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We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel
model. Given an encoding and a channel model, it was previously shown that the quantum operation that
maximizes the average entanglement fidelity may be calculated by a semidefinite program �SDP�, which is a
convex optimization. While optimal, this recovery operation is computationally difficult for long codes. Fur-
thermore, the optimal recovery operation has no structure beyond the completely positive trace-preserving
constraint. We derive methods to generate structured channel-adapted error recovery operations. Specifically,
each recovery operation begins with a projective error syndrome measurement. The algorithms to compute the
structured recovery operations are more scalable than the SDP and yield recovery operations with an intuitive
physical form. Using Lagrange duality, we derive performance bounds to certify near-optimality.
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I. INTRODUCTION

All physical implementations of quantum-information-
processing systems must incorporate a scheme to mitigate
the effects of noise. The most common method for quantum
error correction �QEC� is analogous to classical digital error
correction schemes. The system of interest is encoded into a
subspace of a larger quantum system by means of a quantum
code. After passing through a noisy channel, a syndrome
measurement projects errors onto orthogonal subspaces from
which the original quantum state can be recovered. The first
quantum error correcting codes demonstrated that such meth-
ods could correct arbitrary single-qubit errors �1–3�. These
generic methods enabled a whole range of study in quantum
error correction, particularly as it applies to fault-tolerant
quantum computing.

The generic approach has its drawbacks, however. Most
notably, quantum codes impose a severe amount of overhead
to correct for arbitrary errors. As an example, the shortest
block code that corrects an arbitrary qubit error embeds one
qubit into five �4,5�. As scaling to many qubits is one of the
principal barriers to building a working quantum computer,
any efforts to improve the efficiency of error recovery are of
great interest.

Several recent efforts have explored an optimization-
based approach to quantum error recovery �6–9�. In each
case, rather than correcting for arbitrary single-qubit errors,
the error recovery scheme was adapted to a model for the
noise, with the goal of maximizing the fidelity of the opera-
tion. In �6�, a semidefinite program �SDP� was used to maxi-
mize the entanglement fidelity, given a fixed encoding and
channel model. In �7� and �8�, encodings and decodings were
iteratively improved using the performance criteria of en-

semble average fidelity and entanglement fidelity, respec-
tively. A suboptimal method for minimum fidelity, using an
SDP, was proposed in �9�. An analytical approach to channel-
adapted recovery based on the pretty-good measurement and
the average entanglement fidelity was derived in �10�. The
main point of each scheme was to improve error corrective
procedures by adapting to the physical noise process.

As in �6�, we choose to focus our channel-adapted efforts
on the recovery operation. While channel adaptation can be
advantageous in both the encoding and the recovery opera-
tions, the optimization problem has a significantly nicer form
when one of the two is held fixed. The numerical tools we
develop can be used for either half of the problem; focusing
on quantum error recovery �QER� operations illustrates
nearly all of the important numerical procedures.

The optimization approach to quantum error recovery
demonstrates the utility of channel adaptivity. Such efforts
have shown that quantum error correction designed for ge-
neric errors can be inefficient in the face of a particular noise
process. Since overhead in physical quantum computing de-
vices is challenging, it is advantageous to maximize error
recovery efficiency.

Recovery operations generated through convex optimiza-
tion methods suffer two significant drawbacks. First, the di-
mensions of the optimization problem grow exponentially
with the length of the code, limiting the technique to short
codes. Second, the optimal operation, while physically legiti-
mate, may be quite difficult to implement. The optimization
routine is constrained to the set of completely positive, trace-
preserving �CPTP� operations, but is not restricted to more
easily implemented operations.

In this paper, we describe efforts to determine near-
optimal channel-adapted quantum error recovery procedures
that overcome the drawbacks of optimal recovery. We im-
pose an intuitively satisfying structure on the recovery op-
eration and seek to optimize performance. While still nu-
merical procedures, the result is a class of algorithms that is
less computationally intensive than the SDP and which
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yields recovery operations of an intuitive and potentially re-
alizable form.

II. CHANNEL-ADAPTED RECOVERY

To adapt quantum error recovery to a specific channel
model, we must first determine a measure of performance.
As detailed in �6,7�, both entanglement fidelity �Fe� and en-

semble average fidelity �F̄� yield convex optimization
problems.1 As both measures may be of interest, we will use
the average entanglement fidelity of �10�, of which either of
the above is a special case. Average entanglement fidelity is
defined for a channel A and an ensemble E of states ��i� with
prior probabilities pi as

F̄e�E,A� = �
i

piFe��i,A� = �
i,k

pi�tr��iAk��2, �1�

where �Ak� are the Kraus elements for the CPTP map A.
Consider the simple block diagram for a QEC system

given in Fig. 1. We begin with a fixed model, labeled E�, to
describe the physical noise process. In designing a QEC pro-
cedure, we can choose the encoding UC and the recovery
operation R. By holding either the encoding or the recovery
operation as fixed, optimizing the other can be cast as a
convex optimization problem �6–8�. As done in �7,8�, one
can iteratively optimize a encoding and recovery scheme. In
this paper, we focus our attention on the efficacy of adapting
the recovery operation and defer iterative optimization to
subsequent work. We illustrate our emphasis on the recovery
block by considering both the encoding UC and the channel
E� as a combined operation E.

It is useful to note the dimensions of the various opera-
tions in Fig. 1. We define two Hilbert spaces HS and HC,
which refer to the source and the code spaces, respectively.
These have dimensions dS and dC. The combined encoding
and channel E therefore maps density matrices in L�HS� to
L�HC�, where L�H� refers to the space of bounded linear
operators on H. Our use of the fidelity implies that R maps
from L�HC� to L�HS�, i.e., R performs a decoding. This is
mostly for computational convenience as dS�dC.

Channel-adapted recovery selects an operation R to maxi-

mize F̄e�E ,R �E�. As shown in �6�, exact maximization can

be accomplished via the convex optimization routine of
semidefinite programming. For the remainder of the paper,
we will discuss routines to approach the optimum channel-
adapted recovery through a more computationally feasible
method. In several cases, the routines also yield an intuitive
form for the recovery operation.

We will make use of a convenient isomorphism in which
bounded linear operators are represented by vectors and de-
noted with the symbol 	� · 

. While there are several choices
for this isomorphism �11,12�, including most intuitively a
“stacking” operation, we will follow the conventions of �13�
�also �9��, which result in an isomorphism that is indepen-
dent of the choice of basis. For convenience, we will restate
the relevant results here.

Let A=�ijaij�i
	j� be a bounded linear operator from H to
K �i.e., A�L�K ,H��, where ��i
� and ��j
� are bases for K
and H, respectively. Let H� be the dual of H. This is also a
Hilbert space, generally understood as the space of bras 	j�.
If we relabel the elements as �j
= 	j�, then we represent A as
a vector in the space K � H� as

	�A

 = �
ij

aij�i
�j
 . �2�

It is useful to note the following facts. The inner product
		A �B

 is the Hilbert-Schmidt inner product trA†B. Also, the
partial trace trK	�A

		B�
=AB†. Finally, index manipulation

yields the relation A � B̄	�C

=	�ACB†

, where B̄ is the con-

jugate of B such that B��
= B̄��
 for all ��
.
These relations lead directly to a convenient representa-

tion of a CPTP operation A :L�H��L�K� in terms of a
positive semidefinite �PSD� operator XA�L�K � H��
�11,12,14–16�. The PSD operator is calculated from the
Kraus elements �Ak� of A as

XA = �
k

	�Ak

		Ak�
 . �3�

We will refer to XA as the Choi matrix for A, although most
derivations do not use the basis-free double ket of �2�. The
operation output is given by A���=trH�I � �̄XA and the
CPTP constraint requires that XA�0 and trKXA= I.

In terms of the Choi matrix, the average entanglement

fidelity can be written as F̄e�E ,A�=�ipi		�i�
XA	��i

. From

this expression, we can derive the dependence of F̄e�E ,R
�E� on R as

F̄e�E,R � E� = �
i

pi		�i�
XR�E	��i



= �
i

pitrXR��
k

	��iEk
†

		�iEk

†�
�
= trXRCE,E, �4�

where CE,E=�ikpi	��iEk
†

		�iEk

†�
 encapsulates both the input
ensemble E and the channel �with encoding� E. It was shown
in �6,7� the the optimum XR satisfying the CPTP constraint
can be calculated via semidefinite programming.

1Ensemble average fidelity yields a convex optimization problem
if and only if the states in the ensemble are pure.

Encoder Channel Recoveryρin R ◦ E(ρin)

RE �Uc

E

FIG. 1. Quantum error correction block diagram. For channel-
adapted recovery, the encoding isometry UC and the channel E� are
considered as a fixed operation E and the recovery R is chosen
according to the design criteria.
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III. EIGQER ALGORITHM

To achieve a near-optimal QER operation, an algorithm
must have a methodology to approach optimality while still
satisfying the CPTP constraints. Furthermore, to ease imple-
mentation of such a recovery, we can impose structure to
maintain relative simplicity.

Let us begin by considering the structure of a standard
QEC recovery operation. QEC begins by defining a set of
correctable errors, i.e., errors that satisfy the quantum error
correction conditions. To correct this set, we construct the
recovery operation by defining a projective syndrome mea-
surement. Based on the detected syndrome, the appropriate
unitary rotation restores the information to the code space,
thereby correcting the error. This intuitive structure—
projective measurement followed by unitary syndrome
recovery—provides a simple geometric picture of error cor-
rection. Furthermore, it is a relatively straightforward task to
translate such a recovery operation into a quantum circuit
representation.

Let us impose the same constraint on the channel-adapted
recovery operation. We construct an operation with operator
elements that are a projective syndrome measurement fol-
lowed by a classically controlled unitary operation. Thus the
operator elements can be written �Rk=UkPk�, where Pk is a
projection operator. While we could merely constrain Uk to
be unitary, we will instead continue with the convention that
the recovery operation performs a decoding:
R :L�HC��L�HS�. Under this convention, Uk�L�HC ,HS�
and Uk

†Uk= I. In words, both Uk
† and Rk

† are isometries.
The CPTP constraint

I = �
k

Rk
†Rk=�

k

PkUk
†UkPk=�

k

Pk �5�

is satisfied if and only if the projectors span HC. To satisfy
the CPTP constraint, therefore, �Pk� must partition HC into
orthogonal subspaces, each identified with a correction
isometry2 Uk.

Since the �Pk� project onto orthogonal subspaces, we see
that Rj

†Rk=� jkPk. From this we conclude that �	�Rk

� are an
orthogonal set and thus are eigenvectors of the Choi matrix
XR. The eigenvalue �k associated with	�Rk

 is the rank of Pk

and is thus constrained to be an integer. Furthermore, since
Uk restores the kth syndrome to HS, �k�dS.

We can conceive of a “greedy” algorithm to construct a
recovery operation R. The average entanglement fidelity can
be decomposed into the contributions of each individual op-
erator element as 		Rk�
CE,E	�Rk

. We can construct R by
successively choosing the syndrome subspace to maximize
the fidelity contribution. As long as each syndrome is or-
thogonal to the previously selected subspaces, the resulting
operation will be CPTP and will satisfy our additional con-
straints. In fact, this greediest algorithm has no immediate
method for computation; the selection of the syndrome sub-

space to maximize the fidelity contribution has no simple
form. We propose instead a greedy algorithm to approximate
this procedure.

We motivate our proposed algorithm in terms of eigenan-
alysis. Let us assume for the moment that the rank of each
syndrome subspace is exactly dS which is the case for QEC
recoveries for stabilizer codes. By such an assumption, we
know that there will be dC /dS recovery operator elements.
Consider now the average entanglement fidelity, in terms of
the eigenvectors of XR:

F̄�E,R � E� = �
k=1

dC/dS

		Rk�
CE,E	�Rk

 . �6�

If we were to maximize the above expression with the only
constraint being a fixed number of orthonormal vectors
	�Rk

, the solution would be the eigenvectors associated with
the dC /dS largest eigenvalues of CE,E. In fact, the actual con-
straint differs slightly from this simplification, as we further
must constrain Rk

† to be an isometry �i.e., RkRk
†= I�. The anal-

ogy to eigenanalysis, however, suggests a computational al-
gorithm which we dub EIGQER �for eigen quantum error re-
covery�. We use the eigenvectors of CE,E to determine a
syndrome subspace with a large fidelity contribution.

The algorithm proceeds as follows.
�1� Initialize C1=CE,E.

For the kth iteration,
�2� determine 	�Xk

, the eigenvector associated with the

largest eigenvalue of Ck.
�3� Calculate Rk

†, the isometry “closest” to Xk
† via the sin-

gular value decomposition. Call Rk an operator element of
R.

�4� Determine Ck+1 by projecting out of Ck the support of
Rk.
We return to step �2� and iterate until the recovery operation
is complete.

The EIGQER algorithm is guaranteed to generate a CPTP
recovery operation, and will satisfy the criterion that it can
be implemented by a projective syndrome measurement fol-
lowed by a syndrome dependent unitary operation.

Steps 2 and 3 in the above algorithm require further ex-
position. Given an operator X�L�HC ,HS�, what is the clos-
est isometry Rk? A straightforward answer uses the norm
derived from the Hilbert-Schmidt inner product where 
A
2

=trA†A. We will now allow the rank of the kth subspace to be
dk�dS.3 Thus RkRk

†= Idk
where Idk

is a diagonal operator with
the 1 as the first dk diagonal matrix elements and 0 for the
rest. We have the minimization problem

min
Rk

tr�X − Rk�†�X − Rk� such that RkRk
† = Idk

. �7�

We will state the solution as the following lemma.
Lemma 1. Let X be an operator with singular value de-

2In fact, Uk
† is the isometry. For ease of explication, we will refer

to Uk as an isometry as well.

3Inclusion of reduced rank subspaces may seem unnecessary or
even undesirable—after all, such a projection would collapse super-
positions within the encoded information. We allow the possibility
since such operator elements are observed in the optimal recovery
operations of �6�.
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composition X=U�V†. The rank-d isometry R that mini-
mizes the Hilbert-Schmidt norm difference 
X−R
 is given
by R=UIdI

V†.
Proof. Let Ud be the set of rank d isometries; that is, Ud

= ��U�U†U= Id�. We wish to find the R†�U that minimizes
tr�X−R�†�X−R�. Since this can be written as

tr�X − R�†�X − R� = trX†X + trR†R − tr�X†R + R†X� �8�

and trR†R=d, an equivalent problem is

max
R�U

tr�X†R + R†X� = max
R�U

tr�V�U†R + R†U�V†� , �9�

where we have replaced X with its singular value decompo-
sition.

We can simplify the above expression by noting that C†

=U†R�U. We can thus equivalently maximize the following
expression over C†�U:

tr�V�C† + C�V†� = tr��C†V + V†C�=�
i=1

d

	i�ci
†vi + vi

†ci� �10�

=2�
i=1

d

	i Re�vi
†ci��2�

i=1

d

	i�vi
†ci� �11�

�2�
i=1

d

	i
vi

ci
=2�
i=1

d

	i. �12�

In �10�, 	i is the ith largest singular value of X and vi and ci
are the ith columns of V and C, respectively. We have used
the fact that � is a diagonal matrix of the singular values in
descending order. The inequality is saturated when ci=vi,
which also implies that C=VId⇒R=UIdV†. �

One item not mentioned above is the determination of the
desired rank dk. In our implementation of EIGQER, this is
accomplished by setting a relatively high threshold on the
singular values of X. We considered only singular values
such that 	2�0.05. This ad hoc value was chosen as it led to
acceptable numerical results in the examples.

We turn now to step 3 of the EIGQER algorithm. Recall
that the CPTP constraint as written in �5� requires that the
syndrome subspaces are mutually orthogonal. Thus, the syn-
drome measurement for the kth iteration must be orthogonal
to the first k−1 iterations: PkPi=0 for i�k. We satisfy this
constraint by updating the data matrix Ck−1.

To understand the update to Ck−1, recall that the first step
of the kth iteration is the computation of the dominant eigen-
vector 	�Xk

. To satisfy the constraint, we require that

XkPi = 0 ⇔	�XkPi

 = I � Pi	�Xk

 = 0 �13�

for i�k. All 	�X

 for which this is not satisfied should be in
the null space of Ck. Thus, after each iteration we update the
data matrix as

Ck = �I − I � Pk−1�Ck−1�I − I � Pk−1� . �14�

The algorithm terminates when the recovery operation is
complete, i.e., �kRk

†Rk=�kPk= I. Given the structure of the
recovery operations, this can be determined with a simple

counter that is increased by dk at each step k. When the
counter reaches dC, the recovery is complete.

In fact, the greedy nature of EIGQER allows early termina-
tion of the above algorithm. Each Rk contributes
		Rk�
CE,E	�Rk

 to the average entanglement fidelity. Since the
algorithm seeks to maximize its gain at each step, the perfor-
mance return of each Rk diminishes as k grows. This is illus-
trated in Fig. 2, where we show the cumulative contribution
for each recovery operator element with the Steane code and
the amplitude-damping channel. The greedy construction re-
sults in simplifications in both computation and implementa-
tion. When the contribution 		Rk�
CE,E	�Rk

 passes below
some selected threshold, the algorithm may terminate and
thus reduce the computational burden. This results in an un-
dercomplete recovery operation where �kRk

†Rk� I. An under-
complete specification for the recovery operation may sig-
nificantly reduce the difficulty in physically implementing
the recovery operation. In essence, an undercomplete recov-
ery operation will have syndrome subspaces whose occur-
rence is sufficiently rare that the recovery operation may be
left as a “don’t care.”

Before we consider examples of EIGQER recovery perfor-
mance, we should say a few words about the algorithm com-
plexity when channel-adapting an �n ,k� code. The SDP of
�6,7� to calculate the optimal recovery operation has 4n+k

complex optimization variables constrained to a semidefinite
cone with a further 4k equality constraints. From �17�, a SDP
with n variables and a p
 p semidefinite matrix constraint
requires O�max�np3 ,n2p2 ,n3�� flops per iteration �with typi-
cally 10–100 iterations necessary�. For our case, this yields
O�25�n+k�� flops per iteration.

For the EIGQER operation, the dominant computation is
the calculation of 	�Xk

, the eigenvector associated with the
largest eigenvalue of Ck. Ck is a �2n+k
2n+k�-dimensional
matrix, but the eigenvector has only 2n+k dimensions. Using
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FIG. 2. �Color online� Fidelity contribution of EIGQER recovery
operators for the amplitude-damping channel ��=.09� and the Ste-
ane code. Notice that the QEC performance is equaled with only
eight operator elements, and the relative benefit of additional opera-
tors goes nearly to zero after 30.
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the power method for calculating the dominant eigenvector
requires O�22�n+k�� flops for each iteration of the power
method. While both problems grow exponentially with n, the
reduced size of the eigenvector problem has a significant
impact on the computational burden.

We should note that the eigenvector computation must be
repeated for each operator element of R. If we were to com-
pute all of them, not truncating early due to the diminishing
returns of the greedy algorithm, this would require iterating
the algorithm approximately dC /dS=2n−k times. In fact, we
have a further reduction as the algorithm iterates. At the jth
iteration we are calculating the dominant eigenvector of Cj
which lives on a ��dC− jdS�dS=2k�2n− j2k��-dimensional sub-
space. We can therefore reduce the size of the eigenvector
problem at each iteration of EIGQER.

A. EIGQER examples

To demonstrate the value of the EIGQER algorithm, we
consider several channels and codes; we would like to con-
sider common codes and channels with nontrivial channel-
adapted recoveries. It will be shown in the Appendix that
channels represented by scaled Pauli group operators yield
straightforward channel-adapted recovery operations; it is
therefore useful to consider non-Pauli channels. The most
common and useful such channel is the amplitude-damping

channel, which we will denote Ea. Amplitude damping was
the example used in �6� to illustrate optimal QER, as well as
the example for channel-adapted code design of �18�. The
channel is a commonly encountered model, where the pa-
rameter � indicates the probability of decaying from state �1

to �0
 �i.e., the probability of losing a photon�. For a single
qubit, Ea has operator elements

E0 = �1 0

0 �1 − �
� and E1 = �0 ��

0 0
� . �15�

The EIGQER algorithm does not require a channel as
simple to model as the amplitude-damping channel; the op-
timization routine is general to any channel. To illustrate, we
consider a qubit channel that is less familiar, though with a
straightforward geometric description. We will call this the
“pure state rotation” channel and label it as Eps. To describe
the channel, we define a pure state by its angle in the xz
plane: ��
=cos ��0
+sin ��1
. The channel mapping is de-
fined by its action on two pure states an angle � apart, sym-
metric about the z axis. When �
� /2
 is input to the channel,
the result is �
��−�� /2
, also as a pure state. Thus, these
two states are rotated toward each other by �. Any other
state input to the channel will emerge mixed. The operator
elements for this channel can be written as

Eps ���� cos
� − �

2
sin

�

2

cos

� − �

2
cos

�

2


sin
� − �

2
sin

�

2
sin

� − �

2
cos

�

2
�, ��

cos
� − �

2

cos
�

2

0

0

sin
� − �

2

sin
�

2

�� , �16�

where � and � are constants chosen to satisfy the CPTP
constraint.

The pure state rotation channel has multiple parameters
which characterize its behavior. � indicates the initial sepa-
ration of the targeted states. �, the amount of rotation,
clearly parametrizes the “noise strength,” as �=0 indicates
no decoherence while �=� is strong decoherence. Further-
more, we have chosen the target states to be symmetric about
the z axis, but this is only for clarity in stating the channel;
any alternate symmetry axis may be defined. Furthermore, a
similar channel with asymmetric rotations �1 and �2 may be
defined. This, however, corresponds to a symmetric channel
followed by a unitary rotation. While less physically moti-
vated than amplitude damping, the pure state rotation chan-
nel model provides an extended set of qubit channels which
are not represented with Pauli group operator elements. We
will look at examples of this channel where �=5� /12. There
is no particular significance to this choice; it merely illus-

trates well the principles of channel-adapted QEC.
Since the EIGQER algorithm is more computationally scal-

able than the SDP, we can consider channel-adapted QER for
several codes. We compare the EIGQER recovery performance
to the optimal channel-adapted recovery performance for the
five-qubit stabilizer code �4,5�. We also compare the EIGQER
performance for the five-qubit code, the seven-qubit Steane
code �2,3�, and the nine-qubit Shor code �1�. All comparisons
consider an ensemble E of qubit states that are in the com-
pletely mixed state �= I /2.

Figure 3 compares the performance of the EIGQER algo-
rithm to the optimal QER recovery for the case of the five-
qubit stabilizer code and the amplitude-damping channel.
Also included are the generic QEC recovery and the en-
tanglement fidelity of a single qubit acted upon by Ea �i.e., no
error correction performed�. From this example we observe
that the EIGQER performance nearly achieves the optimum,
especially for the values of � below 0.4. For higher �, the
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EIGQER performance begins to diverge, but this is less impor-
tant as that region is one in which even the optimal QER lies
below the fidelity of a single qubit obtainable with no error
correction.

Figure 4 compares EIGQER and optimal QER for the five-
qubit stabilizer code and the pure state rotation channel with
�=5� /12. We see again that the EIGQER algorithm achieves
a recovery performance nearly equivalent to the optimum,
especially as the noise level approaches 0.

Figure 5 demonstrates the performance of several codes
and the amplitude-damping channel. We compare the EIGQER

performance for the five-, seven-, and nine-qubit codes, con-
trasting each with the generic QEC performance. Notice first
the pattern with the standard QEC recovery: the entangle-
ment fidelity decreases with increasing length of the code.

The five-qubit stabilizer code, the Steane code, and the Shor
code are all designed to correct a single error on an arbitrary
qubit, and fail only if multiple qubits are corrupted. For a
fixed �, the probability of a multiple-qubit error rises as the
number of physical qubits n increases.

The QEC performance degradation with code length is a
further illustration of the value of channel adaptivity. All
three codes in Fig. 5 contain one qubit of information, so
longer codes include more redundant qubits. Intuitively, this
should better protect the source from error. When we channel
adapt, this intuition is confirmed for the Shor code, but not
for the Steane code. In fact, the EIGQER entanglement fidelity
for the Steane code is only slightly higher than the generic
QEC recovery for the five-qubit code. From this example, it
appears that the Steane code is not particularly well suited
for adapting to amplitude-damping errors. We see that the
choice of encoding significantly impacts channel-adapted re-
covery.

The effect is even more dramatically �and puzzlingly� il-
lustrated in the pure state rotation channel. Figure 6 com-
pares the EIGQER recoveries for the five-qubit, Steane, and
Shor codes with �=5� /12. It is interesting to see that the
five-qubit code outperforms each of the others despite having
less redundancy to protect the information. Furthermore,
both the standard QEC and channel-adapted recoveries for
the Steane code perform worse than the generic recovery of
the Shor code! This suggests that the five-qubit code is par-
ticularly well suited to adapt to errors of this type, while the
Steane code is particularly ill suited. �We suspect that the
Shor code with QEC recovery outperforms the Steane due to
its degenerate structure.�

IV. BLOCK SDP QER

The recovery operation generated by the EIGQER algo-
rithm of the preceding section is one of a broader class of
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FIG. 3. �Color� EIGQER and optimal QER for the amplitude-
damping channel and the five-qubit stabilizer code. EIGQER nearly
duplicates the optimal channel-adapted performance, especially for
lower-noise channels �small ��.
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FIG. 4. �Color� EIGQER and optimal QER for the pure state ro-
tation channel with �=5� /12 and the five-qubit stabilizer code.
EIGQER nearly duplicates the optimal channel-adapted performance,
especially for lower-noise channels �small ��.
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FIG. 5. �Color� EIGQER and standard QEC recovery performance
for the five-, seven-, and nine-qubit codes and the amplitude-
damping channel. Note that generic QEC performance decreases for
longer codes, as multiple-qubit errors become more likely. While
the EIGQER performance for the nine-qubit Shor code is excellent,
the seven-qubit Steane code shows only modest improvement, with
performance similar to the generic five-qubit QEC recovery.
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quantum error recoveries. The class is characterized by an
initial projective syndrome measurement, followed by a
syndrome-specific recovery operation. The projective mea-
surement partitions HC and provides some knowledge about
the observed noise process.

Projective syndrome measurements for quantum error
correction are tricky to design. We wish to learn as much as
possible about the error while learning as little as possible
about the input state, so as not to destroy quantum superpo-
sition. The EIGQER algorithm aggressively designs the syn-
drome measurement, as the Rk=UkPk structure of the opera-
tor elements implies a finality about the syndrome selection.
The outcome of the syndrome measurement completely de-
termines the correction term Uk.

We can conceive of a less aggressive projective measure-
ment. If we projected onto larger subspaces of HC, we would
learn less about the noise but perhaps have less chance of
destroying the superposition of the input state. We could con-
sider this an intermediate syndrome measurement, a prelimi-
nary step to further error correction. To design a recovery
operation of this type, we must have a strategy to select a
projective measurement. Given the outcome Pk, we must fur-
ther design the syndrome recovery operation Rk.

Consider the projective syndrome measurement operator
Pk. For the EIGQER algorithm, Pk=Rk

†Rk always projects onto
a subspace of dimension less than or equal to the source
space: rank�Pk��dS. This is an aggressive condition that
arises from constraining the subsequent syndrome recovery
to be a unitary operator. We will relax this constraint and
allow an arbitrary syndrome recovery Rk for the kth syn-
drome measurement. It turns out that we can determine the
optimum such recovery Rk

opt via semidefinite programming,
just as in �6�. The intermediate syndrome measurement Pk
reduces the dimension of the SDP, and thus the technique is
still applicable to long codes where computing the global
optimum recovery is impractical.

We will demonstrate how the optimum syndrome recov-
ery Rk can be calculated via a semidefinite program. Let
�Pk�k=1

K be a set of projectors such that �kPk= I�HC that
constitute an error syndrome measurement. Let Sk be the
support of Pk with dimension dk; it is clear that S1 � S2
� ¯ � SK=HC. Given the occurrence of syndrome k, we
must now design a recovery operation Rk :Sk�HS. Rk is
subject to the standard CPTP constraint on quantum opera-
tions, but only has support on Sk. We may calculate the re-
covery Rk that maximizes the average entanglement fidelity
using the SDP in a structure identical to that of �6� while
accounting for the reduced input space:

XRk
= arg max

X
trX�CE,E�k

such that X � 0, trHS
X = I � Sk. �17�

Here, �CE,E�k= I � PkCE,EI � Pk is the data matrix pro-
jected into the kth subspace. Notice that XRk

and �CE,E�k are
operators on HS � Sk

�. In contrast to CE,E, which requires
dS

2dC
2 matrix elements, �CE,E�k is fully specified by dS

2dk
2 ma-

trix elements. By partitioning HC into subspaces �Sk�
through a careful choice of a syndrome measurement �Pk�,
we may apply semidefinite programming to high-
dimensional channels without incurring the full computa-
tional burden of computing the optimal recovery. In the fol-
lowing sections we discuss two strategies for determining the
syndrome measurement.

A. Block EIGQER

The first step of an iteration of EIGQER computes the
dominant eigenvalue and corresponding eigenvector of CE,E.
This eigenvector corresponds to the operator that maximizes
the average entanglement fidelity gain at a single step. While
such an operator may violate the CPTP constraint for the
recovery operation, it serves to identify an important sub-
space onto which we may project. Indeed, the good perfor-
mance of the EIGQER algorithm rests on the successful iden-
tification of suitable syndrome subspaces via eigenanalysis.

An intuitive extension of this concept is to use multiple
eigenvectors to specify a higher-dimension subspace. If
�	�Xm

�m=1

M are the eigenvectors corresponding to the M larg-
est eigenvalues of CE,E, then it is reasonable to define the
subspace S1 as the union of the support of the operators
�Xm�. We define the corresponding projector P1 and calculate
the syndrome recovery R1 via the SDP of �17�. As in the
EIGQER algorithm, we update the data matrix C by projecting
out the subspace S1, at which point we select another set of
eigenvectors. We will refer to this algorithm as BLOCK-

EIGQER.
How many eigenvectors should be selected to define a

block? A simple solution is for a fixed block size, say M, to
be processed until the recovery is complete. For M =1,
BLOCKEIGQER is identical to EIGQER. For M =dSdC, BLOCK-

EIGQER computes the optimal recovery operation, as the syn-
drome measurement is simply the identity operator. For val-
ues in between, one would expect to trade off performance
for computational burden. While there is no guarantee that
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FIG. 6. �Color� EIGQER and standard QEC recovery performance
for the five-, seven-, and nine-qubit codes and the pure state rotation
channel with �=5� /12. Despite the least redundancy, the five-qubit
code has the best channel-adapted performance. The Steane code
appears particularly poor for this channel: both the generic QEC
and the adapted recovery have lower fidelity than the other codes.
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performance will improve monotonically, we would antici-
pate improved performance as M increases.

We illustrate the performance for several choices of M in
Fig. 7. We use the pure state rotation channel ��=5� /12�
and the five-qubit code with block sizes of 2, 4, and 8. The
expected improvement as M increases is evident, though the
gain is quite modest for noise levels of interest �below the
crossover with the single-qubit recovery� and is not strictly
monotonic. The variations in performance, including the
nonmonotonicity, are likely the result of syndrome measure-
ments that collapse the input superpositions. While the
eigenvectors of CE,E that identify the syndrome subspace
generally avoid collapsing the input state, the mechanism is
imperfect.

While BLOCKEIGQER outperforms EIGQER in the�5,1�

code, we see in Fig. 7�b� that the improvement is less than
5% within the � of interest. We see more significant gains
when we encode multiple qubits. Consider a random �6,2�
encoding for the amplitude-damping channel, shown in Fig.
8. In this case we see a distinct performance gain as M in-
creases and the difference is nontrivial.

Fixing the block size M ignores some of the inherent sym-
metries in the channel and encoding. In particular, it is quite
common for CE,E to have degenerate eigenvalues. By fixing
the number of eigenvectors to simultaneously consider, one
may inadvertently partition such a degenerate subspace ac-
cording to the numerical precision of the eigenanalysis soft-
ware. To avoid this unwanted circumstance, we may select a
variable block size based on the magnitude of the eigenval-
ues. This approach necessitates a strategy for parsing the
eigenvalues into variable size blocks, which can be a tricky
procedure. Due to the modest returns of such an attempt, we
have not pursued such a strategy.

While BLOCKEIGQER shows modest performance im-
provements when compared to EIGQER, it has one significant
drawback. Unlike EIGQER, the recovery operation from
BLOCKEIGQER is not constrained to a collection of isometries.
Once the initial projective syndrome measurement is per-
formed, the subsequent correction terms are arbitrary CPTP
maps. This may complicate attempts to physically implement
such an operation. Furthermore, BLOCKEIGQER does not pro-
vide much more intuition for recovery design than EIGQER.
For this reason, we consider BLOCKEIGQER a numerical tool
whose principal value is its incremental improvement ap-
proaching optimality. It also proves useful for the perfor-
mance bounds derived in Sec. V.

B. ORDERQER

We now consider a block QER algorithm that provides
intuition for error recovery design. We are often interested in
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FIG. 7. �Color� BLOCKEIGQER performance for the five-qubit
code and the pure state rotation channel with �=5� /12. BLOCK-

EIGQER is computed with fixed block lengths of 2, 4, and 8. In �a�
we compare the entanglement fidelity to the EIGQER recovery, stan-
dard QEC recovery, and single-qubit baseline. The different block
lengths have nearly indistinguishable performance from EIGQER. In
�b�, we compute the fidelity relative to the EIGQER recovery and
show that the fidelity improves by less than 4% for the displayed
region. We can note, however, that longer block lengths tend to
better performance.
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FIG. 8. �Color� BLOCKEIGQER for the amplitude-damping chan-
nel and a random �6,2� code. We compare the BLOCKEIGQER algo-
rithm for block sizes of 2, 4, and 8 with the EIGQER algorithm. We
see significant performance improvement for larger block sizes, at
the cost of computational and recovery complexity. Baseline in this
case is the entanglement fidelity for two qubits input to the channel
without error correction.
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channels where each qubit is independently corrupted; thus
the overall channel is the tensor product of single-qubit chan-
nels. We can use this structure to design an intuitive projec-
tive measurement. We illustrate using the classical bit-flip
channel with probability of error p. If a single bit of the
codeword is flipped, we label this a “first-order error” as the
probability of such an error is O�p�. If two codeword bits are
flipped, this is a “second-order error,” which occurs with
probability O�p2�.

This intuition can easily yield a choice of syndrome sub-
spaces �Sk�. Consider, for example, the amplitude-damping
channel given in �15�. Recognizing E1 as the error event, we
declare first-order errors to be of the form Ek

1=E0 � ¯

� E1 � E0 �¯ where the error is on the kth qubit. In this
case we can declare the first-order syndrome subspace to be

S1 = span���E0
�n0L
, �E0

�n1L
, �E1
10L
, �E1

11L
, . . . , �En
11L
�� ,

�18�

where �0L
 and �1L
 are the logical codewords for an n-length
code. We include the “no-error” term as numerical experi-
ence suggests that the code projector PC is not always an
optimal syndrome measurement. By parallel construction,
we can define the second-order syndrome subspace S2.
While these two will probably not complete the space HC,
quite possibly we may neglect any higher orders. Alterna-
tively, we can analyze the remaining subspace with either the
SDP or the numerically simpler EIGQER algorithm. We will
refer to this block SDP algorithm as ORDERQER.

The SDPs for first- and second-order subspaces signifi-
cantly reduce the dimension from the full optimal SDP,
though the effect is not as dramatic as with BLOCKEIGQER.
Consider the case of the amplitude-damping channel which
has only two operator elements for the single-qubit channel.
For an �n ,k� code, there is one no-error operator and n first-
order error operators. This suggests that S1 has dimension
�n+1�dS= �n+1�2k. The SDP then has �n+1�224k optimiza-
tion variables. Contrast this n2 growth with the 4n growth of
the optimal SDP. For second-order errors, there are � n

2
�� n2

2
error operators. The subspace S2 has approximate dimen-
sions of n22k−1 and thus the SDP has n424k−2 optimization
variables. For the �7,1� Steane code, computing the full op-
timal SDP requires an impractical 47
4=65 536 variables.
However, the first-order SDP requires 82
24=1024 vari-
ables and the actual second-order SDP has 422
4=7056
optimization variables. For contrast, the full SDP and the
five-qubit code requires 1024 optimization variables. For the
�9,1� Shor code, the second-order SDP has an impractical
722
4=20 736 optimization variables. We therefore do not
use ORDERQER for the Shor code.

While the scaling of ORDERQER grows quickly with n,
making its use challenging for codes as long as nine qubits,
ORDERQER results provide significant insight into the mecha-
nism of channel adaptation. Consider the first- and second-
order recovery performance for the Steane code and the
amplitude-damping channel from Fig. 9. We note that the
fidelity performance for the recovery from S1 is comparable
to the performance of standard QEC, especially as � ap-
proaches 0. This matches the intuition that standard QEC is

correcting single qubit errors which are almost completely
restricted to S1. For small �, the most likely syndrome mea-
surement will be a Pauli X or Y, as these characterize single-
qubit dampings. These same errors are corrected by 1st order
ORDERQER. As � grows, the distortion from the no-error term
E0 � ¯ � E0 becomes more pronounced and the QEC out-
performs first-order ORDERQER.

We see that first- and second-order recovery performance
is quite comparable to the EIGQER performance. Thus, the
performance gains observed for channel-adapted QER can be
understood as corrections of higher-order errors. Since S1
has dimension significantly less than dC and yet approxi-
mates the QEC recovery performance, it is only reasonable
that the remaining redundancy of the code can be exploited
to protect from further error.

V. QER PERFORMANCE UPPER BOUND

In the preceding sections, we imposed constraints on the
recovery operations to provide structure and aid computa-
tion. While the resulting channel-adapted recoveries out per-
form the generic QEC recovery operation in all of the ex-
amples, the constraints essentially guarantee suboptimality.
For the five-qubit code �where computation of the optimal
QER operation is practical�, we observe that the proposed
algorithms �EIGQER, BLOCKEIGQER, and ORDERQER� closely
approximate the optimal performance. This anecdotal evi-
dence, however, is hardly sufficient to justify the bold de-
scription in the title of “near-optimal” channel-adapted QER.
In this section, we more fully justify the near-optimal label
by deriving channel-adapted performance bounds. We ac-
complish this by using the Lagrange dual function.

Every optimization problem has an associated dual prob-
lem �17�. Derived from the objective function and constraints
of the original optimization problem �known as the primal
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FIG. 9. �Color� ORDERQER recovery for the seven-qubit Steane
code and the amplitude-damping channel. We compare the recovery
fidelity of the first-order error to the standard QEC performance.
The performance of the first- and second-order recoveries together
are comparable to the EIGQER recovery, especially as � approaches
0.
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problem�, the dual problem optimizes over a set of dual vari-
ables often subject to a set of dual constraints. The dual
problem has several useful properties. First of all, the dual
problem is always convex. In many cases, calculation of the
dual function is a useful method for constructing optimiza-
tion algorithms. Most important for our purposes, the dual
function provides a bound for the value of the primal func-
tion. We define a dual feasible point as any set of dual vari-
ables satisfying the dual constraint. The dual function value
for any dual feasible point is less than or equal to the primal
function at any primal feasible point. �We have implicitly
assumed the primal function to be a minimization problem,
which is the canonical form.�

The dual function for channel-adapted recovery was de-
rived in �7�; we will re-derive it here in a notation more
convenient for our purposes.

The primal problem as given in �6� can be stated suc-
cinctly as

min
X

− trXCE,E such that X � 0 and trHS
X = I . �19�

The negative sign on the trXCE,E terms casts the primal prob-
lem as a minimization, which is the canonical form. The
Lagrangian is given by

L�X,Y,Z� = − trXCE,E + trY�trHS
X − I� − trZX , �20�

where Y and Z�0 are operators that serve as the Lagrange
multipliers for the equality and generalized inequality con-
straints, respectively. The dual function is the �uncon-
strained� infimum over X of the Lagrangian:

g�Y,Z� = inf
X

L�X,Y,Z�=inf
X

− trX�CE,E + Z − I � Y� − trY ,

�21�

where we have used the fact that tr�YtrHS
X�=tr�I � Y�X.

Since X is unconstrained, note that g�Y ,Z�=−� unless Z= I
� Y −CE,E, in which case the dual function becomes g�Y ,Z�
=−trY. Y and Z�0 are the dual variables, but we see that the
dual function depends only on Y. We can therefore remove Z
from the function as long as we remember the constraint
implied by Z= I � Y −CE,E. Since Z is constrained to be posi-
tive semidefinite, this can be satisfied as long as I � Y
−CE,E�0.

We now have the bounding relation −trXCE,E� tr−Y for
all X and Y that are primal and dual feasible points, respec-
tively. If we now reverse the signs so that we have a more
natural fidelity maximization, we write

F̄e�E,R � E� = trXRCE,E � trY , �22�

where R is CPTP and I � Y −CE,E�0. To find the best
bounding point Y, we solve the dual optimization problem

min
Y

trY such that I � Y − CE,E � 0. �23�

Notice that the constraint implies that Y =Y†. Note also that
Y �L�HC

� �.

We will use the bounding property �22� of the dual func-
tion. Given any dual feasible point Y �L�HC

� �, we know that

trY upper bounds F̄e�E ,R �E� for all R; Y is thus a certificate
of convergence for a recovery operation.

To provide a good performance bound, it is desirable to
find a dual feasible point with a small dual function value.
Indeed, the best such bound is the solution to �23�, that is, to
find the dual feasible point with the smallest trace. However,
finding the optimal Y is the equivalent of solving for the
optimal recovery due to the strong duality of the SDP. As this
suffers the same computational burden as computing the op-
timal recovery, we require an alternate method for generating
useful dual feasible points. We will establish methods to con-
vert the suboptimal recovery operations of the preceding sec-
tions into dual feasible points.

We need to determine a good dual feasible point begin-
ning with one of the suboptimal recoveries computed by the
EIGQER, BLOCKEIGQER, or ORDERQER algorithms. We utilize
the structure of the suboptimal recovery operations to gener-
ate a dual feasible point. We present two methods that exploit
the projective syndrome measurement to achieve perfor-
mance bounds. The first bound is motivated by the proof of
Theorem 3 in the Appendix, where the optimal dual feasible
point is constructed for Pauli group errors. Beginning with
this construction and the recovery generated by EIGQER, we
use the Geršgorin disk theorem to generate a dual feasible
point. The resulting dual function we denote the Geršgorin
dual bound. The second construction iteratively generates
dual feasible points given an initial infeasible point. While it
is more computationally burdensome, it generates tighter
bounds for the considered examples. We begin with a trial
dual variable that may or may not be feasible and iteratively
extend this point until it is feasible. We call this construction
the iterative dual bound. We present several methods for pro-
viding an initial trial point.

Discussion of both bounding methods is facilitated by
choosing an appropriate basis for HS � HC

� . Both methods
begin with a recovery operation generated by one of the
structured suboptimal methods. As they all begin with a pro-
jective measurement, the recovery provides a partition of HC
into subspaces Sq of dimension dq described by projection

operators �Pq��L�HC�. We are interested in a basis ��vi
�i=1
2n+k

where the first block of dSd0 basis vectors span I � S0
� and the

qth block spans I � Sq
�. Let us define

�CE,E�qq� � I � PqCE,EI � Pq� �24�

as we did in �17� and then write

CE,E = �
�CE,E�00 ¯ �CE,E�0q ¯

] � ]

�CE,E�q0 ¯ �CE,E�qq

] �

� �25�

in our defined basis. This block structure delineates the rela-
tionship of the data operator CE,E on each of the subspaces
Sq, which will be useful when discussing dual feasible
points.
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A. Geršgorin dual bound

The first method for constructing dual feasible points im-
poses a convenient structure on Y. In the case of Pauli group
errors considered in �19�, the optimal dual feasible point has
the form

Y = �
q

wqPq, �26�

where wq are a set of weights corresponding to the probabil-
ity of the most likely error resulting in the qth syndrome
measurement. The form of �26� is appealing due its simplic-
ity, especially for the EIGQER recovery operation, where the
rank dq of the Pq is constrained to be �dS. While we cannot
necessarily generate the optimal dual feasible point in this
form for non-Pauli errors, we can use similar methods to
generate a reasonable performance bound.

Before we state the Geršgorin dual bound, we take a sec-
ond look at the optimal dual point for Pauli errors. For an
�n ,k� stabilizer code, recall that HC is partitioned into 2n−k

syndrome subspaces Sq and we establish a basis ��m
q� for
each subspace. We also determined that 	�UCq

† Ap

 is an ei-

genvector of CE,E. Note that �	�UCq
† Ap

�p=0

22k−1 span the space
I � Sq.

If we write out the operator �CE,E�qq in this basis, we have

�CE,E�qq = �a0q

�

a�22k−1�q
� �27�

which is diagonal because ��m
q� are eigenvectors of CE,E.
This also implies that all of the off-diagonal blocks �CE,E�qq�
where q�q� are also 0. We can now see that Y =�qãqPq
where ãq=maxp�apq� is a dual feasible point, since

I � Y� = �
ã0I 0 ¯ 0

0 ã1I ¯ 0

] ] � ]

0 0 ¯ ã2n−k−1I
� �28�

is diagonal in the chosen basis.
We return now to the general case. Unlike in the case of a

Pauli error channel and a stabilizer code, we cannot guaran-
tee that CE,E will be either diagonal or block diagonal in this
basis. However, if our suboptimal recovery R is generated
from the EIGQER algorithm, then the subspaces Sq are se-
lected based on the eigenvectors of CE,E, and we can expect
CE,E to be approximately block diagonal when we partition
according to the subspaces I � Sq

�. We say that CE,E is ap-
proximately block diagonal in this basis if

�CE,E�qq
� 
�CE,E�qq�
 for q�q�.

To generate a dual feasible point of the form Y =�qwqPq,
we need to choose wq so that I � Y −CE,E�0. If CE,E were
exactly block diagonal in this basis, we could accomplish
this by setting wq=�max(�CE,E�qq). Since the block terms off
the diagonal are not strictly 0, we must account for their
contributions in the location of the eigenvalues of CE,E.

We will make use of a linear algebra theorem known as
the Geršgorin disk theorem. This theorem provides bounds

on the location in the complex plane of the eigenvalues of an
arbitrary matrix. As will be evident, the theorem is most
valuable when the matrix is dominated by its diagonal en-
tries. We state the theorem as it is given in �20�, Sec. 6.1

Theorem 2. Let A= �aij��Cn
n, and let

Ri��A� � �
j=1,j�i

n

�aij�, 1 � i � n , �29�

denote the deleted absolute row sums of A. Then all the
eigenvalues of A are located in the union of n disks

�
i=1

n

�z � C:�z − aii� � Ri��A�� � G�A� . �30�

Furthermore, if a union of k of these n disks forms a con-
nected region that is disjoint from all the remaining n−k
disks, then there are precisely k eigenvalues of A in this
region.

Theorem 2 is particularly useful for proving the positivity
of a matrix. The Ri��A� are the radii of disks centered at the
diagonal entries aii and the eigenvalues are constrained to lie
within the union of these disks. If A is a Hermitian matrix,
then we can be certain it is positive semidefinite if aii
�Ri��A� for all i as all of the eigenvalues would be con-
strained to lie to the right of the origin �or on the origin� on
the real line.

We can apply Theorem 2 to generating a dual feasible
point structured like �26�. In this case we use the weights wq
to ensure that the diagonal entries of I � Y −CE,E are greater
than the deleted absolute row sums. Let cij denote the matrix
elements of CE,E in our defined basis and let the basis vector
�vi
 lie in the subspace Sq. We then the have the ith diagonal
element �I � Y −CE,E�ii=wq−cii and the ith deleted absolute
row sum is �i�j�cij�. We can assure non-negativity if

wq � �
j

�cij� for all i such that �vi
 � Sq. �31�

Thus, we can guarantee a dual feasible point if wq is set to be
the maximum absolute row sum for all rows i such that
�vi
�Sq. We may express wq concisely in terms of the in-
duced �-norm ��20�, Sec. 5.6.5�, denoted 
 · 
�:

wq = 
��CE,E�q0 ¯ �CE,E�qq¯�
� �32�

=
I � PqCE,E
�. �33�

The Geršgorin disk theorem is a computationally simple way
to guarantee construction of a dual feasible point given a
partition of HC into subspaces �Sq�. Unfortunately, the in-
duced infinity norm does not provide a particularly useful
performance bound as can be seen in Fig. 10. When we
compare to the optimal recovery performance for the five-
qubit code and the amplitude-damping channel, we see that
the dual bound is far from tight. In fact, for many values of
�, the bound is greater than 1, which is truly useless for
upper bounding fidelities. While we have generated a dual
point Y that is guaranteed to be feasible, such a guarantee
imposes too strict a cost to have a useful bounding property.
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The Geršgorin dual bound provides useful insight for a
tighter dual construction. If we replace the induced infinity
norm with the induced 2-norm, we generate a dual point that
is often dual feasible. That is, choose

wq = 
I � PqCE,E
2 �34�

=max
	�x



		x�
I � PqCE,E	�x

 �35�

=	max�I � PqCE,E� , �36�

where 	max�·� in �36� indicates the maximum singular value
and is the computational method for the induced 2-norm. We
will refer to this construction as the singular value decompo-
sition �SVD� dual point. The Y generated in this way is not
guaranteed to be dual feasible as was the case with the
�-norm, but has proven to be dual feasible in all of the
examples that we have tried. If for some circumstance the
SVD dual point is not feasible, it can be iteratively adjusted
to become dual feasible in a manner we present in the fol-
lowing section.

B. Iterative dual bound

We now present an iterative procedure to generate a dual
feasible point given an initial dual point Y�0� that is presum-
ably not dual feasible. After presenting the algorithm, we
will discuss choices for the initial dual point.

At the kth iteration, we update the dual point to produce
Y�k� until we achieve feasibility. For convenience we will
define

Z�k� � I � Y�k� − CE,E. �37�

Let x and 	�x

 be the smallest eigenvalue and associated
eigenvector of Z�k�. If x�0, we may stop, as Y�k� is already

dual feasible. If x�0, we wish to update Y�k� a small amount
to ensure that 		x�
Z�k+1�	�x

�0. Essentially, we are replacing
a negative eigenvalue with a 0 eigenvalue. Given no con-
straints on the update, we could accomplish this as Z�k+1�

=Z�k�+x	�x

		x�
 but we must instead update Y�k� with the
tensor product structure implicit.

We determine the properly constrained update by means
of the Schmidt decomposition of the eigenvector:

	�x

 = �
i

�i�x̂i
HS
�x̃i
HC

� . �38�

As we can only perturb Z�k� in the HC
� slot, we choose the

smallest perturbation guaranteed to achieve 		x�
Z�k+1�	�x


�0. Let

Y�k+1� = Y�k� +
�x�

��1�2
�x̃1
	x̃1� . �39�

Then

		x�
Z�k+1�	�x

 = x +
�x�

��1�2
		x�
�I � �x̃1
	x̃1��	�x

 �40�

=x +
�x�

��1�2
��1�2 �41�

=0, �42�

since x�0. While we have not yet guaranteed that Z�k+1�

�0, 	�x

 is no longer associated with a negative eigenvalue.
By repeatedly perturbing Y�k� in this manner, we iteratively
approach a dual feasible point while adding as little as pos-
sible to the dual function value trY�k�.

As a final point, we demonstrate that the iterative proce-
dure will converge to a dual feasible point. Let us consider
the effect of the kth iteration on the space orthogonal to 	�x

.
Let	�y

�HS � HC

� be orthogonal to	�x

. Then, for Z�k+1� we
see that

		y�
Z�k+1�	�y

 = 		y�
Z�k�	�y

 +
�x�

��1�2
		y�
�I � �x̃1
	x̃1��	�y

 .

�43�

But since I � �x̃1
	x̃1��0 we see that

		y�
Z�k+1�	�y

 � 		y�
Z�k�	�y

 �44�

for all 	�y

�HS � HC
� . We see that the update to Y�k� moved

one negative eigenvalue to 0 while no new negative eigen-
values can be created. Thus the procedure will eventually
converge to a dual feasible point.

C. Initial dual points

Having established a procedure to generate a dual feasible
point given an arbitrary intial point Y�0�, we now present
initialization options. While we can start with any Hermitian
operator in L�HC

� � including 0, we do not recommend such
an unstructured choice as each iteration is imperfect. Each
iteration adds �x� / ��1�2 to the dual function value. If ��1� is
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svdDual Bound
Gershgorin Bound

FIG. 10. �Color� Geršgorin and SVD dual bound for the
amplitude-damping channel and the five-qubit stabilizer code. The
Geršogrin bound is clearly not very useful as in some cases it is
greater than 1. The SVD dual bound clearly tracks the optimal
performance, although the departure from optimal of the bound
exceeds the EIGQER recovery.
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not close to 1, the iteration is not efficient. We will use more
educated initializations to begin closer to feasibility, thus
minimizing the number of iterations and improving the
bounding properties of the resulting dual feasible point.

We have already presented one method for initialization
with the SVD dual point. In most cases we have seen, this
point is already feasible and in fact is a relatively loose
bound. Its advantage lies in its easy computation, but other
choices provide better bounding properties. We would prefer
an initial Y�0� such that Z�0� is nonpositive with eigenvalues
very close to 0. If this is the case, we will require only small
perturbations �and thus a small dual function value� to
achieve a positive semidefinite Z�k�.

Consider an initial Y�0� of the form given in �26�. We
choose an initial Y�0� in the same way that was used in the
proof of Theorem 3:

wq = �max„�CE,E�qq… . �45�

This is very simple to calculate, though it will not generally
be dual feasible. This is the logical choice when we begin
with the EIGQER recovery, as the only useful information we
have is the projective syndrome measurement. This initial-
ization often iterates to a better bound than the SVD dual
point and requires no further information than the partition
�Sq� provided by any of the structured QER methods. It has
one drawback, however, in that Z�0� almost certainly has ei-
genvalues much greater than 0. For the �vi
 associated with
the largest eigenvalue of �CE,E�qq, 	vi�Z�0��vi
=0. However,
unless �CE,E�qq has only one distinct eigenvalue there will be
vectors	�x

�Sq such that 		x�
Z�0�	�x

�0, and perhaps quite
large, relatively. Such vectors indicate portions of the Hilbert
space where Y�0� is already greater than the optimal dual
feasible point. While this likely cannot be avoided in the
iterations, it seems wasteful to begin at such a point if not
necessary.

We have an alternative choice for Y�0� arising from the
block SDP QER algorithms of Sec. IV. These algorithms
already provide information useful for generating a dual fea-
sible point. When solving the SDP on a subspace Sq one can
simultaneously generate the optimal dual function value
Yq

��L�Sq
��. Given such optimal subspace dual points, define

the block diagonal operator

Y�0� = �
Y0

�

�

Yq
�

�

� �46�

as the initial point. We know that I � Yq
�− �CE,E�qq�0, so

there will be 	�x

 for which 		x�
Z�0�	�x

�0. However, since
Yq

� is optimal within L�Sq
��, we know that we are not being

overly wasteful with the initialization.

D. Iterated block dual

Let us consider the computational burden of the iterated
dual bound. At each iteration we must compute the smallest
eigenvalue and associated eigenvector of Z�k�, a 2n+k
2n+k

Hermitian matrix. �We can accomplish this by looking for
the largest eigenvalue of �I−Z�k� where ��1 is an arbitrary
offset to ensure positivity.� This must be repeated at most
2n+k times to ensure dual feasibility, though there may be
significantly fewer iterations if the Z�0� is nearly positive
semidefinite already. As mentioned in Sec. III, this can be
accomplished in O�22�n+k�� flops by the power method. This
is very costly if we must repeat the iteration many times.

The block diagonal structure of the initial points suggests
a slightly modified alternative procedure with some compu-
tational advantage. Consider the optimal dual points Yi and
Y j in L�Si

�� and L�S j
��. We can use the same iterative proce-

dure as before to compute a dual feasible Yij �L�Si
�

� S j
��

requiring only O(22k�di+dj�2) flops per iteration with a maxi-
mum of 2k�di+dj� iterations. We can generate a dual feasible
point on the whole space L�HC

� � by successively combining
subspace blocks. Eventually we will have to iterate over the
full space, but we will have done most of the work in the
smaller blocks, and the full 2n+k
2n+k eigendecomposition
will require few iterations.

In the examples we have processed, the iterated block
dual procedure created nearly identical bounds �often within
10−5 of each other and never more than 10−4� as the original
algorithm. The computational burden is reduced by approxi-
mately 20%.

E. Examples

We provide several examples to demonstrate the utility of
the iterated dual bound. At the same time, we we illustrate
the near-optimality of the structured QER algorithms. In Fig.
11, we show several bounds for channel-adapted QER for the
amplitude-damping channel and the five-qubit code. In this
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Single Qubit
SVD Dual Bound
Iterated Dual: EigQER2

FIG. 11. �Color� Dual bound comparison for the amplitude-
damping channel and the five-qubit code. The iterated dual initial-
ized with the BLOCKEIGQER algorithm with M =2 is essentially in-
distinguishable from the optimal recovery performance, thus
producing a very tight bound. Included for comparison are the
EIGQER performance, the SVD dual bound, and both a channel-
adapted recovery and associated bound derived by Barnum and
Knill in �10�.
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case, we know the optimal performance and can see that the
iterated dual bound, beginning with the BLOCKEIGQER with
M =2, is quite tight. This is in contrast to the SVD dual
bound, which was also shown in Fig. 10. We have included
in Fig. 11 the numerical channel-adapted recovery and per-
formance bound from �10�. We see that this bound is looser
than even the SVD dual bound for this example.

Figure 12 shows several dual bounds for the amplitude-
damping channel and the nine-qubit Shor code. While we
cannot compute the optimum directly, we see that the EIGQER

performance curve and the iterated bound derived from
BLOCKEIGQER with M =2 are essentially equivalent. We can
conclude that the EIGQER operation is essentially optimal in
this case. While not shown, iterations for BLOCKEIGQER with
M =4 and M =8 achieved essentially the same bound. Note
that neither the SVD dual bound nor the iterated bound be-
ginning with the EIGQER recovery operation is tight, illustrat-
ing the importance of a good initialization for the dual itera-
tions.

Our final example is the pure state rotation channel with
�=5� /12 and the seven-qubit Steane code. In Fig. 13, we
can distinguish between several initialization methods for the
dual iterative bound. We see that none of the recovery opera-
tions approach the bound performance for large �, though
the performance is relatively tight as the noise level drops
��→0�. Notice that in general the iterative bounds are better
than the SVD dual bound; however, there are points, espe-
cially for the BLOCKEIGQER algorithm with M =8, where the
iterated bound is poor. It is interesting to note that the longer
block lengths �larger M� usually generate better recovery
performance �which can be seen with slight improvement
even in this case� yet often produce poorer bounds. Anec-
dotal experience suggests that the best iterative starting point
is the BLOCKEIGQER recovery operation with M =2.

Finally, we should point out the gap for large � between
the recovery performance and the dual bounds. Absent a bet-
ter recovery operation or a smaller performance bound, we
have no way to know whether the bound or the recovery is
further removed from the optimal. However, this region is
below the baseline performance for a single unencoded qu-
bit, and thus is not of serious concern.

VI. CONCLUSION AND FUTURE WORK

Adapting a quantum recovery operation to a physical
channel can significantly improve the effectiveness of a
quantum channel. In this way, quantum error correction can
be made more efficient, which should aid in scaling physical
implementations to a larger number of qubits. While the op-
timal recovery �in terms of average entanglement fidelity�
may be calculated via convex optimization of a semidefinite
program, we have derived a class of near-optimal algorithms
that are less computationally intensive. Furthermore, these
algorithms yield recovery operations of a particular form:
they implement a projective error syndrome measurement
followed by a syndrome recovery operation. This structure
may prove easier to implement physically and provides intu-
ition into the mechanism for channel adaptation.

Despite the reduction in computation from the SDP, even
these algorithms grow exponentially in the length of �i.e., the
number of qubits in� the code. For this reason, the next step
toward practical application of channel-adapted quantum er-
ror correction must include analytical tools to supplement
these numerical techniques. Furthermore, to apply channel-
adapted methods to fault-tolerant quantum computing, we
must show how errors propagate from block to block. These
two open questions are likely closely linked. Despite these
obstacles, the added efficiency of channel-adapted recovery
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Iterated: EigQER2

FIG. 12. �Color� Dual bound comparison for the amplitude-
damping channel and the nine-qubit Steane code. The iterated dual
bound initialized with the BLOCKEIGQER recovery with M =2 pro-
duces a bound that is tight to the EIGQER recovery operation. This
demonstrates that the EIGQER recovery operation is essentially opti-
mal in this case. Notice that the iterated bound initialized with the
EIGQER recovery operation does not generate a tight bound.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.5

0.6

0.7

0.8

0.9

1
Standard QEC
EigQER
EigQER8
Single Qubit
SVD Dual Bound
Iterated: EigQER
Iterated: EigQER2
Iterated: EigQER4
Iterated: EigQER8

φ

FIG. 13. �Color� Dual bound comparison for the pure state ro-
tation channel with �=5� /12 and the seven-qubit Steane code.
Note that the iterated bounds are generally, though not universally,
better than the SVD dual bound. We also see that the shorter block
lengths for the BLOCKEIGQER algorithm generally produce a tighter
bound, despite slightly poorer recovery performance.
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suggests significant value for practical efforts in quantum
error correction.
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APPENDIX

The discussion of the Geršgorin and SVD dual bounds
make use of a structured dual feasible point. This is moti-
vated by the optimal dual feasible point for a stabilizer code
and a Pauli error channel. Construction of this optimal dual
feasible point proves the intuitive structure of the optimal
recovery operation for Pauli error channels. This theorem
was proven in �19� and will be restated here for reference.

We can construct the optimal recovery operation for a
stabilizer code when the channel E� is characterized by Pauli
group errors and the input ensemble is the completely mixed
state. That is, E is given by �= I /dS with p=1 and the chan-
nel can be represented by Kraus operators �Ei� where each Ei

is a scaled element of the Pauli group. �Notice that this does
not require every set of Kraus operators that characterize E�
to be scaled elements of the Pauli group, since unitary com-
binations of Pauli group elements do not necessarily belong
to the Pauli group.�

To state the optimal recovery, we carefully define the syn-
drome measurement subspaces and the Pauli group operators
that connect the subspaces. We must do this in a way to
consistently describe the normalizer operations of the code.
Consider an �n ,k� stabilizer code with generators

	g1 , . . . ,gn−k
 and logical Z̄ operators Z̄1 , . . . , Z̄k such that

�g1 , . . . ,gn−k , Z̄1 , . . . , Z̄k� form an independent and commut-

ing set. Define logical X̄ operators such that �X̄i ,gj�
= �X̄i , X̄j�=0 ∀ i , j, �X̄i , Z̄j�=0 for i� j, and �X̄i , Z̄i�=0.

The syndrome subspaces correspond to the intersection of
the 
1 eigenspaces of each generator. Accordingly, we label
each space Sq where q=0,1 , . . . ,2n−k−1, where S0 corre-
sponds to the code subspace. Let Pq be the projection opera-
tor onto Sq. Let ��i1i2¯ ik
q� form a basis for Sq such that

Z̄1Z̄2 ¯ Z̄k�i1i2 ¯ ik
q = �− 1�i1�− 1�i2
¯ �− 1�ik�i1i2 ¯ ik
q,

�A1�

where ij � �0,1�. In this way, we have a standardized basis
for each syndrome subspace which can also be written as
��m
q�, m=0, . . . ,2k−1.

Let us recall the effect of a unitary operator on a stabilizer
state. If ��
 is stabilized by 	g1 , . . . ,gn−k
, then U��
 is stabi-
lized by 	Ug1U† , . . . ,Ugn−kU

†
. What happens if U�Gn, the
Pauli group on n qubits? In that case, since U either com-
mutes or anticommutes with each stabilizer, U��
 is stabi-
lized by 	
g1 , . . . , 
gn−k
 where the sign of each generator
gi is determined by whether it commutes or anticommutes
with U. Thus, a Pauli group operator acting on a state in the

code subspace S0 will transform the state into one of the
subspaces Sq.

We have established that the Pauli group errors always
rotate the code space onto one of the stabilizer subspaces, but
this is not yet sufficient to determine the proper recovery.
Given that the system has be transformed to subspace Sq, we
must still characterize the error by what happened within the
subspace. That is to say, the error consists of a rotation to a
syndrome subspace and a normalizer operation within that
subspace.

Let us characterize these operations using the bases
��m
q�. Define Wqq���m�m
q�q	m� as the operator that trans-
forms Sq�Sq� while maintaining the ordering of the basis.
Define the encoding isometry UC��m�n
0S	n� where
�n
S�HS, the source space. Further define Ucq�WqUC, the
isometry that encodes the qth syndrome subspace. We will
define the 4k code normalizer operators as

Ap � X̄1
i1X̄2

i2
¯ X̄k

ikZ̄1
j1Z̄2

j2
¯ Z̄k

jk �A2�

where p is given in binary notation as i1i2¯ ikj1j2¯ jk. No-
tice that, if a similarly defined Ap

S is an element of the Pauli
group Gk�L�HS� with generators 	X1

S , . . . ,Xk
S ,Z1

S , . . . ,Zk
S
,

we can conclude that ApUC=UCAp
S.

The preceding definitions were chosen to illustrate the
following facts. First, we can see by the definitions that
�Wqq� ,Ap�=0. That is, Wqq� characterizes a standard rotation
from one syndrome subspace to another, and Ap characterizes
a normalizer operation within the subspace. These have been
defined so that they can occur in either order. Second, let E�
be a quantum channel represented by operator elements that
are scaled members of the Pauli group Gn. Then the compos-
ite channel E which includes the encoding isometry UC can
be represented by operator elements of the form

�Epq = apqApWqUC = apqApUCq� , �A3�

where the CPTP constraint requires �pq�apq�2=1.
We can understand the amplitudes apq by noting that, with

probability �apq�2, the channel E transforms the original state
to Sq and applies the normalizer operation Ap. To channel-
adaptively recover, we project onto the stabilizer subspaces
�Sq� and determine the most likely normalizer operation for
each syndrome subspace Sq. Let pq=arg maxp�apq�2, and let
ãq�apqq. With these definitions in place, we can state the
following theorem.

Theorem 3. Let E be a channel in the form of �A3�, i.e., a
stabilizer encoding and a channel with Pauli group error op-
erators. For a source in the completely mixed state �= I /dS,
the optimal channel-adapted recovery operation is given by
R��UCq

† Apq
�, which is the stabilizer syndrome measurement

followed by maximum likelihood normalizer syndrome cor-
rection.

Proof. We prove Theorem 3 by constructing a dual fea-
sible point Y such that the dual function value trY is equal to
the entanglement fidelity Fe�� ,R �E�.

We begin by calculating Fe�� ,R �E�. For later conve-
nience, we will do this in terms of the Choi matrix CE,E from
�4�. We write the entanglement fidelity in terms of the recov-
ery operator elements 	�UCq

† Apq


:
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Fe��,R � E� = trXRCE,E �A4�

=�
q�

		UCq�
† Apq�

�
CE,E	�UCq�
† Apq�



 . �A5�

To evaluate �A5�, we note that

		�UCq
† Ap�UCq�

† Apq�


 = trApUCq�UCq�

† Apq�
�A6�

=trApWqUC�UC
† Wq�

† Apq�
�A7�

=trApWq�
† WqUC�UC

† Apq�
�A8�

=�qq�trApUC�UC
† Apq�

�A9�

=�qq�trAp
C�Apq�

C . �A10�

We have used the commutation relation �Wqq� ,Ap�=0 to ar-
rive at �A8� and the facts that Wq�

† Wq=�qq�P0 and P0UC

=UC to conclude �A9�. Since �= I /dS and trAp
CApq�

C =�ppq�
dS,

we see that trAp
C�Apq�

C =�ppq�
. Thus,

		�UCq
† Ap�UCq�

† Apq�
Pq�

 = �ppq�

�qq�. �A11�

Using �A11�, it is straightforward to evaluate �A5�:

Fe��,R � E� = �
pqq�

�apq�2�		�UCq
† Ap�UCq�

† Apq�


�2 �A12�

= �
pqq�

�apq�2�qq��ppq�
�A13�

=�
q

�ãq�2. �A14�

We now propose the dual point Y =�q�ãq�2Pq /dS. Since

trY = �
q

�ãq�2trPq/dS �A15�

=�
q

�ãq�2 �A16�

=Fe��,R � E� , �A17�

we complete the proof by demonstrating that

I � Y − CE,E � 0, �A18�

i.e., Y is a dual feasible point. We show this by demonstrat-
ing that I � Y and CE,E have the same eigenvectors, and that
the associated eigenvalue is always greater for I � Y.

By the same argument used for �A11�, we note that

		�UCq
† Ap��UCq�

† Ap�

 = �pp��qq�/dS
2. �A19�

This means that 	��UCq
† Ap

 is an eigenvector of CE,E with

eigenvalue �apq�2 /dS. We normalize the eigenvector to unit
length and apply it to I � Y:

I � Y	��UCq
† Ap/dS

 = �

q�

�ãq��
2Pq�/dS	��UCq

† Ap/dS

 �A20�

=
1

dS
�
q�

�ãq��
2	��UCq

† ApPq�/dS

 �A21�

=
1

dS
�ãq�2	��UCq

† Ap/dS

 . �A22�

Thus we see that 	��UCq
† Ap

 is an eigenvector of I � Y with

eigenvalue �ãq�2 /dS� �apq�2 /dS ∀ p. Thus I � Y −CE,E�0
and Y is a dual feasible point. �
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