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Abstract—This paper presents a tutorial on stochastic geom-
etry (SG)-based analysis for cellular networks. This tutorial is
distinguished by its depth with respect to wireless communica-
tion details and its focus on cellular networks. This paper starts
by modeling and analyzing the baseband interference in a base-
line single-tier downlink cellular network with single antenna
base stations and universal frequency reuse. Then, it char-
acterizes signal-to-interference-plus-noise-ratio and its related
performance metrics. In particular, a unified approach to con-
duct error probability, outage probability, and transmission
rate analysis is presented. Although the main focus of this
paper is on cellular networks, the presented unified approach
applies for other types of wireless networks that impose inter-
ference protection around receivers. This paper then extends
the unified approach to capture cellular network characteris-
tics (e.g., frequency reuse, multiple antenna, power control, etc.).
It also presents numerical examples associated with demon-
strations and discussions. To this end, this paper highlights
the state-of-the-art research and points out future research
directions.

Index Terms—Stochastic geometry, cellular networks,
performance analysis, symbol error probability, outage
probability, capacity.

I. INTRODUCTION

STOCHASTIC geometry (SG) has succeeded to provide a
unified mathematical paradigm to model different types of

wireless networks, characterize their operation, and understand
their behavior [1]–[5]. The main strength of the analysis based
on SG, hereafter denoted as SG analysis, can be attributed
to its ability to capture the spatial randomness inherent in
wireless networks. Furthermore, SG models can be naturally
extended to account for other sources of uncertainties such as
fading, shadowing, and power control. In some special cases,
SG analysis can lead to closed-form expressions that govern
system behavior. These expressions enable the understanding
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of network operation and provide insightful design guidelines,
which are often difficult to get from computationally intensive
simulations.

SG analysis for wireless networks can be traced back
to the late 70’s [6]–[10]. At that point in time, SG was
first used to design the transmission ranges and strategies
in multi-hop ad hoc networks. Then, SG was used to char-
acterize the aggregate interference coming from a Poisson
field of interferers [11]–[13].1 Despite the existence of a
large number of interfering sources, it is shown in [11]–[13]
that the central limit theorem (CLT) does not apply, and
consequently, the aggregate interference does not follow the
Gaussian distribution. This is due to the prominent effect
of distance-dependent path-loss attenuation, which makes
the aggregate interference dominated by proximate interfer-
ers. The research outcome of [3], [11], and [14]–[16] has
shown that the aggregate interference follows the α-stable
distribution [13], [17], [18], which is more impulsive and
heavy tailed than the Gaussian distribution [19]. In fact, the
aggregate interference has been characterized by generaliz-
ing shot-noise theory in higher dimensions [13], [20]–[23].
Such characterization has set the foundations for SG analy-
sis, enriched the literature with valuable results, and helped
to understand the behavior of several wireless technolo-
gies in large-scale setups [1], [6]–[11], [14]–[16], [23]–[33].
However, these results are confined to ad hoc networks with no
spectrum access coordination schemes. In wireless networks
with coordinated spectrum access, the aforementioned analysis
presents pessimistic results.

Due to the shared nature of the wireless spectrum, along
with the reliability requirement for information transmission,
spectrum access is usually coordinated to mute interference
sources near receivers. This can be achieved by separat-
ing nearby transmissions over orthogonal resources (i.e.,
time, frequency, or codes). However, due to the scarcity of
resources and the high demand for wireless communication,
the wireless resources are reused over the spatial domain.
The receivers are usually protected from interference resulting
from spatial frequency reuse by interference exclusion regions.
Cellular networks, which are the main focus of this tutorial,
impose interference protection for users’ terminals via the

1The Poisson field of interferers means that the transmitters are randomly,
independently, and uniformly scattered in the spatial domain, in which the
number of transmitters in any bounded region in the space is a Poisson random
variable.
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Fig. 1. Organization of the tutorial.

cellular structure.2 This intrinsic property of cellular networks
should be incorporated into analysis. Furthermore, several
medium access control protocols exist in ad hoc networks
(e.g., carrier sensing multiple access) that impose interference
protection around receivers. Accounting for the interference
protection around receivers, the aggregate interference is nei-
ther α-stable nor Gaussian distributed [34]. In fact, there
is no closed-form expression for the interference distribu-
tion if interference protection is incorporated into analysis.
This makes characterizing and understanding the interference
behavior a challenging task. This tutorial shows detailed step-
by-step interference characterization using stochastic geom-
etry. It also shows the interference effect on key wireless
communication performance indicators such as error proba-
bility and transmission rate. Since interference coordination is
elementary for several types of wireless networks, the anal-
ysis in this paper can be extended to other types of wireless
networks that impose interference protection around receivers.

To facilitate navigating through this tutorial, we first illus-
trate the organization of its contents and the relations between

2The cellular structure guarantees that each user is served by the base
station that provides the highest signal strength.

its sections in Fig. 1. Sections I–III are introductory sec-
tions that introduce SG, present related literature, and define
the baseline system model that will be used for the analysis
through the subsequent sections. Sections IV and V present
exact characterization for the baseband aggregate interference
and error rate in cellular networks modeled via the Poisson
point process (PPP). As discussed later in the tutorial, the
exact analysis presented in Sections IV and V is involved and
different from the widely used outage probability and ergodic
capacity analysis. Hence, Section VI presents an approxima-
tion that simplifies the error rate analysis and unifies it with the
outage probability and ergodic capacity framework presented
in Section VII. The unified analysis developed in Sections VI
and VII are then applied to advanced cellular network system
models in Section VIII. Future research directions are then
highlighted in Section IX before the paper is concluded in
Section X.

A. Using SG for Cellular Networks

SG was mostly confined to ad hoc and sensor networks to
account for their intrinsic spatial randomness. In contrast, cel-
lular networks were mostly assumed to be spatially deployed
according to an idealized hexagonal grid. Motivated by its
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tractability, attempts to promote SG to model cellular networks
can be traced back to the late 90’s [35], [36]. However, success
was not achieved until a decade later [37]–[39]. The theo-
retical and statistical studies presented in [37]–[39] revealed
that cellular networks deviate from the idealized hexagonal
grid structure and follows an irregular topology that ran-
domly changes from one geographical location to another.
Andrews et al. [37] show that the signal-to-interference-plus-
noise-ratio (SINR) experienced by users in a simulation with
actual base station (BS) locations is upper bounded by the
SINR of users in idealistic grid network, and lower bounded
by the SINR of users in random network. Interestingly, the
random network provides a lower bound that is as tight as the
upper bound provided by the idealized grid network. However,
the lower bound is preferred due to the tractability provided by
SG. Guo and Haenggi [38] show that the spatial patterns exhib-
ited by actual BS locations in different geographical places can
be accurately fitted to random spatial patterns modeled via SG.
Furthermore, the results in [38] confirm the tight lower bound
provided by the random network to the users’ SINR in simula-
tions with actual BS locations. Finally, Blaszczyszyn et al. [39]
show that the SINR in grid network converges to the SINR of
random network in a strong shadowing environment.

Exploiting the tractability of SG, several notable results are
obtained for cellular networks. For instance, the downlink
baseline operation of cellular networks is characterized
in [37]–[48]. Extensions to multi-tier case are provided
in [49]–[64]. The uplink case is characterized in [41]
and [65]–[76]. Range expansion and load balancing are studied
in [77]–[81]. Relay-aided cellular networks are characterized
in [82]–[86]. Cognitive and self-organizing cellular networks
are studied in [87]–[95]. Cellular networks with multiple-
input multiple-output (MIMO) antenna system are investigated
in [96]–[114]. Cooperation, coordination, and interference can-
cellation in cellular networks are characterized in [115]–[125].
Energy efficiency, energy harvesting, and BS sleeping for
green cellular operation are studied in [126]–[136]. Millimeter
(mmW) based communication in cellular network is char-
acterized in [137]–[140]. In-band full-duplex communication
for cellular networks is studied in [141]–[145]. Interference
correlation across time and space in cellular networks is stud-
ied in [146] and [147]. The additional interference imposed
via underlay device-to-device (D2D) communication in cel-
lular networks is characterized in [148]–[154]. Mobility and
cell boundary cross rate are studied in [155]–[160]. Cloud
radio access network and backhuling in cellular networks are
studied in [161]–[163]. Last but not least, the physical layer
security and secrecy in the context of cellular networks are
characterized in [164] and [165]. A detailed taxonomy for the
state-of-the-art stochastic geometry models for cellular net-
works is given in Table I. By virtue of the results in [35]–[165],
SG based modeling for cellular networks is widely accepted
by both academia and industry.

B. Motivation & Contribution

Due to the expanding interest in SG analysis, it is required to
have a unified and deep, yet elementary, tutorial that introduces

SG analysis for beginners in this field. Although there are
excellent resources that present SG analysis for wireless net-
works [3]–[5], [20], [166]–[171], this tutorial is distinguished
by characterizing the baseband aggregate interference, intro-
ducing error rate analysis, and focusing on cellular networks.
The monographs [166]–[168] present an advanced level treat-
ment for SG and delve into details related to SG theory.
In [4], [20], and [166]–[171] many transceiver characteristics
(e.g., modulation scheme, constellation size, matched filter-
ing, signal recovery technique, etc.) are abstracted and the
aggregate interference is treated as the sum of the powers of
the interfering signals, and hence, the analysis is limited to
outage probability, defined as the probability that the SINR
goes below a certain threshold, and ergodic rate, defined by
the seminal Shannon’s formula. The tutorial in [3] delves into
fine wireless communication details and presents error proba-
bility analysis. However, it is focused on ad hoc networks.
ElSawy et al. [5] survey the SG related cellular networks
literature without delving into the analysis details.

In contrast to [4], [5], [20], and [166]–[171], this tuto-
rial delves into baseband interference characterization and
symbol/bit error probability analysis while exposing the nec-
essary material from SG theory. Hence, it is more suited for
those with wireless communication background. Furthermore,
it is focused on cellular networks which is not the case
in [3], [4], [20], and [166]–[169]. This tutorial also discusses
the Gaussian signaling approximation that is taken for granted
in the literature. To the best of the authors’ knowledge, this
is the first time that the accuracy of the Gaussian signaling
approximation in large-scale networks is discussed and ana-
lytically quantified. Finally, the tutorial elaborates the reasons
for the pessimistic performance evaluation obtained via SG
analysis and points out potential solutions.

Notation: throughout the paper, P{·} denotes probability,
EX{·} denotes the expectation over the random variable X,
E{·} denotes the expectation over all random variables in {·},
κn(X) denotes the nth cumulant of the random variable X, �
denotes the definition,

d= denotes the equivalence in distri-
bution, ∼ denotes the distribution, and CN (a, b) denotes the
circularly symmetric complex Gaussian distribution with mean
a and variance b. The notations fX(·), FX(·), ϕX(·), and LX(·)
are used to denote the probability density function (PDF),
the cumulative distribution function (CDF), the characteristic
function (CF), and the Laplace transform3 (LT), respectively,
for the random variable X. The indicator function is denoted as

{·}, which takes the value 1 when the statement {·} is true and
0 otherwise. The set of real numbers is denoted as R, the set of
positive integers is denoted as Z

+, the set Z+ ∪{0} is denoted
as N, the set of complex numbers is denoted as C, in which the
imaginary unit is denoted as j = √−1, real part, imaginary
part, and magnitude of a complex number are denoted as Re{·},
Im{·}, and | · |, respectively, the complex conjugate is denoted
as (·)∗, and the Hermitian conjugate is denoted as (·)H . The
Euclidean norm is denoted as ‖·‖. γ (a, b) = ∫ b

0 xa−1e−xdx is

3With a slight abuse of notation, we denote the LT of the PDF of a random
variable X by the LT of X. The LT of X is defined as LX(s) = E

{
e−sX}.
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TABLE I
TAXONOMY OF THE LITERATURE FOR CELLULAR NETWORK SG MODELS

the lower incomplete gamma function, Q(x) = 1√
2π

∫∞
x e− t2

2 dt

is the Q-function, (a)n = �(a+n)
�(a)

is the Pochhammer symbol,

1F1(a; b; x) = ∑∞
n=0

(a)n
(b)n

xn

n! is the Kummer confluent hyper-

geometric function, and 2F1(a, b; c; x) = ∑∞
n=0

(a)n(b)n
(c)n

xn

n! is
the Gauss hypergeometric function [172], [173]. With a slight
abuse of notation,

x=a= is used to denote that the current expres-
sion is obtained from a substitution for x with a in the directly
preceding expression.

II. OVERVIEW OF SG ANALYSIS

Before delving into the modeling details, we first give a
broad overview of the SG analysis as well as its outcome.

In practice, cellular networks are already deployed and, for a
given city, the locations of BSs are already known. However,
SG does not model the performance of a specific realization
of the cellular network at a specific geographical location.
Instead, it gives a general analytical model that applies on
average for all cellular networks’ realizations. For instance, if
we want to analyze the effect of in-band full-duplex commu-
nication in cellular networks, instead of repeating the analysis
for each and every geographical setup of the cellular net-
works, we can obtain general performance analysis, guidelines,
and design insights that apply when averaging over all dis-
tinct realizations. Following the studies in [37] and [38],
the locations of BSs at different geographical locations form
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random patterns. Hence, general analysis for cellular networks
should be based on the probabilistic spatial distribution of BSs
rather than on a specific network realization. Abstracting each
BS location to a point in the Euclidean space, SG models
the probabilistic BS locations by a stochastic point process
(PP) [174]–[177], which describes the random spatial patterns
formed by points in space.

We are interested in the performance of a randomly selected
user and/or the average performance of all users, i.e., the aver-
age performance of users in all locations. As discussed above,
from the network perspective, we are interested in the aver-
age performance over all cellular network realizations. Such
an average performance metric is denoted as spatially aver-
aged (SA) performance, which is the main outcome from SG
analysis.4 Examples of the SA performance metrics of interest
in cellular networks are:

• Outage probability: the probability that the SINR goes
below a certain threshold (T), P{SINR < T}.

• Ergodic capacity: the expectation E{log(1 + SINR)} is
denoted as the ergodic capacity, which measures the
long-term achievable rate averaged over all channel and
interference (i.e., network realization) states [178].

• Symbol error probability (SEP): the probability that the
decoded symbol is not identical to the transmitted symbol.

• Bit error probability (BEP): the probability that the
decoded bit is not identical to the transmitted bit.

• Pairwise error probability (PEP): the probability that the
decoded symbol is si given that sj is transmitted ignoring
other possible symbols.

• Handover rate the number of cell boundaries crossed over
per unit time.5

SG gives expressions that relate the aforementioned
performance metrics to the cellular network parameters and
design variables. Such expressions are then used to understand
the network behavior in response to the network parameters
and/or design variables. This helps to obtain insights into the
network operation and extract design guidelines. Note that,
by SG analysis, the obtained design insights hold on aver-
age for all realizations of cellular networks. Hence, in light of
the obtained expressions, communication system engineers can
perform tradeoff studies and take informed design decisions
before facing practical implementation issues. It is worth noting
that the spatially averaged performance metrics obtained by SG
analysis can be interpreted in different ways. For instance, the
average SEP can be interpreted as: i) the SEP averaged over
all symbols for a randomly selected user, or ii) the SEP aver-
aged over all symbols transmitted within the network. Similar
interpretation applies for other performance metrics.

4Formally, the spatial averaging technique and its interpretation depend on
the type of the PP. If the PP is stationary (i.e., translation invariant) and spa-
tially ergodic, then the averaging is w.r.t. the PP distribution and the result
is location independent. On the other hand, if the PP is stationary but spatial
ergodicity does not hold, then the expectation is done w.r.t. the Palm distribu-
tion of the PP [168] and the result is location independent. Finally, if the PP
is neither stationary nor spatially ergodic, then the expectation is done w.r.t.
the Palm distribution of the PP and the result is location-dependent. Further
discussion about this subject can be found in [168, Ch. 8].

5Handover rate is not discussed in this tutorial. Interested readers are
referred to [155] and [156].

It ought to be mentioned that stochastic geometry analysis
is not limited to spatial averages. Using the model pioneered
in [226], SG analysis can be extended to study the distributions
of the aforementioned performance metrics.

III. BASELINE SYSTEM MODEL & AGGREGATE

INTERFERENCE CHARACTERIZATION

A. System Model

As a starting point, a baseline two-dimensional single-tier
downlink cellular network is considered to introduce basic SG
analysis. It is assumed that all BSs are equipped with single
antenna and transmit with the same power P. Other scenarios
such as MIMO, uplink, and more advanced downlink models
are presented in Section VIII. It is also assumed that each
user equipment (UE) is equipped with a single antenna and is
associated to its nearest BS. Nearest BS association captures
the traditional average received signal strength (RSS) based
association for single-tier cellular networks when shadowing
is ignored. In this case, the service area of each BS can be
geometrically represented by a Voronoi-tessellation [175], [179]
as shown in Fig. 2. We assume that BSs have saturated buffers
and that every BS has a user to serve (saturation condition). Each
BS maps its user data using a general two-dimensional zero-
mean unit-power constellation S = {d1, d2, . . . , dM}, where
dm = am exp{jθm} and m = 1, 2, 3, . . . .M. If s is a randomly
and uniformly selected symbol from S, then E{s} = 0 and
E
{|s|2} = 1. All symbols from all BSs are modulated on the

same carrier frequency and are transmitted to the corresponding
users. The transmitted signal amplitude attenuates with the
distance r according to the power-law r− η

2 , where η is an
environmental dependent path-loss exponent.6 We consider
narrowband fading channels where multi-path fading is modeled
via independent and identically distributed (i.i.d.) zero-mean
unit-variance circularly symmetric complex Gaussian random
variables, denoted by h. We are interested in modeling the
baseband signal received at an arbitrary user which is located
r meters away from his serving BS. The baseband signal
(after proper down-conversion and low-pass filtering) can be
represented as

y = √
P s h r− η

2 + iagg + n, (1)

where s is the intended symbol, h ∼ CN (0, 1), iagg is the base-
band aggregate interference experienced from all interfering
BSs, and n ∼ CN (0, No) is the noise.

B. Network Abstraction

The first step in the analysis is to choose a “convenient PP”
to abstract network elements (i.e., BSs and users). Then, the
performance metrics of interest are expressed as functions of
the selected PP. These functions can be evaluated using results
from SG. Note that the term “convenient PP” is used to denote a
PP that balances a tradeoff between tractability and practicality.
As will be discussed later, a PP that is perfectly practical may

6The path loss exponent strongly depends on the local terrain characteristics
as well as the cell size. Typical values for path-loss exponent are 3 ≤ η ≤ 4
for urban macro-cells and 2 < η ≤ 8 for micro-cells [180].
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Fig. 2. A realization from a cellular network in which the triangles represent
the BSs, the blue triangle/circle represents the test BS/user, red triangles
represent interfering BSs, the bold-dashed lines visualize BSs footprints for
nearest BS association, and the green dashed circle shows the interference
protection imposed by nearest BS association. The locations of other users
are omitted for clarity.

obstruct the model tractability, and hence, approximations are
usually sought. For the sake of complete presentation, the paper
first sheds light on the tractability issue of general PPs. Then
the Poisson point process (PPP) approximation is introduced,
which is widely adopted in the literature due to its tractability.

Consider that each realization for BS locations is abstracted
by a general infinite two-dimensional PP, denoted by the set
� = {xi; i ∈ N},7 such that xi ∈ R

2 represents the coordinates
of the ith BS.8 At the moment, assume that the selected PP
� perfectly reflects the correlation between the BSs belong-
ing to the same service provider. Repulsion (i.e., a minimum
distance between BSs) is an important form of correlation
that exists in cellular networks due to the network planning
process.

Without loss of generality, the analysis is conducted, and
the performance is evaluated, for a test user which is located
at the origin.9 For notational convenience, it is assumed that
the points in the set � are ordered with respect to (w.r.t.)
their distances from the origin, see Fig. 2. In this case, the
distance from the nth BS to the test user is given by rn = ‖xn‖,
and the inequalities (rn−1 < rn < rn+1) are satisfied with
probability one.10 For the sake of simple presentation, the set
�̃ = {‖xi‖; i ∈ N} = {ri; i ∈ N} is defined, which consists of
the ordered BSs distances to the test user. Due to the RSS-based

7While a PP can be defined as a random set or a random measure
[168, Ch. 2], we restrict the focus of this tutorial on the random set definition.

8Each BS is denoted by its location and the terms “point” and “BS”
are used interchangeably. Infinite networks are considered for simplicity
and due to the negligible contribution from far-away BSs to the aggregate
interference. Also, the analysis can be easily modified to finite networks.

9The origin is an arbitrary reference point in R
2 which is selected for

the analysis. Usually the origin is selected to be the test user’s location
at which the performance is evaluated. The obtained results do not depend
on the choice of the origin for stationary PPs. Otherwise, the analysis is
location-dependent.

10Here we implicitly assume simple point processes [168, Definition 2.2]

association rule, the test user is associated with the BS located
at x0 and the baseband received signal by the test user can be
expressed as

y0 = √
Ps0h0r

− η
2

0 +
∑

rk∈�̃\r0

√
Pskhkr

− η
2

k

︸ ︷︷ ︸
iagg

+ n, (2)

where s0 is the intended symbol, sk is the interfering symbol
from the kth BS, h0 ∼ CN (0, 1) is the intended channel fading
parameter, hk ∼ CN (0, 1) is the interfering channel fading
parameter. The random variables sk are i.i.d. ∀k. The random
variables hk are also i.i.d. ∀k. The symbols and fading parameters
are independent of one another. Note that r0 is excluded from
�̃ as the serving BS does not contribute to the interference.
It is worth noting that the received signal in the form of (2)
also applies to other types of wireless networks that impose
an interference protection of r0 around receivers.

In cellular networks, the serving distance r0 is a random
variable that is parametrized by the BS intensity. As cellular
networks become denser, users are more likely to be closer
to their serving BSs, and vice versa. For the sake of simple
and general analysis, the paper introduces the analysis for a
fixed r0 (i.e., assuming constant r0) that is decoupled from the
intensity λ in Sections IV–VII. Fixing r0 and letting λ to be var-
ied independently reveals the explicit effect of the interference
boundary and interferers intensity on the aggregate interference
properties. Furthermore, the scenario of decoupled interference
protection region and intensity of interferers has potential appli-
cations in wireless networks such as cognitive networks. In
cognitive networks, the performance of primary receivers can
be protected by either enlarging the spatial interference pro-
tection around the primary receiver or lowering the intensity
of simultaneously active secondary users [24]. Section VIII
relaxes the fixed r0 assumption and focus on the case where
the PDF of r0 is characterized by the BS intensity λ.

By visual inspection of (2), it is clear that iagg involves
numerous sources of uncertainties. Neither the number nor
locations of the interfering BSs {xk}k∈Z+ are known. The set of
interfering BSs � \ x0 is a random set with infinite cardinality
(or random cardinality for finite networks). The following sub-
sections show how to handle this randomness and statistically
characterize the aggregate interference in (2). Before getting
into the details, it should be emphasized that we do not aim
to calculate an instantaneous value for iagg. Instead, we aim to
characterize iagg via its PDF, CF, and/or moments. As will be
shown later, and also discussed in [5] and [3], the distribution
of iagg is not Gaussian. This is because the CLT does not hold
for iagg as the sum in (2) is dominated by the interference from
nearby BSs.

C. SG Analysis for iagg for General Point Process

Due to many sources involving uncertainties, it is not feasible
to characterize iagg in an elementary manner (i.e., by evaluating
the distribution for sum and product of random variables).
Instead, the characterization parameter of interest (e.g., the
moments of iagg) is expressed as a function of the PP (�̃), then
techniques from SG are applied to seek a solution. As shown
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in Fig. 3, SG provides two main techniques that transform a
function that involves all points in a PP to an integral over the
PP domain, namely, Campbell’s theorem and the probability
generating functional (PGFL).11 However, as shown in the
figure, a certain representation for the parameter of interest
is mandatory to exploit these techniques. Since Campbell’s
theorem requires an expectation over a random sum, it can
be directly used to calculate moments. On the other hand, the
PGFL requires an expectation over a random product, which
makes it suitable to calculate the CF of iagg. Campbell’s theorem
states that:

Theorem 1 (Campbell Theorem): Let  be a PP in R
n and

f : Rn → R be a measurable function, then

E

⎧
⎨

⎩

∑

xi∈

f (xi)

⎫
⎬

⎭
=
∫

Rn
f (x)�(dx) (3)

where �(dx) is the intensity measure of the PP  and x ∈
R

n [175, Ch. 1.9]. In case of PPs in R
2 with intensity function

λ(x), (3) reduces to

E

⎧
⎨

⎩

∑

xi∈

f (xi)

⎫
⎬

⎭
=
∫

R2
f (x)λ(x)dx (4)

As shown in (3), Campbell’s theorem transforms an expec-
tation of a random sum over the PP to an integral involving
the PP intensity function. Note that the integration boundaries
represent the boundaries of the region where the PP exists. For
example, in the case of the depicted system model, the RSS
association implies that no interfering BS can exist within the
distance r0. Applying Campbell’s theorem, the mean value of
the aggregate interference in (2) can be expressed as

E
{
iagg

} = E

⎧
⎨

⎩

∑

rk∈�̃\r0

√
Pskhkr

− η
2

k

⎫
⎬

⎭

(a)= E�̃\r0

⎧
⎨

⎩

∑

rk∈�̃\r0

Esk,hk

{√
Pskhkr

− η
2

k

}
⎫
⎬

⎭

(b)=
∫ 2π

0
λ

∫ ∞

r0

Es,h

{√
Pshr− η

2

}
rdrdθ

= 2πλ
√

PE{s}E{h}
∫ ∞

r0

r− η
2 +1dr

(c)= 0 (5)

where (a) follows from the linearity of the expectation operator
and the independence among the BS locations, the transmitted
symbols, and the fading gains; (b) follows from Campbell’s

theorem and using the two random variables h
d= hk and s

d= sk,
in which the integration is computed in the polar coordinates
(dx = rdrdθ ) with a constant intensity function λ(x) = λ for
r > r0; (c) follows from E{s} = 0, due to the symmetry of
the symbols’ constellation and the equal probability of the
interfering symbols; (c) can also follow from E{h} = 0.

11The PP domain is the smallest region in the Euclidean space that
contains the PP.

Fig. 3. The two main techniques to handle the PP randomness. The PGFL
denotes the probability generating functional, which is defined in the text.
The figure illustrates that if the performance of interest is expressed in
terms of an expectation over a sum (or a product) of functions in the point
process, this expectation can be computed via a tractable integral over the
point process (i.e., spatial region in which the point process exists).

Campbell’s theorem can also be used to find the second
moment of interference:

E
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f (xi)

⎞

⎠

2
⎫
⎪⎬

⎪⎭
= E

⎧
⎨

⎩

∑

xi∈

f 2(xi) +
xi =yi∑
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xi∈

f 2(xi)

⎫
⎬

⎭
+ E

⎧
⎨

⎩

xi =yi∑

xi,yi∈

f (xi)f (yi)

⎫
⎬

⎭

=
∫

Rn
f 2(x)�(dx) +

∫

Rn

∫

Rn
f (x)f (y)μ(2)(dx, dy) (6)

where μ(2)(dx, dy) is the second factorial moment [168, Ch. 6]
of the PP �̃, which is not always straightforward to compute.12

From the above discussion, it seems that Campbell’s theorem is
restricted to compute the first moment of the interference and
can be extended to derive the second moment when μ(2) can
be obtained. Therefore, Campbell’s theorem is not sufficient
to fully characterize iagg.

The second technique to characterize iagg is through the PGFL
[168, Definition 4.3]. The PGFL converts random multiplication
of functions over PP, in the form of E{�xi∈f (xi)}, to an integral
over the PP domain. As shown in (7), as shown at the top of
the next page, random multiplication is useful to obtain the CF
of the aggregate interference iagg, where the first equality in (7)
shows the definition of the CF for complex random variables
[181, Definition 10.1], and ω = ω1 + jω2.

Equation (7) represents the CF of iagg as an expectation over
a random product of a function of the process �. Hence, the
PGFL of � can be used to compute ϕiagg(·). Unfortunately,
expressions for the PGFL only exist for a limited number of PPs.
Hence, in order to use the PGFL and characterize the aggregate
interference via its CF, the PP � should be approximated via
one of the PPs with a known PGFL.

In conclusion, characterizing the aggregate interference from
a general PP {�̃ \ r0} is not trivial and may not be analytically
tractable. While the PP intensity is sufficient to obtain the mean
of iagg associated with a general PP {�̃ \ r0} via Campbell’s
theorem, tractable expressions for higher order moments cannot

12For a homogeneous PPP with intensity λ, the second factorial moment
is given by μ(2)(dx, dy) = λ2dxdy [168, Example 6.5].
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(7)

be generally obtained. Furthermore. the PGFL does not exist
for all PPs to characterize the aggregate interference via its
CF. Therefore, we have to resort to some approximation to
maintain tractability. The most common and widely accepted
approximation for the interference associated with {�̃ \ r0} is
the interference generated from a PPP, which is discussed in
the next section.

IV. POISSON POINT PROCESS APPROXIMATION

The PPP is an appealing point process due to its simple
PGFL expression (see (90) in Appendix I), which leads to
simple evaluation of (7). Furthermore, the homogenous PPP
is stationary and spatially ergodic, which further simplifies
the analysis. By Slivnyak-Mecke theorem [175], the statistical
characteristics seen from a homogenous PPP is independent
from the observation location.13 In other words, the interference
characterized at the test arbitrary origin is equivalent (i.e., has
equivalent distribution) to the interference characterized at any
other location in R

2 including the points in �. The PPP is
formally defined as

Definition 1 (Poisson Point Process (PPP)): A PP  =
{xi; i = 1, 2, 3, . . .} ⊂ R

d is a PPP if and only if the number
of points inside any compact set B ⊂ R

d is a Poisson ran-
dom variable, and the numbers of points in disjoint sets are
independent.

Useful expressions characterizing the PPP are listed in
Appendix I.

From the PPP definition, one can see that the PPP does not
impose any correlation between its points. The uncorrelated
spatial locations of the PPP points may raise concerns about
its accuracy to model BSs that are unlikely to be deployed
arbitrarily close to each other. Intuitively, BSs locations are
better captured via repulsive point processes to reflect the net-
work planning procedure.14 Fortunately, we are more focused
on modeling the aggregate interference generated in a cellu-
lar network than on studying the mutual spatial interactions
between BSs. The aggregate interference is mainly affected by

13Slivnyak-Mecke theorem for the homogenous PPP states that the reduced
Palm distribution is equal to the original distribution [175].

14A stochastic PP can be repulsive, attractive, or neutral [168].

the number of interfering sources and their relative locations
to the test receiver rather than the exact locations of the inter-
fering sources. For instance, Fig. 4(a) shows a PP that exhibits
minimum repulsion distance of δ among its points as well as
repulsion w.r.t. the test receiver, and Fig. 4(b) shows an approxi-
mation of the PPs in Fig. 4(a) by relaxing the mutual repulsion
between the interfering points. The PP in Fig. 4(b) mimics
the interference in Fig. 4(a) on the test receiver because both
have similar interference exclusion regions and same number
of interferers. Similarly, the aggregate interference generated
from a PPP can provide accurate approximation of the interfer-
ence generated from a repulsive point process if the parameters
of the approximating PPP are carefully chosen.

Validations for the PPP approximation of the interference
generated from different repulsive point processes as
well as interference generated using empirical BSs loca-
tions (which intrinsically exhibit repulsion) are available
in [37]–[39], [62]–[64], [87], [89], and [182]–[190]. A
closer look into the reasons of such accuracy is given in
the sequel.

A. Using PPP for Approximating Interference in
Repulsive Point Processes

This section discusses some examples where the PPP
is used to approximate the aggregate interference gen-
erated from repulsive point processes. The Matérn Hard
Core Point Processes (MHCPP) represents an impor-
tant class of repulsive point processes that has been
extensively used in the literature to model wireless
networks [62]–[64], [87], [89], [182]–[188].15 The MHCPP
models random spatial patterns of points that are prohibited to
coexist with inter-separation distances less than a predefined
repulsive distance δ. The MHCPP is constructed from a PPP,
with constant intensity λ, via dependent thinning such that all
points retained in the MHCPP satisfy the mutual repulsion of at
least δ. The repulsive nature of the MHCPP makes it a suitable
candidate to model CSMA ad hoc networks [182]–[188] as
well as macro BSs in cellular networks [62]–[64], [87], [89].

15The MHCPP comes in three different forms denoted as type-I, type-II,
and type-III [191]. The discussion is focused on type-II due to its tractability
and applicability to wireless communications [185].
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Fig. 4. Simple example for two networks that would generate the same
interference at the test receiver. Relaxing the repulsion between the interfering
sources will not affect the interference.

However, the PGFL for MHCPP does not exist, which motivates
the PPP approximation for the generated aggregate interference.
The studies in [62]–[64], [87], [89], and [182]–[188] show that
the PPP approximation gives a fairly accurate estimate for the
interference associated with the MHCPP if the intensity of
the approximating PPP and the interference exclusion region
around the test receiver are carefully chosen.

To understand the reason for the accurate PPP approximation,
we need to look into the mutual spatial correlations between
the MHCPP points as a function of their separation distances.
Let P be the probability that a point in the parent PPP is
retained in the MHCPP and k(r) be the joint probability that
two points in the parent PPP separated by distance r are
retained together in the MHCPP. Expressions for P and k(r)
are given in [175, Sec. 5.4] and [186] and a visual illustration
for k(r) as a function of distance is shown in Fig 5. As
shown in the figure, mutual spatial correlation between the
test receiver, which is assumed to be a point of the MHCPP,

Fig. 5. Illustration for the distance dependent mutual interactions between
points in MHCPP type-II.

and the interfering sources, which are the rest of points in
the MHCPP, is confined to the radial distance ranging from δ

to 2δ. While the correlation within the distance ranging from
0 to δ can be exactly captured via the interference exclusion
region by setting r0 = δ, the points outside 2δ are seen by the
test receiver as a PPP with intensity Pλ due to the independent
retaining probability (see Fig. 5 and [186]). Consequently, the
PPP approximation is accurate because the approximation is
mainly confined to the region δ to 2δ, in which the points are
assumed to be independently retained with the test receiver
(i.e., k(r) is approximated by P2 for δ < r < 2δ).

Another elegant technique that relies on the PPP to esti-
mate interference-dependent performance metrics (e.g., outage
probability) within repulsive point processes is the interference-
to-signal-ratio (IS̄R) technique, where the bar over the S
is to indicate that the intended signal is averaged over the
fading [192]. The work in [192] shows that the repulsion
between interfering sources leads to an approximately con-
stant horizontal shift, denoted as deployment gain [38], for
the signal-to-interference-ratio (SIR) CDF at the test receiver
when compared to the PPP interference. Approximate analyt-
ical estimates for the deployment gain can be expressed in
terms of the ratio between the average IS̄R for the PPP and the
average IS̄R for the target point process. The results in [192]
are quite useful to characterize the performance of a wide
range of wireless networks that may inhibit different spatial
interactions amongst their nodes [46], [47], [61], [192].

We conclude the above discussion by emphasizing that the
baseline PPP used for approximating the interference in repul-
sive PPs should be parameterized with two parameters, namely,
the intensity function λ(x) and the interference boundaries, as
shown in Fig. 6.16 Usually, the interference outer boundary

16Note that the intensity function λ(x) is parameterized by the location
x as the PPP is not necessarily homogeneous over the spatial domain.
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Fig. 6. Intensity and boundaries are the main two parameters for the
interference associated with PPP.

is considered infinite due to the large-scale nature of cellular
networks and the negligible contribution from faraway BSs to
the aggregate interference. Hence, as long as the PPP approx-
imation is considered, the intensity function λ(x) and inner
interference boundary should be carefully estimated. In each
of the presented cases in Section VIII, we will highlight how to
estimate the intensity function and the interference exclusion
region.

B. Interference Characterization

As discussed in the previous section, the PPP provides
tractable and accurate approximate analysis for several types
of intractable repulsive PPs. This section is focused on exact
interference characterization in a Poisson field of interferers
with interference exclusion disc of radius r0 centered at the
test location.

Let zk = hksk. Then, using the PGFL of a homogeneous PPP
(see (90) in Appendix I) the CF of the aggregate interference
in (7) can be written as in (8), as shown at the bottom of
this page, where (a) follows from the PGFL of the PPP

(see (90) in Appendix I) and that z
d= zk; (b) follows from the

RSS association (i.e., inner interference boundary is r0) and

substituting z with hs where h
d= hk and s

d= sk; (c) follows
from the circularly symmetric Gaussian distribution of h; and
(d) is obtained by change of variables

y = |ω|2P|dm|2
4rη

0

,

integration by parts, and the uniform symbol distribution. The
steps from (a) to (d) in (8) are the SG common steps to derive
the CF of the aggregate interference. Note that the CF in (8) is
only valid for η > 2. Otherwise (i.e., η ≤ 2), the instantaneous
interference power (|iagg|2) is infinite almost surely [20]. Putting
r0 = 0 in (8), yields to

ϕiagg(ω)
∣
∣
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= exp

⎧
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(9)

which is equivalent to [3, eq. (9)] given for ad hoc network.
From [3], it can be noted that with no exclusion region around
the test receiver, the aggregate interference (iagg) has an α-stable
distribution with infinite moments. The interference protection
of r0, provided by the basic cellular association, diminishes
the interference distribution’s heavy tail and results in finite
interference moments. To study the moments of the interfer-
ence, (8) is manipulated to express the CF of the aggregate
interference in the following forms17
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17The expression in (10) is obtained from (8) using the power series expan-

sion of the incomplete Gamma function γ (s, x) = xs�(s)e−x ∑∞
k=0

xk

�(s+k+1)
and some mathematical manipulations.
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While the first form for ϕiagg(ω) in (10) is compact and can
be used to obtain the PDF of iagg via numerical inversion (e.g.,
Gil-Pelaez inversion theorem), the second form for ϕiagg(ω)

in (10) is easy to differentiate and obtain the moments of
the iagg. For the sake of simple presentation, moments are
obtained from cumulants using the Faà di Bruno’s formula [193].
Following [194], the nth cumulant per dimension for the complex
interference signal is defined as

κn = κn
(
Re
{
iagg

})

= κn
(
Im
{
iagg

})

= ∂n ln
(
ϕiagg(|ω|))

jn∂ω1
n

∣
∣
∣
∣
∣|ω|=0

= ∂n ln
(
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jn∂ω2
n

∣
∣
∣
∣
∣|ω|=0

(11)

Note that κn(Re{iagg}) = κn(Im{iagg}). This is because the
interference signal is circularly symmetric as the CF in (10)
is a function of |ω| only. For notational convenience, the real
and imaginary parts are dropped and the per dimension nth

cumulant is denoted as κn(iagg) = κn(Re{iagg}) = κn(Im{iagg}).
Using this notation, the per dimension cumulants are
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From the cumulants, the per-dimension moments can be
obtained using the Faà di Bruno’s formula [193] as
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The expected aggregate interference power can be
expressed as

E
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∣iagg
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∣2
}

= 2πλPr2−η
0

η − 2
. (14)

The per dimension kurtosis is

kur � κ4

κ2
= 3(η − 2)2

E
{|s|4}

4πλ(η − 1)r2
0

. (15)

The CF in (10), the cumulants in (12), the expected inter-
ference power in (14), and the kurtosis in (15) show several
interesting facts about the aggregate interference in the depicted
system model:

• The interference is circularly symmetric complex random
variable as shown in (8) and (10).

• Since the CFs in (8) and (10) do not match the CF of
the Gaussian distribution, the interference is not Gaussian
and the CLT does not apply.18

18The CLT does not apply to the interference term in (2) due to the
drastic effect of path-loss on the variance of each term, which leads to a
summation of a large number of non i.i.d. random variables.

• The interference power is infinite at η = 2 or r0 = 0 as
shown in (14).

• All interference cumulants, and hence moments, are finite
for η > 2 and r0 > 0 as shown in (12) and (13).

• The interference distribution has a positive and finite kurto-
sis for η > 2 and r0 > 0 as shown in (15), which indicates
that it has a heavier tail than the Gaussian distribution.

• The interference power decays with the interference exclu-
sion radius at the rate of r2−η

0 for η > 2 as shown
in (14).

• The interference power increases linearly with the intensity
λ and power P as shown in (14).

C. Numerical Results for iagg

This section provides numerical results to visualize some
properties of the aggregate interference in PPP networks with
interference exclusion region. Also, the numerical results show
how the aggregate interference in PPP networks is related to the
Gaussian and α-stable distributions. Fig. 7 shows the PDF of
Re{iagg} against the α-stable and Gaussian PDFs with the same
parameters.19 The figure confirms the heavy (fast-decaying) tail
of the iagg when compared to the Gaussian (α-stable) PDF. With
a smaller exclusion distance r0, the interference iagg approaches
the α-stable distribution. As r0 increases, iagg approaches the
Gaussian distribution.

To see the relation between iagg, Gaussian, and α-stable
distributions more clearly, the relative Kolmogorov–Smirnov
(KS) distance is shown in Fig. 8.20 Note that the KS statistic
compares the entire CDFs and does not capture deviations in
the tail probabilities. The figure shows that iagg can neither
be classified as Gaussian nor as α-stable distributed. However,
as r0 increases, iagg deviates from the α-stable distribution
and approaches the Gaussian distribution. Furthermore, as the
intensity increases, the rate at which iagg deviates from the
α-stable distribution and approaches the Gaussian distribution
increases. This is because increasing the intensity of interferers
populates the interference boundary with more interferers, and
hence, the aggregate interference summation in (2) has more
terms with comparable variances. On the contrary, at low
intensity the interference summation in (2) is dominated by a
small number of interferers, which renders the limit theorem
inapplicable.

It is important to note that convergence of the aggregate
interference PDF to the Gaussian PDF at large r0 may be useful
in simplifying interference-dependent performance analysis.
However, such convergence mainly holds in a scenario with
decoupled (i.e., independent) r0 and λ, which is not typical in
cellular networks.

D. Section Summary

This section motivates the use of PPP for network abstraction
in order to obtain tractable results. The CF of the aggregate
baseband interference is derived and its moments are obtained.

19Due to the circular symmetry of iagg the PDF of Im{iagg} is similar
to that of Re{iagg} given in Fig. 7.

20The KS distance measures the maximum distance between two CDFs
F1(·) and F2(·), and is defined as KS = sup

x
|F1(x) − F2(x)|.
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Fig. 7. The PDF of Re{iagg} obtained by numerically inverting (10) at
λ = 1 BS/km2, P = 10 W and η = 4 for a) r0 = 250 m and b) r0 = 500 m.

It is shown that the aggregate interference in PPP networks with
exclusion region around the receiver is neither Gaussian nor
α-stable distributed. Then, some characteristics of the baseband
aggregate interference are highlighted and discussed. The next
section turns the focus to error probability performance.

V. EXACT ERROR PROBABILITY ANALYSIS

Error probability is a tangible measure used to fairly judge
the performance of communication systems. Error probability
captures fine system details (e.g., modulation scheme, receiver
type, symbol constellation, etc.) and is considered the most
revealing metric about the system behavior [195]–[197]. It
includes bit error probability (BEP), symbol error probability
(SEP), and pairwise error probability (PEP). In the context of
wireless networks, error probability has mainly been studied
and conducted for additive white Gaussian noise (AWGN) or

Fig. 8. The KS statistic for iagg when compared to a Gaussian and α-stable
distributions.

Gaussian interference channels [197]. This section illustrates
how to generalize the error probability analysis to large-scale
networks. Without loss of generality, we focus on the SEP,
denoted by S , for coherent maximum likelihood detector with
M-QAM modulation scheme given by [197, Ch. 8],

S = w1Q
(√

β1ϒ
)

+ w2Q2
(√

β2ϒ
)
, (16)

where, w1 = 4
√

M−1√
M

, w2 = −4(
√

M−1√
M

)2, β1 = β2 = 3
(M−1)

are
modulation-dependent weighting factors, and ϒ is the signal-
to-noise-ratio (SNR). It is worth noting that by changing the
factors w1, w2, β1, and β2, the SEP and BEP can be calculated
for different modulation schemes and constellation sizes as
shown in Appendix II.

All parameters in the SEP expression in (16) are deterministic
and the expression is derived based on the Gaussian distribution
of the noise, in which the SNR ϒ is the signal power divided
by the variance of the Gaussian noise. As shown in the previous
section, the aggregate interference in the depicted system model
is not Gaussian, and hence, the cellular network does not
maintain the same assumptions that are used to derive (16).
Therefore, (16) cannot be directly applied to calculate the SEP
in cellular networks.

One elegant solution to apply (16) to study the error
performance in the depicted large-scale cellular network is
to represent the interference as a conditional Gaussian ran-
dom variable [14], [40], [66]. Hence, treating interference
as noise, (16) is legitimate to calculate the conditional error
probability. Then, an averaging step is required to obtain the
unconditional error probability. This technique is known in the
literature by the Equivalent-in-Distribution (EiD) approach,
as it relies on the equivalence in distribution between the
interference and the sum of randomly scaled Gaussian ran-
dom variables. The rest of this section is devoted to the exact
error performance characterization via the EiD approach. We
first show how to represent the interference as a conditional
Gaussian random variable, then we exploit this representation
to calculate the spatial average SEP (ASEP), denoted as S , in
cellular networks.
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A. Conditional Gaussian Representation for Interference

The conditional Gaussian representation of the interference
is obtained by exploiting the fact that matching CFs implies
equivalent distributions. This idea originates in [14], where the
authors use the decomposition property of stable random vari-
ables to represent the α-stable interference in ad hoc networks
in terms of a randomly scaled Gaussian random variable. The
idea of the Gaussian representation for the aggregate interfer-
ence to conduct error probability analysis was then extended to
cellular network in [40], where it was first denoted as the EiD
approach. However, since the aggregate interference in cellular
networks is not α-stable, the conditional Gaussian represen-
tation in [40] was obtained in terms of an infinite series of
randomly scaled Gaussian random variables. This paper follows
a slightly different approach than [40] and obtains the Gaussian
representation of the aggregate interference in cellular networks
via a single randomly scaled standardized complex Gaussian
random variable. While the conditional Gaussian representa-
tion used in this paper leads to the same final result as in [40],
it simplifies the notation and analysis.21 The proposed condi-
tional Gaussian representation of the aggregate interference in
cellular networks is presented in the following lemma.

Lemma 1: Consider the baseband aggregate interference ieq

shown in (2) with the CF shown in (10), then

ieq
d= √

BG, (17)

where G ∼ CN (0, 1) is a standard complex Gaussian random
variable and B is a positive real random scale independent of
G and has the following LT

LB(z)= exp

{ ∞∑

k=1

akzk

}

, (18)

where

ak = (−1)k2πλr2
0

(
P

rη
o

)k
E
{|s|2k

}

(ηk − 2)k!
.

Proof: The EiD approach is obtained by matching the char-
acteristic functions of ieq and

√BG with an equality sign. The
CF of ieq is given in (10). The CF of

√BG is obtained as

ϕ√BG(ω) � EB,G

{
exp

{
jω1Re

{√
BG

}
+ jω2Im

{√
BG

}}}

= EB

{

exp

{

−B|ω|2
4

}}

= LB

(
B|ω|2

4

)

, (19)

where the second equality follows from the standard complex
Gaussian distribution of G and the independence between B
and G. The equality ϕieq(ω) = ϕ√BG(ω) is satisfied if and only
if the LT of B is selected as in (18), which leads to the desired
EiD between ieq and

√BG .

21The proposed Gaussian representation also alleviates a minor deficiency
of negative variances that appears in the intermediate steps (see [40, Eq.
(5)]) of the EiD approach presented in [40]. Nevertheless, we confirm the
validity of the results presented in [40], in which the negative variances
cancels out in final error probability expression.

Exploiting the Gaussian representation for iagg, the baseband
received signal at the test UE can be rewritten as

y0
d= √

Ps0h0r
− η

2
0 + √

BG︸ ︷︷ ︸
ieq

+ n,

= √
Ps0h0r

− η
2

0 + ñ, (20)

where ñ = ieq + n. Since G is a standard circularly symmet-
ric Gaussian random variable, conditioning on B, the lumped
interference plus noise term ñ is a circularly symmetric com-
plex Gaussian random variable with variance (B + N0). This
representation is the key that merges SG analysis and the rich
literature available on AWGN based performance analysis.
Since ñ in (20) is conditionally Gaussian, the SEP expression
in (16) as well as other SNR based expressions for AWGN
channels can be applied to conduct error performance in cellular
networks, as shown in the next subsection.

B. ASEP With Non-Gaussian Cellular Network Interference

Let � = {h0,B}. Then following [197], the conditional
average SINR, when treating interference as noise, is given by

ϒ̄(r0|�) = Es0

{
E{y0}E

{
y∗

0

}}

E
{
y0y∗

0

}− E{y0}E
{
y∗

0

}

= P|h0|2E{|s0|2}r−η
0

B + N0

= P|h0|2r−η
0

B + N0
. (21)

Conditioning on �, the SINR in (21) is similar to the legacy
SNR in (16) but with increased noise variance of B+N0. Hence,
rewriting (16), the ASEP with interference can be expressed
as

S̄(r0|�) = w1Q

(√
β1ϒ̄(r0|�)

)

+ w2Q2
(√

β2ϒ̄(r0|�)

)

.

(22)

Let ζ = B
Pr−η

0
. Then, the unconditional ASEP can be obtained

by an additional averaging step as in (24), as shown at the top
of the next page. Note that (24) is unconditional with respect to
the elements of �, but it is still conditional on r0. The equality
(a) in (24) follows from the lemma proposed in [198], which
is also given in Appendix III.22 The LT of ζ can be directly
obtained from (18) as

Lζ (z)

= exp

{

2πλr2
0

∞∑

k=1

(−1)kzk
E
{|s|2k

}

(ηk − 2)k!

}

,

= exp

{

πλr2
0

(

1 − 1

M

M∑

m=1

1F1

(

−2

η
; 1 − 2

η
;−z|dm|2

))}

.

(23)

22Let Y be a Gamma random variable, [198] shows that the expectation
in the form of E{Q(

√
Y/X)} and E{Q2(

√
Y/X)} can be computed in terms

of the LT of X. In our case, Y = |h0|2 is an exponential distribution which
is a special case of gamma distribution.
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S̄(r0) = w1E

{

Q

(√
β1ϒ̄(r0|�)

)}

+ w2E

{

Q2
(√

β2ϒ̄(r0|�)

)}

= w1E

⎧
⎪⎨

⎪⎩
Q

⎛

⎜
⎝

√√
√
√

|h0|2
N0rη

0
Pβ1

+ ζ
β1

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
+ w2E

⎧
⎪⎨

⎪⎩
Q2

⎛

⎜
⎝

√√
√
√

|h0|2
N0rη

0
Pβ2

+ ζ
β2

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

(a)=
2∑

c=1

wc

⎛

⎝ 1

2c
− c√

π

∞∫

0

Q
(√

2z {c=2}
)

√
z

exp

{

−z

(

1 + 2N0rη
0

Pβc

)}

Lζ

(
2z

βc

)

dz

⎞

⎠. (24)

Theorem 2: Consider cellular network modeled via a PPP with intensity λ in Rayleigh fading environment with universal
frequency reuse and no intra-cell interference. Then, the downlink ASEP with M-QAM modulated signals for a user located
at the distance r0 away from his serving BS, is expressed as

S̄(r0)

=
2∑

c=1

wc

⎛

⎝ 1

2c
− c√

π

∞∫

0

Q
(√

2z c=2
)

√
z

exp

{

−z

(

1 + 2N0rη
0

Pβc

)

− πλr2
0

(
1

M

M∑

m=1

1F1

(

−2

η
; 1 − 2

η
;−2z|dm|2

βc

)

− 1

)}

dz

⎞

⎠.

(25)

Substituting the LT of ζ into (24), the ASEP is characterized
via Theorem 2 given at the top of this page.

C. Section Summary

This section explains the steps for exact ASEP calculation
via the EiD approach. The EiD approach is used to express
the aggregate interference as a conditional Gaussian random
variable, which makes the available AWGN based ASEP expres-
sions legitimate to conduct error probability analysis for cellular
networks. The EiD approach proceeds as follows:

1) Interference Characterization: Use SG to obtain the char-
acteristic function of the aggregate complex interference
signal iagg in the form of (10).

2) Gaussian Representation: Express the interference via a
randomly scaled standardized complex Gaussian random

variable ieq
d= √BG and calculate the coefficients ak, ∀k

of the LT of B in (18) to match the CF in (10), which
ensures equivalence in distribution.

3) Conditional Analysis: Condition on B and obtain the
conditional ASEP via AWGN based expression with the
conditional SINR as in (22).

4) Averaging: Decondition over the non-Gaussian random
variables to obtain ASEP as in (24).

Although exact, the ASEP expression given in (25) is quite
complex and computationally intensive due to the integral
over an exponential function with a sum of hypergeomet-
ric functions in the exponent. Furthermore, the complexity
of the EiD approach increases for advanced system mod-
els with Nakagami-m fading and/or multiple antennas [101].
Therefore, approximations and more abstract analysis are
conducted in the literature to seek simpler and more insight-
ful performance expressions, as will be shown in the next
sections.

VI. GAUSSIAN SIGNALING APPROXIMATION

The complexity of the EiD approach is due to the fact that it
statistically accounts for the transmitted symbol by each inter-
fering source. Abstracting such information highly facilitates
the analysis. The idea of Gaussian signaling approximation can
be found in [199] and [200] for BPSK and QPSK symbols for a
single interfering link. The Gaussian signaling approximation
idea was extended to M-QAM symbols in downlink and uplink
cellular networks in [41]. Instead of assuming that each interfer-
ing transmitter maps its data using a distinct constellation, it can
be assumed that each transmitter randomly selects its transmit-
ted symbol from a Gaussian constellation with unit variance.23

As shown in this section, the Gaussian signaling approxima-
tion directly achieves the conditional Gaussian representation
for aggregate interference. Hence, the ASEP expressions for
AWGN channels are legitimate to be used. Furthermore, the
Gaussian signaling approximation circumvents the complex-
ity of the EiD approach without compromising the modeling
accuracy.

This section first validates the Gaussian signaling approxi-
mation and shows that it does not change the distribution of the
aggregate interference. The section also shows the effect of the
Gaussian signaling approximation on the interference moments
as well as on the approximate error probability performance.

A. Validation

The Gaussian signaling approximation does not approximate
the aggregate interference by a Gaussian random variable.
Instead, it assumes that each interferer chooses a symbol s from
complex Gaussian distribution such that E{|s|2} = 1. Then, the
transmitted symbol by each interfering BS xi experiences the

23Note that if the interfering BSs are coded and operating close to
capacity, then the signal transmitted by each is Gaussian [15]. However,
we are interested in the Gaussian signaling as an approximation for the
interfering symbols which are drawn from the distinct constellation S.
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location-dependent path-loss r−η/2
i and encounters independent

random fading hi before reaching the test receiver. The main
idea in the Gaussian signaling approximation is to abstract the
information carried in the aggregate interference to facilitate
error probability analysis. The baseband signal representation
in the Gaussian signaling approximation is similar to (2), except
that sk has a complex Gaussian distribution with a unit variance.
Following the same steps as in (8) and (10), the CF of the
approximate aggregate interference îagg is obtained as

ϕîagg
(ω)

= exp

{

− πλP|ω|2
2(η − 2)rη−2

0

2F1

(

1, 1 − 2

η
; 2 − 2

η
;−P|ω|2

4rη
0

)}

= exp

⎧
⎨

⎩
2πλr2

0

∞∑

k=1

(−1)k|ω|2k

ηk − 2

(
P

4rη
0

)k
⎫
⎬

⎭
(26)

Equation (26) shows that the aggregate interference signal
is circularly symmetric, which implies that the distribution and
moments of the real and imaginary parts of îagg are identical.
Following the same notation as in (12), the real and imaginary
parts are dropped, and the per dimension nth cumulant is denoted
as κn(îagg) = κn(Re{îagg}) = κn(Im{îagg}). Using this notation,
the cumulants of îagg are given by

κn(îagg) =
{

0, n is odd
πλP

n
2 n!

2n−1( ηn
2 −2)

r
2− nη

2
0 , n is even.

(27)

Further, the moments can be obtained as in (13) and the
aggregate interference power can be expressed as

E

{∣
∣
∣îagg

∣
∣
∣
2
}

= 2πλPr2−η
0

η − 2
. (28)

Comparing (26) with (10), it can be observed that both CFs
have equivalent forms but with slightly different coefficients.24

Also, comparing (28) with (14), it can be observed that both îagg
and iagg have equivalent powers. Hence, all the characteristics
described for iagg in Section IV hold for îagg. Fig. 9 compares the
PDF of îagg with the PDF of iagg. The figure shows that the PDF
îagg matches that of iagg with high accuracy. Comparing (12)
with (27), it can be observed that the difference between iagg

and îagg exists only in even cumulants with orders higher
than two, as highlighted in Table II. Our numerical results in
Section VI-B (see Fig. 10) show that such differences have
minor effect on the SINR-dependent performance metrics such
as the ASEP.

B. Approximate Error Probability Analysis

The Gaussian signaling assumption highly simplifies the
analysis steps and reduces the computational complexity for
the error probability expression. To visualize the conditional
Gaussian representation of the aggregate interference, the base-
band signal at the test receiver given in (2) is rewritten with

24Note that (26) is related to (10) by substituting for E{|s|2n} = n!, which
is the case when s ∼ C(0, 1).

Fig. 9. The PDF of iagg obtained by numerically inverting (10) and (26)
at λ = 1 BS/km2, P = 10 W and η = 4 for r0 = 150 m and r0 = 500 m.

TABLE II
PER-DIMENSION CUMULANT COMPARISON FOR η = 4

the Gaussian signaling approximation as

y0 ≈ √
Ps0h0r

− η
2

0 +
∑

rk∈�̃\r0

√
Ps̃khkr

− η
2

k

︸ ︷︷ ︸
îagg

+ n, (29)

where s0 is the useful symbol that is randomly drawn form
the constellation S, and s̃k is an interfering symbol ran-
domly drawn from a Gaussian constellation with unit variance.
Due to the Gaussian signaling assumption, conditioning on
the network geometry (i.e., rk ∈ �̃, ∀k) and channel gains
(i.e., h0 and hk, ∀k), the received signal y0 is conditional
Gaussian. Particularly, the conditional aggregate interference
îagg ∼ CN (0, Iagg) with Iagg = ∑

rk∈�̃\r0
P|hk|2r−η

k . Hence,
approximating the interfering symbols with Gaussian signals
directly achieves the conditional Gaussian representation of the
aggregate interference and renders the AWGN based ASEP
expressions legitimate to be used. The SINR in (21), with the
Gaussian signaling approximation, can be expressed as

ϒ̄
(
r0|h0, Iagg

) = Es0

{
E{y0}E

{
y∗

0

}}

E
{
y0y∗

0

}− E{y0}E
{
y∗

0

}

= P|h0|2E{|s0|2}r−η
0∑

rk∈�̃\r0

P|hk|2r−η
k + N0

= P|h0|2r−η
0

Iagg + N0
. (30)
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Similar to the EiD case in (24), the unconditional ASEP in
the Gaussian signaling approximation is expressed as in (31),
as shown at the bottom of this page.25 Similar to (24), equality
(a) in (31) follows from the lemma proposed in [198], which
is given in Appendix III. The ASEP in (31) requires the LT of
Iagg, which is characterized in the following lemma.

Lemma 2: The LT of the aggregate inter-cell interference
in one-tier cellular network modeled via a PPP with constant
transmit power P, intensity λ, Rayleigh fading, and nearest BS
association is given by

LIagg(z) = exp

{

−2πλzPr2−η
0

η − 2
2F1

(

1, 1 − 2

η
; 2 − 2

η
;− zP

rη
0

)}

.

(32)

Proof: See Appendix IV.
Remark 1: A special case of Lemma 2 is for η = 4, which

is a common practical value for path-loss exponent in outdoor
urban environments. In this case, unlike the EiD approach
ASEP in (25), the LT of Iagg expression reduces from the
Gauss hypergeometric function 2F1(., .; .; .) to the elementary
inverse tangent function as

LIagg(z)
(η=4)= exp

{

−πλ
√

zP arctan

(√
zP

r2
0

)}

. (33)

Accordingly, the ASEP for the downlink communication
links is provided by Theorem 3, given at the top of the next
page, which is obtained by plugging (32) and (33) into (31).
The ASEP expression in (34), shown at the top of the next
page, contains a single integration over an exponential function
with a single Gauss hypergeometric function in the exponent
for any constellation size M. This considerably reduces the
computational complexity required to evaluate the ASEP when
compared to (25) that contains a constellation size dependent
summation of confluent hypergeometric functions in the expo-
nent. Furthermore, the Gauss hypergeometric function in (34)
reduces to the elementary arctan(·) in (35), shown at the
top of the next page, for η = 4, which further reduces the
computational complexity required to evaluate the ASEP.

Fig. 10 compares the ASEP obtained via the EiD
approach (25), the Gaussian signaling approximation (34), the
Gaussian aggregate interference with variance in (14), and
Monte Carlo simulation for different BS intensities. The figure
shows that the Gaussian interference approximation provides
an upper bound for the ASEP, in which the bound accuracy
depends on the constellation size, interference exclusion radius
r0, and BS intensity λ. Hence, assuming Gaussian aggregate
interference may result in a loose estimate for the ASEP. On

25The ASEP is unconditional because the expectation in (31) w.r.t. Iagg
and h0, however, the expressions is still for a given r0.

Fig. 10. ASEP vs the service distance r0 for 4-QAM and 16-QAM
constellations for η = 4, and λ = 1 and 3 BS/km2.

the other hand, the close match between the Gaussian signaling
approximation and the exact analysis validates the Gaussian
signaling approximation and shows that it accurately captures
the ASEP. The figure also shows that the gap between the
Gaussian signaling approximation and the exact analysis dimin-
ishes for higher constellations as discussed in Section VI-A
(see Table II). Last but not least, the figure manifests the
prominent effect of the interferers’ intensity and interference
boundary on the network performance, which are the two main
parameters that characterize the interfering PPP as discussed
in Section IV.

Fig. 10 also shows that the Gaussian interference approxima-
tion becomes tighter at higher intensity and larger interference
exclusion distance, which occurs only in a decoupled r0 and λ

scenario. As discussed in Section III-B, r0 and λ are coupled
through (88) in cellular systems. Consequently, the Gaussian
interference approximation will result in a loose ASEP estimate
in the context of cellular networks.

C. Section Summary

This section motivates the Gaussian signaling approxima-
tion for interfering symbols to facilitate the ASEP analysis
in cellular networks. We first validate the Gaussian signaling
approximation by showing that it preserves the distribution
of the aggregate interference signal and provides matching
odd and second cumulants, as well as matching interference
power for any constellation size. Difference between the exact
interference and the interference based on Gaussian signaling
only exists for even cumulants with orders higher than two.

The effect of the Gaussian signaling approximation on the
ASEP expression can be observed by comparing (25) with (34).

S̄(r0) = w1E

{

Q

(√
β1ϒ̄

(
r0|h0, Iagg

)
)}

+ w2E

{

Q2
(√

β2ϒ̄
(
r0|h0, Iagg

)
)}

(a)=
2∑
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⎛

⎝ 1

2c
− c√

π

∞∫

0

Q
(√

2z {c=2}
)

√
z

exp

{

−z

(

1 + 2N0rη
0

Pβc

)}

LIagg

(
2zrη

0

Pβc

)

dz

⎞

⎠ (31)



ELSAWY et al.: MODELING AND ANALYSIS OF CELLULAR NETWORKS USING STOCHASTIC GEOMETRY 183

Theorem 3: Consider cellular network modeled via a PPP with intensity λ in a Rayleigh fading environment with universal
frequency reuse and no intra-cell interference. Then, the downlink ASEP, with M-QAM modulated useful signal and Gaussian
interfering signals, for a user located at the distance r0 away from his serving BS, is expressed as

S̄(r0) =
2∑

c=1

wc

⎛

⎝ 1

2c
− c√

π

∞∫

0

Q
(√

2z c=2
)

√
z

exp

{

−z

(

1 + 2N0rη
0

Pβc

)

− 4πλzr2
0

βc(η − 2)
2F1

(

1, 1 − 2

η
; 2 − 2

η
;− 2z

βc
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⎞

⎠ (34)

η=4=
2∑

c=1

wc

⎛

⎝ 1

2c
− c√

π

∞∫

0

Q
(√

2z c=2
)

√
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exp

{

−z

(

1 + 2N0r4
0

Pβc

)

− πλr2
0

√
2z

βc
arctan

(√
2z

βc

)}

dz

⎞

⎠. (35)

One can see that the Gaussian signaling approximation reduces
the sum of M hypergeometric functions in the exponent for
the constellation size M, to a single hypergeometric function
exponent. This highly reduces the computational complexity
to evaluate the ASEP without sacrificing the ASEP accuracy.
Furthermore, for the special case of η = 4 the expression for
the ASEP reduces to a computationally simple inverse tangent
function, which is not the case for the exact EiD.

The Gaussian signaling approximation also facilitates the
derivation steps to obtain the ASEP. Particularly, the analysis
requires the LT of the aggregate interference power (Iagg), which
is easier to derive and simpler to evaluate than the CF of the
baseband aggregate interference required by the EiD approach.
Furthermore, the LT of Iagg can be used to compute several
other performance metrics. As will be shown in the next section,
the Gaussian signaling approximation unifies the computation
of the ASEP, outage probability, and ergodic capacity.

VII. OUTAGE PROBABILITY AND ERGODIC RATE

Error probability expressions provide a tangible characteri-
zation of network performance and capture the effect of several
system factors. However, as shown in Sections V and VI, the
ASEP expressions are involved, even with the Gaussian signal-
ing approximation. Consequently, several researchers resort to
more conceptual analysis relying on quantities such as outage
probability and ergodic rate. Such abstracted analysis sacrifices
the model depth for simplicity leading to simple expressions
that characterize high-level network behavior, highlight general
tradeoffs, and facilitate network design.

A. Definition of Outage Probability and Ergodic Rate

For AWGN channels, the maximum rate per unit bandwidth
(BW) that can be reliably transmitted, also known as the spectral
efficiency, is defined by Shannon’s capacity expression given
by [178]:

C = log(1 + SNR) (36)

where the SNR in (36) is the instantaneous signal-to-noise
ratio. Shannon’s capacity formula assumes that the additive
noise is Gaussian and that coded transmission is employed with
codewords drawn from a Gaussian codebook. If this expression
is extended to include interference, then the interference signal
should also be Gaussian. This is the case when the interfering
BSs also employ Gaussian codebooks, which is equivalent to
the use of Gaussian signaling in Section VI. Similar to (29), the

baseband aggregate interference signal is Gaussian conditioned
on the PPP, which validates lumping the aggregate interference
with the noise term. That is, treating interference as noise,
the instantaneous SINR (ϒ) in (30) is analogous to the SNR
in (36) for Gaussian interfering symbols s̃k when conditioning
on the interfering BSs locations rk ∈ �̃ \ r0. Therefore, (36) is
legitimate to compute the link capacity in the depicted large-
scale cellular network. However, an additional averaging step
over ϒ is required, which leads to the following ergodic rate
per unit BW definition

C = E{ln(1 + ϒ)}
(a)=
∫ ∞

0
P{ln(1 + ϒ) > t}dt

=
∫ ∞

0
P
{
ϒ > et − 1

}
dt

(b)=
∫ ∞

0

(1 − Fϒ(y))

y + 1
dy (37)

where (a) follows because log(1 + ϒ) is a positive random
variable, (b) is obtained by change of variables, and Fϒ(·)
is the CDF of the SINR (ϒ). Shannon’s capacity expression
in (36) can also be used to define the outage probability. Let R
be the transmission rate. Then, the outage probability is defined
as the probability that the transmission rate is greater than the
channel capacity, given by

O(R) = P{log(1 + ϒ) < R}
= P

{
ϒ < eR − 1

}
(38)

where ϒ denotes the instantaneous SINR (i.e., as in (30)
without conditioning on either h0 or Iagg). Hence, the rate
outage probability depends on interference and/or fading.

Outage probability can also be defined based on the bit error
probability (BEP) [201]. In this case, the outage probability
is defined as the probability that the BER exceeds a certain
threshold ε. Exploiting the Gaussian signaling approximation,
the BER based outage probability is given by

O(ε) = P{BER > ε }
≈ P{w1Q(β1ϒ) > ε}
= P

{

ϒ <
1

β1
Q−1

(
ε

w1

)}

(39)

where (39) ignores the Q2(·) term of (16).
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Most of the SG literature does not discriminate between
the two forms of outage probabilities in (38) and (39).
Instead, the outage probability is treated in an abstract
manner with a unified abstracted threshold value (T), as
follows:

O(T) = P{ϒ < T}
= Fϒ(T) (40)

Equations (37) and (40) show that the SINR CDF is sufficient
to characterize both the outage probability and ergodic rate.
The SINR CDF is obtained in the next section.

B. SINR CDF

The SINR CDF is given by

Fϒ(T)
(b)= P{ϒ < T}
(b)= P

{
P|h0|2r−η

0

Iagg + N0
< T

}

(a)= EIagg

{

F|h0|2
(

T
(Iagg + N0

)

Pr−η
0

)}

(b)= 1 − e
−TN0r

η
0

P LIagg

(
Trη

0

P

)

(41)

where (b) follows from the exponential distribution of |h0|2
and the definition of the LT. It is worth highlighting that
(a) in (41) cannot be always computed. This is because
the PDF of the interference power Iagg is not available in
closed-form, except for very special cases which are not of
practical interest for cellular networks [20], [166]–[169].26

However, the exponential distribution of |h0|2 enables express-
ing the CDF of the SINR in terms of the LT of Iagg. The
LT of Iagg is given in Lemma 2, which is used to character-
ize the ergodic rate and outage probability in the following
theorem.

Theorem 4: Consider a cellular network modeled via a PPP
with intensity λ in a Rayleigh fading environment with universal
frequency reuse and no intra-cell interference. The downlink
ergodic rate for a user located at the distance r0 away from
his serving BS can be expressed as

C(r0)

η=4=
∫ ∞

0

exp

{

− tN0rη
0

P − 2πλtr2
0

η−2 2F1

(
1, 1 − 2

η
; 2 − 2

η
;−t

)}

t + 1
dt

η=4=
∫ ∞

0

exp

{

− tN0r4
0

P − πλ
√

tr2
0 arctan

(√
t
)
}

t + 1
dt, (42)

26The interference distribution can be only found for special cases of
PPP networks in which the interference boundaries (see Fig. 6) go from 0
to ∞ [11], which is not suitable to model cellular networks that enforce an
inner interference boundary of r0.

and outage probability for a user located at the distance r0
away from his serving BS can be expressed as

O(r0, T)

η=4= 1 − exp

{

−TN0rη
0

P
− 2πλTr2

0

η − 2
2

× F1

(

1, 1 − 2

η
; 2 − 2

η
;−T

)}

η=4= 1 − exp

{

−TN0r4
0

P
− πλ

√
Tr2

0 arctan
(√

T
)
}

. (43)

Proof: The theorem is obtained by plugging the LT expres-
sions (32) and (33) into (41) to get the SINR CDF, which is then
used to compute the ergodic rate and the outage probability as
in (37) and (40), respectively.

Fig. 11 validates (42) and (43) against Monte Carlo simula-
tion. Similar to Fig. 10, the results in Fig. 11 show the effect of
interferers’ intensity and interference boundary on the network
performance. Hence, the outage probability and ergodic rate
can be used as an alternative and simpler way to characterize
the network behavior.27 However, such simplicity comes at
the expense of abstractions that may hide the true network
behavior. As shown in Fig. 11(c) the network performance is a
function of the abstracted SINR threshold value, which gives
a constellation oblivious performance measure. On the other
hand, Fig. 10 clearly shows the true ASEP for each modulation
scheme.

C. Section Summary

The outage probability and ergodic rate can be defined
in terms of the SINR CDF. This may lead to closed-form
simple expressions which help to characterize the network
performance. It is worth mentioning that the Gaussian signal-
ing approximation provides a unified approach to characterize
SINR related performance metrics. That is, the outage probabil-
ity, ergodic capacity, and also ASEP under Gaussian signaling
approximation require obtaining the LT of the aggregate inter-
ference power as in (32). Then, these quantities are computed
by plugging the LT of Iagg into (43), (42), and (34), respectively.

VIII. ADVANCED NETWORK MODELS

This section is focused on the analysis based on Gaussian
signaling approximation. Hence, we only show LIagg(·) and we
neither calculate {σ 2

q }∞q=1 nor Lζ (·). As shown in the previous
sections, the ASEP, outage probability, and ergodic rate expres-
sions are all functions of the LT of the aggregate interference.
Therefore, throughout this section, we show how the LT of
the aggregate interference changes for each network model.
For the sake of concise presentation, the LT of the aggregate
interference plus noise is defined as

LI+N (z) = E
{
exp{−z

(Iagg + N0
)}}

= exp{−zN0}E
{
exp{−zIagg}

}

= exp{−zN0}LIagg(z) (44)

27The outage and ergodic rate expressions (43) and (42) are simpler than
the ASEP expressions (25) and (34)



ELSAWY et al.: MODELING AND ANALYSIS OF CELLULAR NETWORKS USING STOCHASTIC GEOMETRY 185

Fig. 11. Outage probability and ergodic rate vs the service distance r0.

where the second equality in (44) follows because the noise
variance N0 is a constant. Using the LT of the aggregate
interference plus noise, the ASEP in (31) and the outage

probability in (41) can be rewritten as

S̄(r0)

=
2∑

c=1

wc

⎛

⎝ 1

2c
− c√

π

∞∫

0

e−zQ
(√

2z {c=2}
)

√
z

LI+N

(
2zrη

0

Pβc

)

dz

⎞

⎠

(45)

and

Fϒ(T)=1 − LI+N

(
Trη

0

P

)

. (46)

Hence, we focus on the LT of the aggregate interference plus

noise evaluated at
arη

0
P , where a = 2zβ−1 for ASEP evaluation,

and a = T for outage probability and ergodic rate evaluation.
As discussed in Section III-B, as far as the PPP is con-

sidered, the interference exclusion region (denoted hereafter
as rI ) and the intensity λ are the two main parameters that
discriminate the LT of the interference in different network
models [202]. Note that the baseline network model used in
the previous sections assumed a single-tier cellular network with
no interference coordination. Hence, the interference exclusion
distance is equivalent to the service distance (i.e., rI = r0)
and the interferers’ transmit powers are equivalent. However,
this might not always be the case. In the next sections, we
discriminate between the interference exclusion distance rI
and the service distance r0. We will also discriminate between
the interferers’ transmit power PI and the serving BS transmit
power P0. Then, using (32) and (44), the LT of the interference
plus noise can be generalized to (47), shown at the bottom

of the next page. Then, substituting z = ar4
0

P0
into (47), the

expressions (48), (49), and (50), as shown at the bottom of the
next page, are obtained.

While (47) represents the general case, (49) and (50) give
simplified versions of the LT of interference in the special
cases of interference-limited scenario (i.e., No → 0) with
general path-loss exponent and interference limited scenario
with η = 4, respectively. The simplifying scenarios given
by (49) and (50) are important as they lead to simple and
insightful expressions for the ASEP, outage probability, and
ergodic rate. Equations (48), (49), and (50) give the LT of
interference plus noise and serve as a basis for the analysis in
the sequel.

A. Random Link Distance r0

As discussed in Section III-B, random link distance is an
intrinsic property of the baseline cellular network model. Due
to the employed association rule, the link distance distribution
is characterized by the BS intensity as shown in (88). Hence,
averaging over the link distance distribution is required to obtain
the spatially average performance. Note that the random service
distance r0 does not change any of the previous analysis and
only adds an additional averaging step over r0. This is because
both the aggregate interference and the useful signal power
in (30) depend on the service distance r0. Hence, we first obtain
the conditional (i.e., on r0) LT of the aggregate interference
as in (32) and then conduct the averaging step over r0. The
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service distance r0 in (45) and (46) appears within the LT of
I + N only, and hence, the averaging step over r0 only affects
the LT expression. That is, the ASEP and the SINR CDF are
given in terms of the spatially averaged LT (i.e., after averaging
over r0). It is worth mentioning that in the subsequent case
studies, random service distance is always considered and the
spatially averaged LT is calculated.

By averaging over r0, the LT is given by (51), (52), and (53),
as shown at the top of the next page, for the general case,
interference limited scenario, and interference limited scenario
with η = 4, respectively. The ASEP and the SINR CDF
are obtained by substituting (51) (or equivalently (52) or (53)
depending on the noise variance and η) into (45) with a = 2zβ−1

and into (46) with a = T , respectively. It can be observed
from (51) that the LT of the interference plus noise cannot be
obtained in closed-from for general system parameters. Four
approaches to approximate (51) in closed-form are presented
in [203]. Alternatively, the simplifying cases shown in (52)
and (53), obtained by ignoring noise and setting η = 4 can
also be used to find closed-from expressions for the LT. Such
simplicity reveals several insights into the performance of the
cellular network. For instance, under an interference-limited
operation, (52) and (53) along with (45) show that the ASEP
depends only on the modulation scheme parameters wc and βc.
Consequently, the outage probability is only a function of the
threshold value T and the ergodic rate is constant as shown
from (52) and (53) along with (46).

Figs. 12 and 13 validate (51) via Monte Carlo simulation
for outage probability (i.e., a = T) and ASEP (i.e., a =
2zβ−1), respectively. At interference limited regime, Fig. 12
shows that the ASEP is independent of both the noise variance
and BS intensity and only depends on the constellation size.
However, the BS intensity controls the turning point at which
the performance becomes sensitive to the noise variance. This
is because the intended signal power and interference power
scales together at the same rate with the BS intensity as shown
in [37]. Fig. 12 also shows that the Gaussian interference upper
bound is always loose at the interference limited regime and the
bound gap is independent from the BS intensity. This is due to
the coupling between r0 and λ imposed by the association rule
in cellular networks, which is conceptually different form the
results shown in Fig. 10 for the decoupled r0 and λ scenario.
Increasing the noise variance, the Gaussian noise dominates the
SINR, which diminishes the effect of the Gaussian interference

Fig. 12. ASEP vs the noise variance N0 for η = 4.

Fig. 13. Outage probability vs the SINR threshold for λ = 3 BS/km2,
η = 4, and different BSs activity factor (p). As p decreases less interferers
are active in the network, and hence, the aggregate interference decreases
and the noise becomes more prominent.

approximation on the ASEP accuracy. Last but not least, Fig. 12
confirms the accuracy of the Gaussian signaling approximation
for estimating the ASEP in all cases.

Fig. 13 plots (46) using the LTs in (51) and (53) to emphasize
the negligible effect of noise on outage probability for full-
loaded network scenario (i.e., all BSs are interfering with the

LI+N (z, λ, r0, rI) = exp

{

−zN0 − 2πλzPIr2−η

I
η − 2

2F1

(

1, 1 − 2

η
; 2 − 2

η
;− zPI

rη

I

)}

. (47)

LI+N (a, λ, r0, rI) = exp

{

−aN0rη
0

P0
− 2πλarη

0PIr2−η

I
P0(η − 2)

2F1

(

1, 1 − 2

η
; 2 − 2

η
;−arη

0PI
P0rη

I

)}

(48)

N0=0= exp

{

−2πλarη
0PIr2−η

I
P0(η − 2)

2F1

(

1, 1 − 2

η
; 2 − 2

η
;−arη

0PI
P0rη

I

)}

(49)

η=4= exp

{

−πλ

√
aPI
P0

r2
0 arctan

((
r0

rI

)2
√

aPI
P0

)}

. (50)
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LI+N (a, λ) =
∞∫

0

2πλre−πλr2LI+N (a, λ, r, r)dr

=
∞∫

0

2πλr exp

{

−aN0rη

P0
− 2πλar2

(η − 2)
2F1

(

1, 1 − 2

η
; 2 − 2

η
;−a

)

− πλr2
}

dr (51)

N0=0=
∞∫

0

2πλr exp

{

−2πλar2

(η − 2)
2F1

(

1, 1 − 2

η
; 2 − 2

η
;−a

)

− πλr2
}

dr

= 1
2a

(η−2) 2F1

(
1, 1 − 2

η
; 2 − 2

η
;−a

)
+ 1

(52)

η=4= 1√
a arctan

(√
a
)+ 1

(53)

test user). On the other hand, noise may have prominent effect
on the outage probability at low network load as discussed in
the next section.

B. Load-Aware Modeling

The previous sections assume universal frequency reuse
for a single channel and λu � λ, such that each BS
always has a user to serve. However, in practice, multiple
channels are available per BS and some channels may be
left idle (i.e., some BSs might not be fully loaded). The
results in [79], [87], [89], [90], and [128] show that assum-
ing fully-loaded network leads to a pessimistic performance
evaluation. Hence, load-awareness is essential for practical
performance assessment. In a load-aware model, the SINR-
dependent performance analysis is conducted for each channel
and the per-channel access probability in each BS is taken into
account. Let N be the set of available channels, and without
loss of generality, it is assumed that each BS randomly and
uniformly selects a channel to assign for each user request.28

Following [128], the probability that a generic channel is used
by a randomly selected BS is given by

p = P
{
nj ∈ N is used

}

=
N∑

k=1

P{U = k}
(N−1

k−1

)

(N
k

) + P{U > N}

= 1 −
N∑

k=1

P{U = k}N − k

N
(54)

where N is the number of channels in N, P{U = k} is the
probability mass function (PMF) of the number of users served
by each BS, which is given by (92) when the UEs follow a
PPP independent from the BS locations.

From the SINR perspective, the analysis in the load-aware
case is similar to Section VIII-A. However, the intensity of inter-
fering BSs is thinned by the per-channel access probability p.

28If each BS assigns the channels based on the channel quality index
(CQI), to exploit multi-user diversity, and all the channel gains are identically
distributed, then, for a generic user at a generic time instant, each of the
channels has the same probability to be the channel with the highest CQI.

Hence, the intensity λ in the LT expression in Lemma 2 is
replaced by the intensity of active BSs per-channel pλ. On
the other hand, the distribution of the service distance r0
remains the same (i.e., with intensity λ) as each user has the
opportunity to be associated with the complete set of BSs.
However, a user only receives interference from the subset of
active BSs (i.e., the BSs using the same channel). Also, the
interference exclusion region is equal to the service distance
(i.e., rI = r0). Hence, the LT of the aggregate interference
is given by (55), (56), and (57) shown at the bottom of the
next page.

Equations (55), (56), and (57) show that load-awareness can
be easily incorporated into the analysis via the activity factor p.
The effect of the activity factor p is shown in Fig. 13. The
figure also shows the accuracy of (56), and (57) for different
values of p.

C. Uplink Transmission

The previous sections focused on the downlink transmissions,
where the BSs are the transmitters and the UEs are the receivers.
This section studies the uplink case, where the BSs and UEs
roles are reversed. In addition to the baseline model, it is
assumed that the UEs constitute an independent PPP with
intensity λu � λ such that each BS always has a user to serve
on each channel. The user association per-channel is shown
in Fig. 14, in which there is only one active uplink user per
cell due to the employed universal frequency reuse with no
intra-cell interference. As shown in the figure, user association
does not impose spatial interference protection (i.e., r0) as in
the downlink scenario. That is, an interfering uplink user may
be much closer to a BS than its intended user. Hence, per-UE
power control is a crucial assumption in the uplink case to
limit inter-cell interference, as shown in [65] and [69]. For
simplicity, full channel inversion power control is assumed,
in which each user inverts path-loss to maintain a constant
average power level of ρ at the serving BS. That is, if the
UE is located r meters away from its serving BS, the transmit
power should be ρrη to have the average signal power level
of ρ at the serving BS.
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Fig. 14. Single-tier cellular network in which the triangles indicate the
MBSs, the circles indicate UEs.

Without loss of generality, the test BS is assumed to be located
at the origin. Although the complete set of UEs constitutes a
PPP with intensity λu, the subset of UEs scheduled on one
channel (i.e., interfering UEs) do not constitute a PPP. Due to
the unique channel assignment per BS, only one active user
per-channel is allowed in each Voronoi cell as shown in Fig. 14.
This brings correlation, in the form of repulsion, among the
set of interfering users. To facilitate the analysis and maintain
tractability, the set of interfering UEs is approximated with a
PPP. Since there is only one active user in each Voronoi cell,
the intensity of the approximate PPP is selected to be equal
to the BS intensity λ. In this case, the PGFL of the PPP is
legitimate to be used as an approximation to obtain the LT
of the aggregate interference in uplink cellular networks. The
accuracy of this approximation is verified in Fig. 15 as well
as in [65], [66], [69]–[71], [74], and [75].

Although the set of interfering UEs is approximated via a
PPP, the LT in (47) cannot be directly used. This is because

Fig. 15. Outage probability vs SINR threshold for the uplink at λ = 3 BS/km2,
η = 4, and different values of ρ for different values of SNR = ρ

N0
.

the employed power control imposes a constant received signal
power ρ at the test BS. As a result, the SINR expression for
the uplink is different from that of the downlink case presented
in (30). The SINR at the test BS in the uplink case is given by

ϒu = ρh

N0 + I . (58)

Due to the limited power of the UEs, the noise cannot
be ignored from (58) as both ρ and I may be comparable
to the noise power.29 Hence, the noise is prominent to the
uplink operation as opposed to the interference-limited down-
link scenario. Replacing z by a

ρ
in (47), the starting LT for

the uplink case is given by (59) and (60), as shown at the
top of the next page, which are no longer functions of r0.
Nevertheless, the distributions of the service distances r0 affect
the interference power PIi from each UE due to the employed
power control. In other words, the transmission power of each
UE is a function of the random distance to his serving BS.
The distances between the interfering UEs and their serving
BSs can be fairly approximated via i.i.d. random variables with

29Note that the moments of the aggregate interference I depend on ρ.
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) . (57)
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LI+N (a, λ, rI) = exp
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−aN0

ρ
− 2πλ

η − 2
EPI

{
aPI

ρrη−2
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2F1
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η
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−aN0
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aPI
ρ

arctan
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1
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√

aPI
ρ
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(60)

the distribution in (88) [65], [67], [70], which leads to i.i.d.
approximation for the transmission powers for all interfering
UEs. Consequently, (59) should be averaged over the distribu-
tion of PI . Note that the averaging over PI is done within the
PGFL expression (i.e., within the exponential function of (59)
and (60)) because PI takes a different realization for each
interfering user.

The interference boundary for the uplink is given by

rI >

(
PI
ρ

) 1
η

, (61)

which is calculated from the employed power control and the
association rule. That is, each user adjusts its power to maintain
the power level ρ at his nearest BS. Hence, the interfering power
from any other user at the test BS satisfies PIr−η

I < ρ, which
leads to the boundary in (61). Substituting rI back into (59)
and (60), then

LIagg(a, λ)

= exp
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aN0

ρ
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The power PI = ρrη, where r has the PDF in (88). Hence,

E{P
2
η

I } = ρ
2
η

πλ
. Substituting E{P

2
η

I } into (62) and (63), then

LIagg(a, λ)

= exp
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−aN0

ρ
− 2a
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2F1
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η
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η
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(64)

η=4= exp
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−aN0

ρ
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a arctan
(√

a
)
}

, (65)

which is independent of the BS intensity λ. Furthermore, the
interference terms in (64) and (65) are independent from
the power control threshold ρ. Hence, the SNR = ρ

N0
may

have a prominent effect on the outage probability. More
advanced uplink system models with fractional power con-
trol and/or maximum transmit power constraint can be found
in [65]–[71].

Fig. 15 verifies (64) and the PPP approximation for the
interfering UEs. Comparing Fig. 15 with Fig. 13, it can be
observed that the uplink transmission has higher outage prob-
ability than the downlink counterpart. This is because uplink
transmissions have limited transmission power and the associ-
ation does not impose geographical interference protection for

the uplink transmission. Hence, the uplink is more vulnera-
ble to outages than the downlink. A more detailed comparison
between uplink and downlink performance can be found in [65].

D. Multi-Tier Cellular Networks

Cellular networks are no longer single-tiered networks with
operator’s deployed macro BSs (MBSs) only. Because MBSs
are expensive to deploy in terms of time and money, cellular
operators tend to expand their networks via small BSs (SBSs)
to cope with the increasing capacity demand and device popu-
lations. Some of these SBSs can be deployed directly by users
in a plug and play fashion such as the LTE femto access points,
which are installed by users at their homes and/or workplaces.
Therefore, modern cellular networks are multi-tiered networks
that are composed of MBSs and several types of SBSs (e.g.,
micro, pico, femto).

The common assumption in SG analysis is to model multi-
tier cellular networks via mutually independent tiers of BSs. On
each tier, the BS locations follow an independent PPP which is
characterized by its own transmission power Pk, intensity λk,
and path-loss exponent ηk. It is usually assumed that UEs are
associated to BSs according to a biased RSS strategy, which is
controlled by a set of bias factors {B1, B2, . . . , Bk, . . . }.30 The
bias factors are manipulated to control the load served by each
network tier as shown in Fig. 16. Let �̃k = {r0,k, r1,k, r2,k, ..}
be the set of the ordered distances between a test user at the
origin and the BSs in �k, in which ri−1,k < ri,k < ri+1,k, for
∀i ∈ Z

+. Then, assuming K tiers of BSs, the test UE chooses
to associate with tier k ∈ {1, 2, . . . , K} if

BkPkr−ηk
0,k > BiPir

−ηi
0,i ; i ∈ {1, 2, . . . , K}, i = k. (66)

For simplicity, we focus on the case where all tiers have a
common path-loss exponent ηk = 4. The general case analysis
can be found in [79] and [49]. Hence, the association rule
becomes

BkPkr−4
0,k > BiPir

−4
0,i ; i ∈ {1, 2, . . . , K}, i = k. (67)

The performance in each tier may differ according to its
parameters. Thus, per-tier performance is usually conducted.
Let us focus on a generic tier k. Looking into (45) and (46), one
can see that the LT of the aggregate interference power should

be evaluated at
ar4

0,k
Pk

to conduct the performance analysis for
tier k. The aggregate interference in this case is the cumu-
lative interference coming from all tiers. Assuming universal

30Without the bias factors, the multi-tier cellular network can be represented
by an equivalent single-tier cellular network [52]. Hence, similar analysis and
insights to Section VIII-A applies to the multi-tier scenario with non-biased
RSS association.
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Fig. 16. Two-tier cellular network with the same BS locations and different
bias factors, in which the squares indicate the MBSs, the triangles indicate
the SBSs for P1 = 50P2, λ1 = 0.2λ2 and η = 4. Biasing is used to increase
the coverage of SBSs to offload users from the MBSs to the SBSs.

frequency reuse across all tiers, the aggregate interference from
all tiers can be calculated as

LIagg

(
a,�, r0,k, R

) = E
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⎨
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LIi

(
z, λi, rIi

)
. (68)

where � = {λi}K
i=1, R = {rIi}K

i=1, (a) follows from the indepen-
dence between the different tiers, and rIi and Ii are, respectively,
the interference boundary for the ith tier and the aggregate
interference from the ith tier.

The LT of the interference from each tier is similar to (50). The
per-tier interference boundary is obtained from the association
rule given in (67). For a user who is associated with tier k with
the association distance r0,k, the ith tier interference should
have the intensity λi and interference boundary

rIi = r0,i >

(
BiPi

BkPk

) 1
4

r0,k. (69)

From (50) with P0 = Pk and PI = Pi, the LT for the per-tier
interference can be expressed as

L(k)
Ii

(
a, λi, r0,k, rIi

)

= exp

{

−πλi

√
aPi

Pk
r2

0,k arctan

(√
aBk

Bi

)}

. (70)

Combining (68) and (70), the LT of the aggregate interference
experienced by a user in tier k is

L(k)
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(
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)
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Similar to Section VIII-A, the service distance r0,k is random
with the PDF shown in (94), which is a function of the relative
values of the tiers’ powers, bias factors, and path-loss exponents.
In our case (i.e., ηk = 4, ∀k), the service distance distribution
for a user in the kth tier reduces to

fr0,k(x) = 2π

(
K∑

i=1

√
BiPi

BkPk
λi

)

x exp

{

−π
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2

}

.

(72)

The spatially averaged LT for users in the kth tier is then
given by
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∞∫
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(73)

For η = 4, the tier association probability in (93) reduces to

Ak = λk
√

BkPk
∑K

i=1 λi
√

BiPi
. (74)

Using (74) the averaged LT is given by
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(75)
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Fig. 17. User-centric coordinated frequency reuse with � = 3, in which
the BSs are represented by triangles and UEs are represented by circles.
BSs using the same frequency are highlighted with similar color.

If unbiased RSS association is adopted (i.e., Bk = 1, ∀k),
then the LT reduces to

LIagg(a,�) = 1

1 + √
a arctan

(√
a
) . (76)

Despite the different transmission powers and intensi-
ties of BSs in multi-tier cellular networks, the simple
expression in (76) shows that the unbiased RSS associa-
tion reduces the SINR-dependent performance metrics to the
single-tier case, which is independent from network param-
eters (i.e., number of tiers, transmission powers, intensities
of BSs, etc.).

E. Interference Coordination and Frequency Reuse

For simplicity, we study a user-centric interference coordi-
nation with frequency reuse in a single-tier cellular network
modeled via a PPP with intensity λ. Due to the randomized
network structure modeled by the PPP, the traditional hexago-
nal grid tailored frequency reuse schemes cannot be employed.
Therefore, it is assumed that the available spectrum is divided
into � sub-bands and that frequency reuse is adopted via coordi-
nation among the BSs [115]. As shown in Fig. 17, each BS uses
a frequency sub-band which is not used by the �−1 BSs closest
to its serving user. The main problem in frequency reuse is that
the positions of interfering BSs are correlated (i.e., the BSs that
are using the same sub-band), which violates the PPP assump-
tion. For analytical tractability, the usual method that is used
in such cases is to approximate the set of interfering BSs with
a PPP with intensity λ

�
. It is well perceived that approximating

a repulsive PP by a PPP that have equivalent intensity gives an
accurate estimate for the interference if the exclusion distance
rI around the test receiver is accurately calculated [5], [65],
[87], [186], [188]. In our case, since each BS selects one of the
� sub-bands, the intensity of the interfering BSs on each sub-
band is λ/�. Exploiting the equi-dense PPP approximation, the
LT of the aggregate interference in the form of (50) is legitimate

Fig. 18. Outage probability for coordinated frequency reuse with λ =
3 BS/km2, η = 4, and � = 1, 2, , 3, and 5.

to be used

LIagg
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λ

�
, r0, rI

)

= exp

{

−π
λ

�

√
ar2

0 arctan

((
r0

rI

)2√
a

)}

. (77)

The adopted user-centric coordination imposes an increased
geographical interference protection around UEs, and hence,
rI > r0. Particularly, since each BS is using a frequency
which is not used by the nearest � − 1 neighbors, the geo-
graphical interference protection is given by rI = r�−1.
Note that r�−1 and r0 are correlated with the joint PDF
in (89). Averaging over the joint PDF of r�−1 and r0,
the spatially averaged LT of the aggregate interference is
given by (78), as shown at the top of the next page.

It is important to highlight that the conditional PDF in (89)
is based on the BS intensity λ not λ

�
. This is because the UEs

have the opportunity to associate with the complete set of BSs
with intensity λ. However, once associated, it communicates
on one of the � sub-bands which interferes with a subset of
the BSs with intensity λ

�
.

It is obvious that interference coordination and frequency
reuse have complicated the analysis, resulting in a double
integral expression for the spatially averaged LT of interference
in (78). However, such expression is still valuable as it can
be efficiently evaluated in terms of time and complexity when
compared to Monte Carlo simulations.

Fig. 18 validates (78) and shows the effect of the coordinated
frequency reuse on the network outage probability. As shown
in (77) and (78), coordinated frequency reuse affects both
the interference boundary and the interferers intensity. This
explains the significant performance improvement shown in
Fig. 18 for increasing the reuse factor �.

F. General Fading

All of the above analysis is based on the exponential power
fading (i.e., Rayleigh environment) assumption, which enables
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expressing the ASEP, outage probability, and ergodic rate using
the LT of the aggregate interference. Assuming general fading
on the interfering links, the analytical tractability is not affected
as all performance metrics can still be expressed using the LT of
the aggregate interference. Nevertheless, the expression of the
LT of the aggregate interference may become more involved.
Tractability issues occur when the fading of the useful link
power gain is not exponentially distributed. In this case, the
outage probability and ASEP can no longer be expressed in
terms of the LT of the aggregate interference.31 ElSawy et al. [5]
discuss four techniques which are used in the literature to extend
SG analysis to other fading environments. These techniques
are to:

• approximate the interference using a certain PDF via
moments fitting, in which the moments are obtained for
the interference LT;

• resort to bounds by considering dominant interferers only
and/or statistical inequalities;

• use Plancherel-Parseval theorem to obtain the aforemen-
tioned performance metrics via complex integrals in the
Fourier transform domain;

• inversion (e.g., Gil-Pelaez inversion theorem [42]).
We will not delve into the details of these techniques as they
are already discussed in [5]. However, two important cases are
highlighted below.

1) Nakagami-m: The first scenario where the above anal-
ysis holds is the Nakagami-m fading with integer m. For the
ASEP analysis, [198] obtains expressions for E{erfc(h/x)} and
E{erfc2(h/x)} using the LT of X, where h is gamma distributed
with integer shape parameter as shown in Appendix XI. Note
that the LT of the aggregate interference in Nakagami-m fading
changes from (50) to

LIagg(a, λ, r0, rI)

= exp

{

−πλr2
02F1

(

−2

η
, m, 1 − 2

η
,−
(

r0

rI

)η aPI
P0

)}

. (79)

The outage probability and ergodic rate can be computed
from the CDF of the SINR as shown in Section VII. In the
Nakagami-m case, Gupta et al. [205] show that if m is an
integer, the CDF of the SINR can be expressed in terms of the
LT of the aggregate interference using the following identity

tnf (t)
LT−→ (−1)k dkLf (t)(s)

dsk
. (80)

Let h be a gamma random variable with shape parameter U
and scale parameter 1. From (41), the CDF of the SINR can

31Unlike outage probability and ASEP, the ergodic rate can always
be expressed in terms of the LT of the aggregate interference (see [204,
Lemma 1]), and hence, can be evaluated for general fading environment [51].

be expressed
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z= Tr
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(81)

where (a) follows from the CDF of the gamma distribution
with integer shape parameter, and (b) follows from switching
the integral and summation order, the LT definition, and the
identity in (80).

2) Additional Slow Fading: When an additional slow fading
is incorporated into the analysis on top of the exponential or
Nakagami-m fading, the analysis remains tractable if the RSS
association adapts to the slow fading. That is, the users are
always associated to the BS that provides the highest received
signal strength. Applying the displacement theorem [168], the
effect of shadowing is captured by scaling the intensity of the

PPP with the shadowing fractional moment E{x 2
η }, where x is

the shadowing random variable [50].

G. Multiple Input Multiple Output (MIMO)
Antenna Systems

Due to the vast diversity of available MIMO techniques
and the significant differences between their operations, it is
difficult to present a unified analytical framework for all MIMO
case studies. Further, we do not want to lose the tutorial flavor
and delve into MIMO systems details, which already exist
elsewhere in the literature. Therefore, this section presents a
simple receive diversity MIMO case study just to convey the
idea of extending SG analysis to MIMO systems. MIMO with
transmit diversity is discussed in the next section in the context
of network MIMO.

This section considers a downlink cellular network with
receive diversity, where each BS is equipped with a single
antenna and each UE is equipped with Nr antennas. The receive
diversity scenario is particularly selected for simplicity, but its
method of analysis can be applied to more realistic MIMO
configurations [110]. Note that in SG analysis, the multiple
antennas are usually assumed to be collocated. The channel
gain vector between a transmitting antenna and the Nr receiving
antennas is denoted by h ∈ C

Nr×1, which is assumed to be
composed of i.i.d circularly symmetric unit variance complex
Gaussian random variables. Also, it is assumed that the UEs
have perfect channel information for the intended channel vector
h0. Assuming maximum ratio combining (MRC) receivers, the
baseband received signal at the input of the decoder can be
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represented as
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where n ∈ C
Nr×1 is the noise vector with i.i.d complex Gaussian

elements. Conditioning on � = {h0, hi, �̃} and exploiting the
Gaussian signaling assumption, the SINR can be expressed as

ϒ(�) = Pr−η
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(83)

where g0 and gj in (83) are the effective channel gains for the
employed MIMO scheme. Let h0,k be the kth element of h0, then
g0 = ∑Nr

k=1 hH
0,kh0,k is a summation of Nr unit-mean exponential

random variables. Hence, g0 is gamma distributed with shape
parameter Nr and rate parameter 1. On the other hand, due
to the independence between h0 and hi, the effective channel
gain for the ith interfering link (gi) is a unit-mean exponential
random variable. Note that the exponential distribution of gi

follows from the fact that
hH

0 hjhH
j h0

|h0|2
d= hj1hH

j1, which can be
proved by conditioning on h0 and showing that hj ∼ CN (0, 1).
Since the MRC receiver leads to a gamma distributed intended
channel gain, ASEP and SINR CDF can be obtained as in the
case of Nakagami-m fading described in Section VIII-F1. For
instance, the CDF of the SINR can be found as
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Nr−1∑

u=0

(−1)u

u!

(
Trη

0

P

)u
duLIagg(z)

dzu

∣
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z= Tr
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(84)

where LI agg(z) is given in (47) with rI = r0. Fig. 19 val-
idates (84) and shows the effect of receive diversity on the
network outage probability.

From the simple example presented above, one can see that
even in Rayleigh fading environment, the fading in MIMO
networks is no longer exponential, and hence, the analysis is
more involved. Also, analyzing the distribution of the inter-
fering signals is challenging as the interfering signal from
each BS is multiplied by the precoding matrix tailored for
processing the intended signal. Further, correlations within the
interference at the antenna branches may impose additional
complexity to the MIMO analysis. Nevertheless, the SG anal-
ysis has been greatly developed in recent years and modeled
the performance of many MIMO setups with and without
interference correlation [96]–[102], [104]–[110].

Fig. 19. The effect of receive diversity on the outage probability λ = 3 BS/km2

and η = 4.

H. Network MIMO

In the previous section, it is implicitly assumed that the
multiple antennas are collocated. In contrast, when several BSs
cooperate to form a MIMO system, the antenna separations are
prominent and should be taken into consideration. This section
considers a downlink single-tier cellular network with single
antenna BSs. User centric CSI agnostic coordinated multi-point
(CoMP) transmission is enabled [118], [119], in which each
user is served by the nearest n BSs. In this case, the test user
receives n non-coherent copies of the intended symbol from
the n nearest BSs, and the received baseband signal can be
expressed as

y =
n−1∑

i=0

√
Pr

− η
2

i his0 +
∑
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√
Pr
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where the set {r0, r1, . . . , rn−1} is excluded from �̃ in (85) as
the nearest n BSs do not contribute to the interference. The
SINR can be written as

ϒ =

∣
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where |∑n−1
i=0

√
Pr

− η
2

i hi|2 is exponentially distributed with
mean

∑n−1
i=0 Pir

−η
i . Substituting

z = a
∑n−1

i=0 Pr−η
i

into (47) and integrating over the joint PDF of the distances
f (r0, r1, . . . rn), the spatially averaged LT is given in (87), as
shown at the bottom of the next page. Note that cooperation
increases the geographical interference protection region to
rI = rn−1 because the nearest n BSs cooperate to serve the
intended user and do not contribute to the aggregate inter-
ference. More advanced models for network MIMO with
transmission precoding and location aware cooperation are
given in [117]–[120].
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Fig. 20. The effect of receive diversity and coordinated frequency reuse
on the outage probability.

I. Discussion

This section discusses some numerical results obtained via
SG analysis. Figs. 10–13, 15, 18, and 20 show high outage
probability and ASEP values. Hence, it may be argued that the
PPP results are pessimistic and do not reflect realistic system
performance. However, such results are mainly due to the system
model and assumptions rather than from the PPP abstraction.
That is, the universal frequency reuse, the saturated network
model, and the peak transmit power of the BSs are the main
reason for the poor performance shown in Figs. 10–13, 15, 18,
and 20. To show that the system model, not the PPP, are the
main reasons for such pessimistic performance, we give the
following two arguments. First, the results in [38] and [192]
show that the PPP captures the same SIR trends as other

repulsive point processes using the same system model. That
is, the PPP abstraction gives a horizontally shifted version
of the SIR CDF curve for repulsive point processes, where
such horizontal shift is denoted as deployment gain. Second,
Fig. 20 shows that the PPP can provide acceptable numerical
values for the performance measures when a more sophisticated
system model is applied. Particularly, Fig. 20 shows the outage
probability obtained for a PPP cellular network with receive
diversity and frequency reuse, which are basic components of
modern networks [206]. Receive diversity and frequency reuse
are incorporated into the analysis by using (78) and (81).

Fig. 20(a) shows the explicit and combined effects of receive
diversity and frequency reuse on the network outage probabil-
ity. Fig. 20(b) shows the combined effect of receive diversity
and frequency reuse for different reuse factors and different
numbers of receive antennas. Figs. 20(a) and 20(b) show that
incorporating simple network management techniques into the
analysis leads to realistic values for the outage probability. For
instance, with only two receive antennas and a reuse factor of
3, the outage probability at T = 0 dB drops from almost 50%
(see Figs. 11, and 13) to below 5%. Incorporating more prac-
tical system parameters (e.g., power control and multi-slope
path-loss) would further reduce the outage probability.

To recap, with the appropriate system model, SG analysis with
the PPP assumption can capture realistic network performance
and gives acceptable performance characterization. Sometimes
we are interested in trends rather than absolute values. In this
case, it is better to keep a simple system model to facilitate the
analysis and to obtain insightful performance expressions. These
expressions could be used to understand the network behavior in
response to different network parameters and design variables.
However, it should be understood that the corresponding results
are illustrative to the network behavior and do not give the
true numerical values for the performance metrics.

IX. FUTURE RESEARCH DIRECTION

SG analysis can be used to characterize the performance
of large-scale setup wireless networks. For instance, it is well
known that minimum Euclidean distance receivers are optimal
if the intended symbol is disturbed by Gaussian noise. However,
in large-scale networks where the intended symbol is disturbed
by non-Gaussian interference in addition to the Gaussian noise,
the optimal detector is unknown. Furthermore, results obtained
for single point-to-point links cannot be directly generalized
to large-scale networks. For instance, in a point-to-point link,
the BER decreases with the transmit power. This fact does not
hold for large-scale networks as the increased power of the
useful signal is canceled by the increased interference power.
In this regard, SG paves the way to better understanding and
more efficient operation of large-scale wireless networks. We
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∫ ∫
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highlight below some venues to extend SG for better models
of wireless networks.

A. New Point Processes

Exploring new tractable PP for modeling wireless networks
is a fundamental research direction for SG analysis. Although
we have shown that the PPP provides a good approximation for
interference associated with repulsive point processes, the PPP
alone is not enough to model all wireless networks. Wireless
networks’ topologies may include other complex correlations
among the network elements rather than the simplified repul-
sion discussed in this paper. For instance, 5G networks define
several types of communication including device-to-device
(D2D) communication, vehicle-to-vehicle (V2V) communica-
tion, and machine-to-machine communication on top of the
legacy device-to-BS communication [207]. These various types
of communications create complex topological structures that
cannot be captured by PPP. This is because PPP is only charac-
terized by its intensity and interference boundary, which offers
limited degrees of freedom to model different topological struc-
tures. Hence, it is essential to develop SG models for wireless
networks via new PPs. In this regard, there have been efforts
invested to study new PPs in the context of cellular networks.
For instance, Poisson cluster processes and Gauss-Poisson pro-
cess for modeling attractive behavior between points are studied
in [20], [60], [208], and [209]. Repulsive point processes such
as the Matérn hard core point process, the Ginibre point pro-
cess, and the determinantal point process are studied in [43],
[44], [76], [87]–[90], [210], and [211]. There are even efforts
to characterize the asymptotic behavior of networks following
general point processes [212], [213]. In some cases when it is
difficult to obtain explicit performance metrics in some net-
work models, stochastic ordering can be exploited to compare
their performances [98], [214]. Note that the developed models
using the aforementioned non-Poisson point processes (e.g.,
Matérn, Giniber, and determinantal processes) are mostly for
the baseline network model due to their involved analytical
nature. Hence, besides exploring new point processes, extend-
ing existing non-Poisson based models to advanced network
setup is also a potential research direction.

B. Characterizing New Technologies

Techniques used for transmissions and network management
in wireless networks are continuously evolving to enhance the
network performance and cope with the ever-increasing traffic
demand. Usually, a proposal for a new technique starts with a
theoretical idea followed by prototyping testbeds. However, it
is challenging and costly to expose these techniques to realis-
tic tests in large-scale setup. In this case, SG can serve as an
initial and fast evaluation step for validating and quantifying
the associated performance. For instance, in-band full-duplex
(FD) communication, which emerges for recent advances in self-
interference cancellation techniques, is optimistically promoted
to double the spectral efficiency for wireless networks [215],
[216]. While this is true for a point-to-point link, it is not
necessarily true in large-scale networks due to the increased
interference level. In fact, [143] employed SG analysis to

demonstrate the vulnerability of uplink to downlink inter-
ference and the negative effect that FD communication can
impose on the uplink transmission. Then, in the light of the SG
model in [143], the authors proposed a solution to alleviate the
negative impact of FD communication on the uplink transmis-
sion. Similar examples exist for other new technologies such
as D2D communication [148]–[152], coordinated multi-point
transmission [118]–[120], offloading and load balancing [77]–
[81], uplink/downlink decoupling [70], massive MIMO [109],
and so on.

The above discussion shows the important role of SG in
evaluating the gains associated with new technologies before
the implementation step. Hence, it can be decided beforehand
whether the new technology is worth the investment or not.
Hence, performance characterization in large-scale networks
via SG will always be a future research direction as long as new
technologies are being proposed to enhance the performance of
cellular networks as well as other types of large-scale networks.

C. More Involved Performance Characterization

In the context of cellular networks, SG is mainly confined to
model interference and characterize outage, error probability,
and transmission rate. An important direction for research is to
extend SG analysis to model more performance metrics. For
instance, SG can be used to model other physical layer related
parameters in large-scale setups such as secrecy rate [25]–[27],
which is the fundamental performance metric in physical layer
security. Looking into the literature, there are initiatives to assess
physical layer security in cellular networks via the secrecy rate
performance metric [164], [165]. However, this field of research
is not mature enough to address the security problems imposed
on 5G networks. In 5G networks there are massive D2D, M2M,
and V2V communications on the top of the legacy user-to-
BS communications. These different types of communications
may serve applications (e.g., eHealth, smart city automation)
which requires some level of privacy and confidentiality. Hence,
developing secrecy rate models for modern cellular networks
with D2D, M2M, and V2V communications is an interesting
future research direction.

Stochastic geometry can also be extended beyond SINR
characterization. For instance, cell boundary cross rate and
cell dwell time are two fundamental performance metrics in
cellular networks to design the handover procedure. The han-
dover models available in the literature are mostly based on the
circular approximation for the cell shape, which does not com-
ply with recent measurements in [37], [38], [189], and [190].
Hence, more accurate handover models for cellular network are
required. In this regards, there are some initiatives to use SG to
characterize handover in cellular networks as in [155]–[160].
However, complete handover designs based on SG are yet to
be developed.

Developing new techniques for managing cellular networks
may also define new performance metrics to be characterized.
For instance, it is advised to transport and cache popular files in
the cellular network edge during off-peak time to maximize the
utilization of the core network and enhance the end user quality
of service [217]. In this case, the hitting probability, i.e., the
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probability that a user finds the requested file in a nearby BS,
becomes a meaningful performance metric. Recently, models
for hitting probability via stochastic geometry are developed
and used to propose solutions to the caching problems based
on file popularity [218]. Last but not least, SG analysis can
be extended beyond physical and MAC layers to higher layer
protocols such as routing and data forwarding [219]. It also
can be used to assess signal processing techniques applied to
large scale networks [220], [221].

D. Statistical Network Optimization

Cellular operators always seek an optimized operation of
their networks. Modern cellular networks are composed of a
massive number of network elements (i.e., BSs, users, devices,
machines, etc.) which makes a centralized instantaneous opti-
mization for the network infeasible. That is, it is infeasible
to select serving BS, assign powers, allocate channels, and
choose the mode of operation for each and every network
element. In this context, SG analysis can be exploited for sta-
tistically optimized operation, which creates a tradeoff among
complexity, signaling, and performance. While instantaneous
optimization guarantees best performance at any time instant,
statistical optimization provides optimal averaged performance
on long-term scale to reduce signaling and processing over-
heads. Note that statistical network parameters (e.g., distribution
for channel gains, network elements spatial distribution and
intensity, etc.) change on longer time scales when compared
to other instantaneous parameters such as channel realizations
and users locations. For statistical network optimization, the
performance objective functions and constraints can be formu-
lated via SG analysis, which guarantees an optimal spatially
averaged performance. Some efforts are invested in statistical
network for cellular networks using SG [222], [223]. However,
to the best of the authors’ knowledge, merging statistical and
instantaneous optimization to balance performance, complexity,
and signaling overhead is an open research problem.

X. CONCLUSION

We present a tutorial on stochastic geometry (SG) analysis for
cellular networks. We first characterize interference in cellular
networks by deriving its characteristic function and moments.
Then, exact error performance analysis and approximate one
are conducted. We show that approximating the interfering
symbols by Gaussian signals facilitates the analysis and sim-
plifies the symbol error rate expressions without sacrificing
accuracy. Then, we present the abstracted outage and ergodic
rate analysis, which is used to further simplify the analysis and
the performance expressions. To this end, we present a unified
technique to compute error probability, outage probability, and
ergodic rate for several system models in cellular networks. In
particular, we show how the intensity and boundary of the PPP
should be determined based on the network characteristics. We
also present numerical examples and discussed the pessimistic
performance obtained by SG. We show that with the proper
network model, SG is capable of capturing realistic network
performance. Finally, we point out future research directions
for SG in the context of cellular networks.

APPENDIX I

THE POISSON POINT PROCESS

The distance distribution between a generic location in R
2

to the nearest point in a PPP  with intensity λ is given by

fr0(r) = 2πλre−πλr2
, r > 0 (88)

The joint distance distribution between a generic location in
R

2 to the nearest and nth points in a PPP  with intensity λ

is given by

fr0,rn(x, y) = 4(πλ)n+1

�(n)
xy
(

y2 − x2
)n−1

e−πλy2
, (89)

where 0 ≤ x ≤ y ≤ ∞.
Let f : Rn → R be a measurable function and  ∈ R

n be
a PPP, then by the PGFL we have:

E

⎧
⎨

⎩

∏

xi∈

f (xi)

⎫
⎬

⎭
= exp

{

−
∫

Rn
(1 − f (x))�(dx)

}

. (90)

Let V be the area of a generic PPP-Voronoi cell, then

fV(v) ≈ (λc)cvc−1e−cλv

�(c)
, 0 ≤ v < ∞ (91)

where c = 3.57 is a constant defined for the Voronoi tessellation
in the R

2 [224].
Consider two independent PPPs b and u with intensities

λb and λu. Using the approximate PDF in (91) for the Voronoi
tessellation constructed w.r.t. b, the probability mass function
of the number of points of u existing in a generic Voronoi
cell of b is given by

P{U = n} = �(n + c)

�(n + 1)�(c)

(λu)
n(λbc)c

(λbc + λu)
n+c , (92)

where n = 0, 1, 2, . . . .

In a K-tier cellular network with intensities {λi}K
k=1, bias

factors {Bi}K
k=1, and path-loss exponent {ηk}K

k=1, the probability
that a user associates with tier k is given by [225, Lemma 1]

Ak = 2πλk

∞∫

0

r exp

{

−π

K∑

i=1

λi

(
BiPi

BkPk

) 2
ηi

r
2ηk
ηj

}

dr. (93)

The service distance r0,k distribution for a user associated
to a BS in the kth tier is given by [225, Lemma 3]

fr0,k(x) = 2πλkx

Ak
exp

{

−π

K∑

i=1

λi

(
BiPi

BkPk

) 2
ηi

x
2ηk
ηj

}

. (94)

XI. APPENDIX II

Let BPSK denote binary phase shift keying, BFSK denote
binary frequency shift keying, QPSK denote quadrature phase
shift keying, M-QAM denote M-quadrature amplitude modula-
tion, M-PAM denote M-pulse amplitude modulation, DE-BPSK
denote differential encoded BPSK, and MSK denote mini-
mum shift keying. Then (16) holds for these schemes with the
parameters given in Table III.
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TABLE III
TABLE OF MODULATION-SPECIFIC PARAMETERS

APPENDIX III

LEMMA 1 IN [198].

Let Y ∼ Gamma(m, m) be a unit mean gamma distributed
random variable, X be a real random variable with the LT
Lx(·), and C be a constant. The authors in [198] proposed a

technique to calculate averages in the form of E{Q(

√
Y

X+C )}
and E{Q2(

√
Y

X+C )}. These averages are given by

E

{
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2
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and
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= 1
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APPENDIX IV

PROOF OF LEMMA 2

Following [37], let Iagg = ∑
rk∈�̃\r0

sP|hi|2r−η
i , then the LT

of Iagg can be derived as
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