm ]T for l = 1, 2, . . . , D. The
elements of Q(x) can then be written as

[Q(x) ]ij = [J0]ij +

m∑
k=1

x∗k [Ck]ij

= [J0]ij + xT cl. (19)

Since cl ∈ Rm and m > D, there exists a vector g ∈ Rm
orthogonal to { cl : l = 1, 2, . . . , D }. Hence, for any η ∈ R,
1 ≤ i, j ≤ d,

[Q(x+ η g) ]ij = [J0]ij + (x+ η g)T cl = [Q(x)]ij

where the last equality is due to (19). This shows the invariance
of FIM with respect to the NPV in the direction of g. Next we
show the contradiction for both cases gT 1 6= 0 and gT 1 = 0,
respectively.

If gT 1 6= 0, choose ε such that the following two conditions
hold: (i) ε · gT 1 < 0 and (ii) x+ ε g � 0. This is achievable
since x � 0, one can choose ε with |ε| sufficiently small. Let
x̃ = x+ ε g and x̃∗ = [ x̃T 0T

D−m ]T. Then

1T
nx̃
∗ = 1T

mx̃ < 1T
mx = 1T

nx
∗.

Choose y = (1T
nx
∗/1T

nx̃
∗) · x̃∗. One can verify that

P(y)
(a)
< P(x̃∗) = P(x∗) (20)

where (a) is due to the fact that Je(p0;y) � Je(p0; x̃∗).
Equation (20) implies that y outperforms x∗, which contra-
dicts the assumption that x∗ is an optimal solution for P0.
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If gT 1 = 0, consider h(η) = x+ η g. By Lemma 2, there
exists η1 such that h(η1) � 0 and ‖h(η1)‖0 < m. Consider
vectors x′ = h(η1) and x′∗ = [x′T 0T

D−m ]T. Note that
• ‖x′∗‖0 = ‖h(η1)‖0 < m = ‖x∗‖0;
• Je(p0;x′∗) = Q(x + η1g) = Q(x) = Je(p0;x∗) and

hence P(x′∗) = P(x∗); and
• 1Tx′∗ = 1Tx = 1Tx∗.

This contradicts that x∗ is an optimal NPV with the minimum
number of positive elements.

APPENDIX III
PROOF OF PROPOSITION 7

The proof focuses on the case with J0 = 0 and the result
is applicable to the case with any J0 � 0. Let x∗ denote
an optimal solution for P0 with the minimum number of
positive elements and let m = ‖x∗‖0. We next show that
m > rank{Λ} will lead to contradiction.

Without loss of generality, consider that the first m elements
in x∗ are positive, i.e.,

x∗ = [xT 0T
n−m ]T. (21)

Let R̃ = diag{ξ1, ξ2, . . . , ξm} and Λ̃ is the first principal
m×m matrix of Λ, i.e.,

Λ̃ = 11T − c̃ c̃T − s̃ s̃T

with

c̃ = [ cosφ1 cosφ2 . . . cosφm ]
T

s̃ = [ sinφ1 sinφ2 . . . sinφm ]
T
.

Lemma 3: If y = x +
(
I−R̃

−1
Λ̃

+
Λ̃R̃

)
w, where x is the

vector consisting of the first m elements of x∗ in (21), and w
is an arbitrary real vector satisfying y � 0, then

y∗ = [yT 0T
n−m ]T

is an optimal NPV for P0.
Proof: To prove y∗ is an optimal NPV for P0, it suffices

to prove that y∗ achieves the same SPEB as x∗ and that x∗

satisfies the total resource constraint.
One can verify that span{1, c̃, s̃} = span{columns of Λ̃}

and hence 1T(I −Λ̃
+
Λ̃) = 0T. Consequently,

1TR̃
(
I −R̃

−1
Λ̃

+
Λ̃R̃

)
= 0T (22)

Note that

1T
nRx

∗ (a)
= 1T

mR̃x
(b)
= 1T

mR̃y
(c)
= 1T

nRy
∗ (23)

where (a) is due to the relationship between x∗ and x,
(b) is due to (22), and (c) is due to the relationship between
y and y∗.

The definition of Moore-Penrose pseudo-inverse gives
Λ̃(I −Λ̃

+
)Λ̃ = 0. Consequently,

R̃Λ̃R̃
(
I −R̃

−1
Λ̃

+
Λ̃R̃

)
= 0. (24)

Note that

x∗TRΛRx∗
(d)
= xTR̃Λ̃R̃ x

(e)
= yTR̃Λ̃R̃ y

(f)
= y∗TRΛRy∗

(25)

where (d) is due to (21), (e) is due to (24), and (f) is due to
the relationship between y and y∗. Equations (23) and (25)
imply that P(x∗) = P(y∗). As with the analysis in
Appendix II, 1Tx 6= 1Ty leads to a contradiction. Therefore,

1Tx∗ = 1Tx = 1Ty = 1Ty∗

indicating that y∗ satisfies the total resource constraint and
hence the proof is completed.

With Lemma 3, we can prove Proposition 7 by showing
that m > rank{Λ} will lead to contradiction. Note that
m > rank{Λ} ≥ rank{Λ̃}, which gives I −Λ̃

+
Λ̃ 6= 0, and

equivalently,
(
I −R̃

−1
Λ̃

+
Λ̃R̃

)
6= 0. Suppose its lth column

is not 0. Consider the following mapping

h(t) = x+
(
I −R̃

−1
Λ̃

+
Λ̃R̃

)
el · t

where el ∈ Rm. Lemma 2 implies that there exists t1 such
that (i) h(t1) � 0 and (ii) ‖h(t1)‖0 < m. Consider

x̃ = [h(t1)T 0T ]T.

By Lemma 3, x̃ is an optimal NPV for P0 and ‖x̃‖0 < m.
This contradicts the assumption that x∗ is an optimal NPV
with the minimum number of positive elements.

APPENDIX IV
ALGEBRAIC METHOD FOR OPTIMAL STRATEGY

IN SIMPLE NETWORKS

We first present the solution of P0 with J0 = 0 in simple
networks and then propose a prior knowledge decomposition
method to solve P0 with J0 6= 0 in simple networks.

A. Solving P0 With No Prior Knowledge in Simple Networks

Note that when J0 = 0, the SPEB is

P(x) =
4 · 1TRx

xTRTΛRx
=: P̃(x).

The proposition provides an efficient method to check
if the minimum number of active anchors is three,
and if so, then it provides the optimal NPV for P0

analytically.
Proposition 14: If the following conditions hold

rank{Λ} = 3 (26a)
1T (RΛR)−11 > 0 (26b)

(RΛR)−1(R1 + c1) � 0 (26c)

where

c =
√

1/(1T(RΛR)−11) (27)

then there exists a unique optimal NPV for P0, given by

x∗ =
A

2c
(RΛR)−1(R1 + c1) (28)

where

A =
2c

1T(RΛR)−1(R1 + c1)
(29)
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and the corresponding SPEB is

P(x∗) = 2 · 1T(RΛR)−1(R1 + c1).

Otherwise, there exists an optimal NPV for P0 with at most
two positive elements.

Proof: See Appendix V.
The closed-form strategy for P0 in simple networks is

given as follows. Let s : Nb × Nb → R denote the
function

s(i, j) =
(1/
√
ξi + 1/

√
ξj)

2

sin2(φi − φj)

in which i, j ∈ Nb and sin(φi − φj) 6= 0. Two strategies are
provided as follows.

• π1: the optimal solution is given by (28);
• π2: let (k1, k2) = arg min{i,j} s(i, j) and k3 is the

remaining anchor, the NPV is

xk1 =

√
ξk2√

ξk1 +
√
ξk2

, xk2 =

√
ξk1√

ξk1 +
√
ξk2

, xk3 = 0.

Proposition 15: For a simple network with J0 = 0, if
the conditions in (26) hold, the optimal node prioritization
strategy π∗ = π1, otherwise π∗ = π2. Moreover, the SPEB is
given by

P(x∗) =

{
4c
A if π∗ = π1

min{i,j} s(i, j) if π∗ = π2.

Proof: If conditions in (26) hold, π1 is an optimal strategy
by the proof of Proposition 14. Otherwise, there exists an
optimal strategy that requires two active anchors. Suppose
anchors i and j are active, then

P(x) =
xiξi + xjξj

xixj ξiξj sin2(φi − φj)

=
1

sin2(φi − φj)
( 1

ξixi
+

1

ξjxj

)
=

xi + xj

sin2(φi − φj)
( 1

ξixi
+

1

ξjxj

)
≥ s(i, j).

The last inequality is due to Cauchy-Schwarz inequality and
the equality holds iff xi = xj

√
ξj/ξi. Minimizing s(i, j) over

i, j leads to (i∗, j∗) = arg min{i,j} s(i, j) and thus anchors i∗

and j∗ are active.

B. Solving P0 With Prior Knowledge in Simple Networks

Although the problem P0 for simple networks can be
obtained by checking the KKT conditions, we propose
the following method, referred to as prior knowledge
decomposition, to solve P0 with much simpler derivations.

Lemma 4 (Prior Knowledge Decomposition): For an arbi-
trary symmetric J0 and a simple network, rank{Λ} = 3
implies rank{Λe} = 3, where

Λe = P [1 c s ]TR

in which

P =

 1/2 1/2 0
0 0 1/2

1/2 −1/2 0

 .
Moreover, if rank{Λe} = 3, then the vector

x0 = Λ−1e [ [J0]11 [J0]12 [J0]22 ]
T

satisfies that

J0 =
∑
k∈Nb

[x0]k ξk Jr(φk). (30)

Proof: If rank{Λ} = 3, then 1, c and s are linearly
independent. Note that both P and R are invertible. Hence
rank{Λe} = 3.

The second claim can be verified after some algebra.
Lemma 4 shows that if rank{Λ} = 3, the prior positional

knowledge can be viewed as localization information obtained
by allocating certain (possibly negative) resources to the
existing anchors.

If rank{Λ} = 3, J0 can be decomposed as (30). Let

x̃ = x+ x0

then the SPEB with prior positional knowledge is given by

P(x) = P̃(x̃) =
4 · 1TRx̃

x̃TRTΛRx̃
.

Consider an ancillary node prioritization problem:

P̃0 : minimize
x̃∈R3

P̃(x̃)

subject to 1Tx̃ ≤ 1 + 1Tx0

x̃ � x0.

If x̃∗ is an optimal NPV for P̃0, then x∗ = x̃∗ − x0 is an
optimal NPV for P0. The objective function of P̃0 has a
simple expression. Therefore, previous results for J0 = 0 can
be used to derive the solution for P̃0.

Proposition 16: If the following conditions hold

rank{Λ} = 3 (31a)
1T (RΛR)−11 > 0 (31b)

A(RΛR)−1(R1 + c1) � 2c

(1 + 1T x0)
x0 (31c)

where c, A, and x0 are repectively given by (27), (29),
and (30), then there exists a unique optimal NPV for P0,
given by

x∗ =
A (1 + 1T x0)

2c
(RΛR)−1(R1 + c1)− x0 (32)

and the corresponding SPEB is

P(x∗) = 2 · 1T(RΛR)−1(R1 + c1)/(1 + 1Tx0).
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Otherwise, there exists an optimal solution for P0 with at
most two positive elements.

Proof: If the conditions in (31) hold, one can decom-
pose J0 and obtain x0 in (30). For problem P̃0, similar to
the derivation in Appendix V, one can verify that there exists
a unique optimal NPV x̃∗ for P̃0, given by

x̃∗ =
A (1 + 1T x0)

2c
(RΛR)−1(R1 + c1).

Therefore, x∗ = x̃∗ −x0 is the unique optimal NPV for P0.
If the conditions in (31) do not hold, then either rank{Λ} = 3
or rank{Λ} ≤ 2. For the former, one can decompose J0

and verify that there exists an optimal NPV for P0 with
at most two positive elements using the similar derivation
in Appendix V; for the latter, the proof is completed by
Proposition 7.

Next we present the case where at most two anchors are
required to achieve the minimum SPEB for P0.

Proposition 17: For a network with three anchors (i.e.,
Nb = {1, 2, 3}) where the conditions in (31) do not hold,
if there exist x and i, j, k such that

Cjξi − Ciξj − Ei,j = (2x2jξiξ
2
j − 2x2i ξ

2
i ξj) sin2(φi − φj)

(33)
xi + xj = 1, xi > 0, xj > 0, xk = 0 (34)
∂

∂ xi
P(x) <

∂

∂ xk
P(x) (35)

where

Ci = 2ξi (tr{J0}+ ([J0]22 − [J0]11) cosφi+4[J0]12 sinφi)

Ei,j = tr{J0}
(
2ξiξj(xj − xi) sin2(φi − φj) + Ci − Cj

)
then the optimal NPV for P0 is given by x. Otherwise, there
exists an optimal NPV for P0 with only one non-zero element.

The proof of Proposition 17 is obtained by checking the
KKT conditions. Combining (33) and (34) gives a quadratic
equation of xi and this equation can be solved analytically
to achieve x; then one can check whether the inequality (35)
holds.

The optimal NPV for P0 in simple networks is provided
as follows:
• Conditions (31) hold: the optimal NPV x∗ is given by

(32);
• Conditions (31) do not hold:

– if there exists x such that (33) to (35) hold, then
NPV x∗ = x;

– Otherwise, the optimal NPV for P0 has one non-
zero element and can be obtained by checking three
anchors one by one.

APPENDIX V
PROOF OF PROPOSITION 14

The NPV x∗ is an optimal solution for P0 iff it satisfies
KKT conditions

∇P(x∗)− µ+ ν · ∇(1Tx∗ − 1) = 0

x∗ � 0, µ � 0, µkx
∗
k = 0, k = 1, 2, 3

1Tx∗ = 1

If conditions (26) hold, one can verify that the NPV
provided in (28) satisfies the KKT conditions above with
µ = 0. The uniqueness is shown as follows. Suppose there
exists another optimal NPV x̃∗ for P0; then ‖x̃∗‖0 = 3 or
‖x̃∗‖0 ≤ 2.

If ‖x̃∗‖0 = 3, then µj = 0, j = 1, 2, 3. Checking KKT
conditions with respect to x̃∗, one can obtain

x̃∗ =
A

2c
(RΛR)−1(R1 + c1) (36)

where A = x̃∗TRΛRx̃∗ and c = (R1)T x̃∗. Substituting
(36) into 1T x∗ = 1 and the fact that

(R1)T (RΛR)−1R1 = 1

give (27) and (29). Consequently, x̃∗ in (36) is identical to x∗

in (28). Moreover, by substituting x̃∗ into P(·), one can show
that P(x∗) = 2 · 1T(RΛR)−1(R1 + c1).

If ‖x̃∗‖0 ≤ 2, consider a linear combination of x∗ and x̃∗

with respect to δ ∈ (0, 1): xδ = (1 − δ)x∗ + δx̃∗. Note that
‖xδ‖0 = 3. By the convexity of P(·), xδ is also an optimal
NPV. This statement contradicts that x∗ is a unique NPV with
three positive elements. Hence, x∗ is the unique optimal NPV
if the conditions in (26) hold.

On the other hand, if the conditions in (26) do not hold,
we claim that there exists an optimal NPV for P0 with at
most two positive elements. Otherwise, the optimal NPV x∗

for P0 has three positive elements. If there are more than one
optimal NPV, each of them has three positive elements. Then
by Lemma 7, rank{Λ} = 3 and therefore rank{RΛR} = 3.
KKT conditions imply x∗ = A (RΛR)−1(R1 + c1)/(2c).
Since c is a real number, 1T (RΛR)−11 > 0. Moreover, since
A/2c = 2/P(x) > 0, x∗ � 0 implies

(RΛR)−1(R1 + c1) � 0.

Then all conditions in (26) hold, which contradicts the assump-
tion that the conditions in (26) do not hold.

APPENDIX VI
PROOF OF PROPOSITION 10

The proof can be divided into two cases that depend on
the position of y∗ relative to Y: (i) y∗ is an interior point of
a face f∗ of Y and (ii) y∗ lies in an edge of Y . The proof
focuses on the first case and the result can be easily extended
to the second case.

The following lemma can be used for checking the visibility
of a face.

Lemma 5: Given a facet f̃ of a convex polyhedron C and a
point p. f̃ is visible from p iff 〈n, h〉 < 0, where n denotes
the outward-pointing normal vector of f̃ and h is a vector
from p to an arbitrary point in f̃ .

Lemma 5 can be verified directly from the Definition 1. Let
h∗ = [ y∗1 , y

∗
2 , y

∗
3 − µ ]T denote the vector from yµ to y∗.

Since y∗ is an interior point of f∗, normal vectors of f∗ and
that of the hyperboloid (8) are aligned at y∗, implying that
the outward-pointing normal vector of f∗ can be written as

n∗ = t [−y∗1 , −y∗2 , y∗3 − 2/λ∗ ]T
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where λ∗ = P(x∗) > 0 and t is a nonzero constant. Note
that −n∗, the outward-pointing normal vector of (8), satisfies
that −n∗3 ≤ 0, implying that

t(y∗3 − 2/λ∗) ≥ 0. (37)

Moreover, note that y3 = 1TRx+ tr{J0} > 0 and

(y∗3 − 2/λ∗)2 = y∗21 + y∗22 + 4(λ∗)−2 ≥ 4(λ∗)−2

which gives

y∗3 ≥ 4/λ∗. (38)

Together with (37), this shows that t > 0. Without loss of
generality, we consider t = 1. Then the inner product of n∗

and h∗ is

〈n∗, h∗〉 = −y∗21 − y∗22 + y∗23 − µy∗3 − 2y∗3/λ
∗ + 2µ/λ∗

(a)
= µ(2/λ∗ − y∗3) + 2y∗3/λ

∗

where (a) is because y∗ is on the curve (8). Note that

y∗3 > 2/λ∗ > 0

according to (38). Hence, µ(2/λ∗− y∗3) > 0 and 2y∗3/λ
∗ > 0.

Consequently, 〈n∗, h∗〉 > 0 and, by Lemma 5, f is not visible
from the point yµ.

APPENDIX VII
PROOF OF THE CLAIM IN SECTION V

The following lemma shows that YB is a translate of ỸB.
Lemma 6: There exists a constant d such that YB = ỸB+d.

Proof: This lemma can be proved by induction. For
N = 2, YB obtained by Line 1 to Line 3 in Algorithm 4 is a
parallelogram, and its edges (in a clockwise order) are either
(y1, y2, −y1, −y2) or (y1, −y2, −y1, y2), depending on the
angles of y1 and y2. In either case, there exists a constant
d(2) such that YB = ỸB + d(2).

Let

Y(i)
B =

{
i∑

k=1

ckyk : 0 ≤ ck ≤ 1

}

and let Ỹ(i)
B denote the polygon obtained by Line 1 to Line 3

in Algorithm 4 with input vectors y1, y2, . . . , yi. Note that
YB = Y(N)

B and ỸB = Ỹ(N)
B .

Suppose the lemma is proved for N = l− 1. The induction
hypothesis implies that there exists a constant d(l−1) such that
Y(l−1)
B = Ỹ(l−1)

B +d(l−1). Consider the case N = l. Note that

Y(l)
B =

{
y : y = t · yl + z, z ∈ Y(l−1)

B , 0 ≤ t ≤ 1
}

(39)

and

Ỹ(l)
B =

{
y : y = t · yl + z̃ + r, z̃ ∈ Ỹ(l−1)

B , 0 ≤ t ≤ 1
}

(40)

for some constant r that depends on yl and Ỹ(l−1)
B . Comparing

(39) and (40) shows that Y(l)
B = Ỹ(l)

B +d(l), where d(l) is given
by d(l) = d(l−1) − r.

Next consider the point in YB with the largest x-component,
denoted as yr. This point is unique since none of the

vectors y1, y2, . . . , yN is parallel to the vertical axis.
Therefore, together with Lemma 6, YB can be obtained
by translating ỸB so that ỹR overlaps yr. The only thing
remaining to show is that yr is identical to the point yR
obtained in Line 4 and Line 5. Let X(y) denote the
x-component of a two-dimensional vector y. Then

yr = arg max
y∈YB

X(y)

= arg max
y=

∑N
i=1 ciyi,0≤ci≤1

X(y)

= arg max
y=

∑
ciyi,0≤ci≤1,X(yi)≥0

X(y)

=
∑

X(yi)≥0

yi

= yR.
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