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On the SNR Penalties of Ideal and Non-ideal
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Abstract—Subset diversity (SSD) techniques, which select
and combine the signals from a subset of the available diversity
branches, are important for practical wireless systems. This paper
characterizes the performance loss, or signal-to-noise ratio (SNR)
penalty, of one SSD system with respect to another. Both ideal and
non-ideal channel estimation are considered, and the analysis is
valid for the important case of arbitrary two-dimensional signal
constellations. Expressions are given for the asymptotic SNR
penalty, for both small and large SNR, for all the comparisons
considered. Additionally, we develop bounds and approximations
to quantify the performance of one system in terms of another for
all SNRs of interest. Furthermore, for some signal constellations,
we derive the exact SNR penalty of a non-ideal system with respect
to an ideal system, as well as the exact penalty associated with
two non-ideal systems with varying degrees of estimation energy.
The SNR penalty enables the assessment of system sensitivity to
channel estimation energy, combining architecture, and signal
constellation.

Index Terms—Fading channels, non-ideal channel estimation,
performance evaluation, signal-to-noise ratio penalty, subset
diversity.

I. INTRODUCTION

D IVERSITY techniques are essential for modern wireless
systems as increasingly more demands are placed on their

capabilities. While the performance of these systems increases
with the number of utilized diversity branches, the complexity
and resource consumption also increases. These issues have mo-
tivated the use of methods that process only a subset of the avail-
able diversity branches [1]–[10]. These subset diversity (SSD)
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systems, where only a subset of the signals on the available
diversity branches are selected and then combined, are capable
of achieving full diversity [11]–[14]. SSD arises naturally as
a generalization of other diversity methods which include se-
lection diversity, where the best branch is selected, and hybrid
selection/maximal-ratio combining (H-S/MRC), where the best
out of diversity branches are selected [15]–[18]. The par-

ticular combining scheme defines the combining architecture, a
termwewill use to refer to which diversity branches are selected
and utilized by a receiver.
SSD can be exploited in the spatial, temporal, frequency,

angle, or polarization domains. In particular, one of the most
popular applications of SSD is in the spatial domain, where
the number of radio frequency chains is less than the number
of antenna elements. In this case, only signals from a selected
subset of antennas are processed. This is advantageous in terms
of cost and energy consumption; consequently, transmit and
receive antenna selection is included in several next-genera-
tion wireless standards. For example, standards such as IEEE
802.11n for WiFi [19], 3GPP for long-term evolution [20],
[21], and IEEE 802.16 for WiMAX [22] specify schemes for
antenna selection.
Many previous studies of SSD have assumed that perfect

channel knowledge is available. For example, in [23], it was
shown that ideal H-S/MRC achieves a diversity order equal to
the number of available diversity branches, despite using only
a subset of them. In the sense that these systems have perfect
channel knowledge, they can be thought of as having the best
possible estimation accuracy. However, practical diversity re-
ceivers must estimate the channel on each diversity branch and,
thereby, incur a performance loss [24]–[36]. In the case of SSD,
the estimation plays a dual role: it affects both the selection
process as well as the combining mechanism. Thus, in SSD, it is
possible that an erroneous selection is made, because the diver-
sity branches chosen are based on an estimate of the channel.
When comparing diversity systems, differences in the com-

bining architectures and estimation accuracies can cause a per-
formance loss or a signal-to-noise ratio (SNR) penalty. In gen-
eral, this loss occurs because completely coherent combining is
not possible and because the selection mechanism is not per-
fect. Specifically, in ideal SSD systems the loss occurs due to
the fact that only some of the diversity branches are utilized.
In non-ideal SSD systems, the loss occurs because not only a
subset of the branches is used, but also the selection and com-
bining is based on imperfect channel estimates. A suitable mea-
sure of this loss is the SNR required to maintain a target symbol
error probability (SEP) [23]. The SNR penalty is the increase in
SNR required for one system to achieve the same target SEP as
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Fig. 1. Pictorial description of the considered system comparisons. For each
comparison, the arrows point in the direction of the reference system.

a reference system. In general, the SNR penalty is a function of
the target mean SEP (averaged over the small-scale fading) and,
therefore, is also a function of the average SNR. Understanding
the SNR penalty enables system designers to quickly approxi-
mate or bound the performance of one diversity system in terms
of another. In [23], [37], [38], the asymptotic SNR penalties, for
both small and large SNR, were considered for ideal H-S/MRC
systems and different combining architectures.
This paper considers two classes of SSD systems with

arbitrary two-dimensional signal constellations in Rayleigh
fading. These two classes are ideal selection with ideal com-
bining (ISIC) and non-ideal selection with non-ideal combining
(NSNC). In the former system, the selection of diversity
branches and the subsequent combining utilizes ideal (or
perfect) channel estimates. In the latter system, both the se-
lection and combining utilize non-ideal (or imperfect) channel
estimates. We specifically consider four penalties that arise
between these two classes of systems. These comparisons
are illustrated pictorially in Fig. 1 and are described in detail
in Section IV. For a given combining scheme using -PSK
signaling, we derive the exact SNR penalty of a non-ideal
system with respect to an ideal system, as well as the exact
penalty associated with two non-ideal systems with varying
degrees of estimation accuracy. For arbitrary two-dimensional
constellations, we derive the asymptotic expressions for the
SNR penalties, for both small and large SNR. Then, we derive
upper and lower bounds on the SNR penalty in a few cases.
Finally, we obtain accurate approximations for all SNR penal-
ties under consideration. In addition to these results, this paper
unifies the results in [23], [37], and further extends the analysis
to include the effects of non-ideal channel estimation.

The remainder of this paper is organized as follows.
Section II gives the model for the systems under consideration.
In Section III we provide the exact SEP expressions for both
ISIC and NSNC systems and derive the asymptotic expressions.
In Section IV we describe the SNR penalties on interest, and
derive asymptotic expressions for a variety of comparisons.
Bounds on the SNR penalties and useful approximations
are given in Section V. Numerical results are discussed in
Section VI, and finally, conclusions are given in Section VII.

II. MODEL

We consider a diversity system with available antenna
elements utilizing an arbitrary two-dimensional -ary signal
constellation with polygonal decision boundaries. The received
signal on the diversity branch, after demodulation, matched
filtering, and sampling, is given by

where , , represents the complex mes-
sage symbol, is the complex, multiplicative channel gain
on the branch, and is a sample of additive noise on
the branch. The average symbol energy is indicated by
. The additive noise is modeled as a circularly symmetric

complex Gaussian random variable (RV) with zero mean and
variance per dimension and is assumed to be indepen-
dent among the diversity branches. We consider independent,
identically distributed Rayleigh fading channels, i.e., each
channel gain can be written as a circularly symmetric complex
Gaussian RV, , with and

.

An ISIC system has knowledge of the true channel gains,
. In this case, the output of the SSD combiner

is given by [11], [16], [17]

(1)

where is a set of indices indicating which subset of di-
versity branches to combine. The indices contained in are
determined from the ordered magnitudes of the channel gains
through a binary-valued selection vector, . Note that since an
ISIC SSD system operates with perfect channel knowledge, no
errors are made during the selection and combining processes.
In practice, however, a system does not have direct access to
. Instead the channel gains must be estimated; thus the com-
biner output is [26], [30], [34], [39], [40]

(2)

where indicates which branches to combine and is the
estimate of the channel gain, . Clearly, the performance of this
combining scheme greatly depends on the quality of the channel
estimate . The indices contained in are determined from
the ordered magnitudes of the estimated channel gains through
a binary-valued selection vector, . Note that since the selection
is based on the estimated magnitude of the channel gains, it is
possible that an error is made during the selection process, i.e.,
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is not necessarily equal to . An estimate of the channel
gains can be formed by averaging pilot symbols, each with
energy , received within the coherence time of the channel.1

In this case, the resulting estimate is2

where is the complex Gaussian estimation error with zero
mean and variance per dimension. The
pilot energy is related to the signal energy through the quantity

. Note that is a complex Gaussian RV since it is
the sum of two complex Gaussian RVs. It is important to stress
that represents the number of received pilot symbols used in
forming an estimate of each branch. Depending on the choice
of transmitter and receiver architectures of an SSD system, the
actual number of transmitted pilots may need to be larger to
guarantee an estimate of each branch based on pilots.3

III. SEP OF ISIC AND NSNC SYSTEMS

In this section, we first review the exact SEP expressions for
ISIC and NSNC systems. Using these results, we then derive
expressions for the asymptotic SEP. Later, these expressions
will play a critical role in deriving the SNR penalties.

A. Exact SEP Expressions

In [30], [42], it was shown that the SEP expressions for two-
dimensional -ary signal constellations have the same struc-
ture for ISIC and NSNC. The expressions differ only in the pa-
rameter , which is a function of the average branch SNR,

. This structure is given by

(3)

where is the a priori probability that the ith symbol is trans-
mitted and

(4)
In (3) is the set of indices for the signaling points that share

a decision boundary with and the angles , describe the
decision region corresponding to (see Fig. 2 for an example).4

The SEP depends on through the vector , whose el-
ements depend on the particular signaling scheme, combining
method, and channel estimation. The element of is
given by

(5)

1Note that the channel estimation process is carried out to track changes in the
channel, and thus, pilot symbols need only be transmitted with a rate suitable to
track the fading [41].
2In this case, the result is the maximum likelihood estimate [26].
3For example, in the case of antenna diversity with receiver chains, if

it is not possible to receive the transmitted pilots on all branches si-
multaneously. It can be shown that pilots need to be transmitted to
ensure at least pilots are received for estimation on each of the branches.
4A detailed derivation of (3) and (4), along with the definitions of , , and
is available in [30].

Fig. 2. Portion of the received signal constellation and its associated decision
regions.

(6)

where the quantity is related to the distance between and
and is defined as . The

signal points are represented in polar form as
with . The term represents the amount of
energy devoted to channel estimation, normalized to the energy
of one data symbol.
The quantity is the element of , and the
element of , , determines whether the diver-

sity branch with the largest estimated magnitude is included
in the combining process. The upper triangular virtual branch
transformation matrix, , is given by [12]

. . .
...

(7)

Note that for MRC , yielding , where is a vector
of 1s. In this case, does not depend on and we have

(8)

where

(9)
For certain signaling schemes, the SEP expressions can be

further simplified. For -PSK, due to the symmetry of the con-
stellation, the SEP can be expressed as a single integral

(10)



GIFFORD et al.: ON THE SNR PENALTIES OF IDEAL AND NON-IDEAL SUBSET DIVERSITY SYSTEMS 3711

where the expression for uses . For
-QAM, the SEP can be expressed as a weighted sum of two

integrals

(11)

where and are given in [30], and the expression for
uses .

B. Asymptotic SEP Expressions

In this section, we derive the asymptotic behavior of the SEP
for small and large SNR, as it will play a central role later in
developing expressions for the asymptotic penalties of interest.
The notation is used to denote (3) using the ISIC ex-
pression for (5). Similarly, denotes (3) with the
NSNC expression for (6).5

Lemma 1: For asymptotically small and finite , the expan-
sion of and is given, respectively, by6

where

(12a)

(12b)

with

and is an indicator function, defined as

if
otherwise.

(13)

Proof: To prove (12b), we will use Lemma 3 and Lemma 4
given in Appendix A. From (3), (4), and (6)

(14)

5Throughout the paper, the subscript “a” is used to denote expressions that
are applicable for asymptotically small SNR, while the subscript “A” is used to
denote expressions that are applicable for asymptotically large SNR.
6A function if and only if .

where

(15)

Also note that, based on geometrical considerations,
. For each term in the

summation (14) there are several cases to consider:
1) : Application of Lemma 3 yields

(16)

2) : Application of Lemma 4 yields

(17)

3) : In this case, using the symmetry
of

(18)

where the last equivalence follows from case 2.
4) : Using the symmetry of

(19)

where the second equivalence follows from case 2.
Using (16)–(19) in (14) completes the proof.
The proof of (12a) can be completed using similar steps as

above in conjunction with [23, Lemma 1].

Note that the quantity includes contributions from the trian-
gular sub-decision regions of a particular signaling point where

or . For this case, the sub-decision
region must be located on the edge of the signal constellation.
When the SNR is asymptotically small, the variance of the re-
ceived signal increases with respect to themean, making it likely
that the received signal will cross a decision boundary and the
receiver will make an error. The only place where a boundary
cannot be crossed is at the edge of the constellation. The second
term in (12a) and (12b) quantifies this probability.

Lemma 2: For asymptotically large , the expansion of
and is given, respectively, by
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where

(20a)

(20b)

with

(21)

Proof: Equations (20a) and (20b) follow from the power
series expansion of and in terms of
near .

IV. SNR PENALTIES

This section first defines the SNR penalty and then quantifies
the asymptotic SNR penalty for both asymptotically small and
large SNR. Comparisons between several types of systems are
considered. For a few specific cases, the exact SNR penalty is
also provided.

A. Definition of SNR Penalty

The SNR penalty, , of system Y with respect to a refer-
ence system X is defined implicitly as7

(22)

where we have assumed that system Y has performance inferior
to that of system X (i.e., ). In general,
it can be shown that the SEP is monotonically decreasing in
and is typically log-concave [43]. Note that the SNR penalty is
a function of the target SEP and, therefore, is written explicitly
as a function of the average SNR. The derivation of the required
SNR for a given target SEP is an inverse problem, which also
arises in deriving the bit or symbol error outage [44]–[47] and
in determining configuration thresholds for adaptive communi-
cation systems [48]–[54]. In general, a closed-form expression
for is difficult to obtain, if at all possible. This paper will
focus on four SNR penalties related to two classes of systems,
as depicted in Fig. 1. These penalties are implicitly defined as

(23)

(24)

(25)

(26)

The first penalty (23), concerning only ideal systems, is the
penalty of a system employing SSD with respect to one em-
ployingMRC. The second penalty (24) is a comparison between
non-ideal systems and ideal systems employing the same com-
bining architecture. The third penalty (25), analogous to the first,
but for non-ideal systems, is the penalty of a system employing
SSD with respect to one employing MRC. Finally, the fourth

7The notation denotes the function .

TABLE I
SNR PENALTIES UNDER CONSIDERATION

penalty (26), a generalization of the second, is a comparison be-
tween two non-ideal systems with different amounts of energy
devoted to channel estimation. Essentially, we are considering
two different types of comparisons: 1) comparisons between
different combining architectures, with or without channel es-
timation [i.e., (23) and (25)]; and 2) comparisons between sys-
tems with different estimation accuracies [i.e., (24) and (26)],
but with the same combining architecture.
Channel estimation techniques typically utilize resources that

may be devoted to data transmission. If the total energy devoted
to the data and pilot symbols is constrained, then increasing
leads to greater energy for channel estimation while lowering
the energy for data transmission; the two changes have oppo-
site effects on the system performance.8 To isolate the impact
of channel estimation energy on system performance, we focus
on the SNR penalty for the case where varying the channel es-
timation capability does not influence the energy devoted to the
data symbols.

Remark: Alternatively, it is also possible to define the SNR
penalty with respect to system Y, as given by

(27)

If and are independent of , then the definitions in
(22) and (27) are equivalent. However, in the case where there
is a dependence on , the following two relations hold:

(28)

(29)

Throughout the paper, we will restrict our attention to the first
definition as given in (22).
In general, the exact SNR penalty (22) is a function of the

target SNR; hence, closed-form expressions are difficult, if at
all possible, to obtain. To alleviate these issues, we define the
asymptotic penalty. The basic methodology is to define a rela-
tionship between two asymptotic SEP expressions. In fact, when
both asymptotic expressions have the same order, the asymp-
totic penalty will simply be a scale factor that makes the two
expressions touch at the asymptote.
In the following sections, we derive asymptotic SNR penal-

ties, for both small and large SNR, for comparisons between a
variety of systems.

B. Comparisons Between Combining Architectures

This section quantifies the asymptotic penalties between dif-
ferent combining architectures for ISIC and NSNC systems.
Specifically, Theorem 1 considers the comparison of SSD to

8The problem of allocating the energy between the data and pilot symbols has
been addressed in the context of adaptive diversity communications (see, e.g.,
[41]) and in mobile radio systems (see, e.g., [55]).
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MRC for NSNC systems. Similarly, Theorem 2 considers the
comparison of SSD to MRC for ISIC systems.

Theorem 1: The asymptotic SNR penalties, for small and
large SNR, of SSD with respect to MRC for NSNC systems are
given, respectively, by

(30a)

(30b)

Proof: From Lemma 1, the asymptotic expansion of
for small SNR for SSD and MRC is given, respec-

tively, by

(31)

(32)

Since these two functions have the same order, with a change
of scale of , they will touch asymptotically. From (22), the
asymptotic penalty is given by the value of such that

(33)

Substituting (31) and (32) into (33) gives (30a), which proves
the first half of Theorem 1.
From Lemma 2, the asymptotic expansion of for

large SNR for SSD and MRC is given, respectively, by

(34)

(35)

Again, with a change of scale these two functions will touch
asymptotically. From (22) the asymptotic penalty is then given
by the value of such that

(36)

Substituting (34) and (35) into (36) gives (30b), which proves
the second half of Theorem 1.

Remark: Since , a change in
scale of in , i.e., , is like moving

to the right by when plotted on a
decibel scale for . The value of is the shift that causes the
asymptotes to touch.

Theorem 2: The asymptotic SNR penalties, for small and
large SNR, of SSD with respect to MRC for ISIC systems are
given, respectively, by

(37a)

(37b)

Proof: The proof is similar to Theorem 1 using the ISIC
expressions from Lemma 1 (12a) and Lemma 2 (20a).

Remark: The results of Theorem 2 are in complete agree-
ment with those of [23] given for the specific case of H-S/MRC
of -PSK signal constellations, and [37] given for H-S/MRC
of arbitrary two-dimensional signal constellations. The results
given here unify those in [23], [37] and extend the analysis to
the case of SSD with non-ideal channel estimation.
Remark: Theorems 1 and 2 compare combining architectures

for the case of NSNC and ISIC systems, respectively. Note that
the asymptotic penalties for large SNR in these two cases are
equal . In fact, for large SNR, an NSNC system has
performance approaching that of an ISIC system, and thus, the
asymptotic penalties become equal.

C. Comparisons Between Channel Estimation Accuracies

This section quantifies the asymptotic penalties between sys-
tems with different amounts of energy devoted to channel esti-
mation for SSD systems. Specifically, Theorems 3 and 4 con-
sider the penalty of an NSNC system with respect to an ISIC
system, for asymptotically small and large SNR, respectively.
Similarly, Theorem 5 considers the penalty of oneNSNC system
with respect to another that has more energy devoted to channel
estimation, for asymptotically small and large SNR.
Theorem 3: The asymptotic SNR penalty of an NSNC system

with respect to an ISIC system for small SNR is unbounded, i.e.,

(38)

Proof: Letting , we seek a such that

(39)

Now, let . From Lemma 1, we have

It can be shown that and
. Thus, we have

where the last equality follows from Lemma 1. Hence, is a
unique solution for a given . Now by taking the limit of
, for , we have

This implies that .
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Theorem 4: The asymptotic SNR penalty of an NSNC system
with respect to an ISIC system for large SNR is given by

(40)

where and is given by (21).

Proof: From Lemma 2, the asymptotic expansion of
for ISIC and NSNC is given by (20a) and (20b),

respectively. The asymptotic penalty is given by the value of
such that

(41)

Using (20a) and (20b) in (41) yields [30]

(42)

Performing the binomial expansion and rearranging terms gives

(43)

Remark: Theorems 3 and 4 show that, when comparing an
NSNC system and an ISIC system with the same combining
architecture, the asymptotic penalty is the same regardless of
the selection vector .
Theorem 5 deals with comparisons between two NSNC SSD

systems with different amounts of energy devoted to channel
estimation.

Theorem 5: The asymptotic SNR penalties, for small and
large SNR, of one NSNC SSD system with respect to an-
other NSNC SSD system with greater channel estimation en-
ergy are given, respectively, by

(44a)

(44b)

Proof: The proof follows from the asymptotic expressions
given in Lemma 1 and Lemma 2.

It is interesting to note that the asymptotic penalties between
two ISIC systems [see (37a) and (37b)] and two NSNC systems
[see (30a) and (30b)] have no dependence on the signal constel-
lation. However, the asymptotically large SNR penalty between
an ISIC system and anNSNC system (40) or twoNSNC systems
with different estimation energies (44b) depends on the partic-
ular signal constellation.

D. Exact SNR Penalties

Under certain circumstances, it is possible to characterize the
exact SNR penalty between NSNC and ISIC systems. In the fol-
lowing, we consider the case of -PSK signaling. For -PSK,
the exact SNR penalty of an NSNC system with respect to an
ISIC system is given by

(45)

where . This can be shown by finding a function
such that

(46)

The aforementioned relation is satisfied when the terms in the
products of the SEP expressions (given by (10) with (6) for
NSNC, and (10) with (5) for ISIC) are equal, i.e.,

Canceling terms and solving for gives the expression in
(45). From (45), we can see that

(47a)

(47b)

(47c)

Similarly, for -PSK, the exact SNR penalty of one NSNC
system with respect to another NSNC system with greater
channel estimation energy is given by

(48)
This can be shown by determining a function such that

(49)

The aforementioned relation is satisfied when the terms in the
products of the SEP expressions (given by (10) with (6) for
and ) are equal, i.e.,

Canceling terms and solving for gives the expression in
(48), from which we make the following observations:

(50a)

(50b)

(50c)

(50d)
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That is, the exact SNR penalty is lower and upper bounded by
the asymptotic SNR penalties and approaches these limits for
small and large SNR.
When the exact SNR penalty is difficult to obtain, asymp-

totic expressions for the SNR penalties are useful. However, it
is also important to develop ways to assess and relate the perfor-
mance of ISIC and NSNC systems for a specific SNR. The next
section provides bounds and approximations to alleviate these
difficulties.

V. BOUNDS AND APPROXIMATIONS

In this section, bounds on the SNR penalty are given by using
the SEP of anMRC system to upper and lower bound the SEP of
ISIC and NSNC. Approximate expressions for the SNR penal-
ties are also given to compare NSNC and ISIC, as well as NSNC
with and NSNCwith . These expressions can be used
to approximate the SEP of one SSD system in terms of another
SSD system.

A. Comparisons Between Combining Architectures

We now derive upper and lower bounds on the SNR penalty
of SSD with respect to MRC for both NSNC and ISIC sys-
tems. This enables us to bound and approximate the SEP of one
system in terms of another.

Theorem 6: The SNR penalty of SSD with respect to MRC
for NSNC systems is lower and upper bounded by
, where and are defined as

(51a)

(51b)

Proof: The proof is given in Appendix B.

Theorem 7: The SNR penalty of SSD with respect to MRC
for ISIC systems is lower and upper bounded by
, where and are defined as

(52a)

(52b)

Proof: The proof follows from similar arguments to those
in the proof of Theorem 6.

Remark: The results of Theorem 7 are in agreement with
those of [23], given for the specific case of H-S/MRC of
-PSK, and [37], given for the case of H-S/MRC of arbitrary

two-dimensional signal constellations. The aforementioned
results unify those in [23], [37] and extend the analysis to the
case of SSD with non-ideal channel estimation.
Equivalently, Theorems 6 and 7 can be used to bound the SEP

of NSNC and ISIC SSD systems, respectively:

(53)

(54)

The equivalence, in both cases, is due to the definitions of and
, and to the fact that and are strict
monotonically decreasing functions of . Equation (53) states
that the SEP of an NSNC system employing SSD can be lower
and upper bounded by the SEP of an NSNC system employing
MRC operating at and , respectively.
Similarly, (54) states that the SEP of an ISIC system em-

ploying SSD can be lower and upper bounded by the SEP of
an ISIC system employing MRC operating at and ,
respectively.
Using Theorems 6 and 7, the SNR penalty of SSD with re-

spect to MRC for NSNC and ISIC systems, respectively, can be
approximated by taking the geometric mean of the upper and
lower bounds as

(55)

(56)

Here, the geometric mean of the upper and lower bounds, on a
linear scale, is used to obtain the arithmetic mean of the bounds
on a decibel scale. Then, the performance of ISIC and NSNC
systems employing SSD can be approximated as

(57)

(58)

B. Comparisons Between Channel Estimation Accuracies

We now derive approximations of the SNR penalty for NSNC
systems with respect to ISIC systems, with the same combining
architecture. Similarly, we also consider the SNR penalty for
comparisons between NSNC systems. This enables us to ap-
proximate the SEP of one system in terms of another.
It is difficult to formulate good upper and lower bounds for

the SNR penalty between ISIC and NSNC systems, as well as
the penalty between two NSNC systems with different amounts
of energy devoted to estimation. For instance, note that
tends toward infinity for small . This makes a formulation like
the ones in (53) and (54) impractical. Instead, we take the ap-
proach of approximating the SNR penalty using the notion of
conditional SNR penalties.

Definition 1: The conditional SNR penalty of system Y with
respect to system X, , is defined as the SNR penalty based
on the conditional SEP given that symbol is transmitted:

(59)

Theorem 8: The conditional SNR penalty of an NSNC
system with respect to an ISIC system is given by

(60)

Proof: The conditional SNR penalty is the expression
that satisfies

(61)
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where, from (3)–(6)

(62)

(63)

are the conditional SEPs for ISIC and NSNC, respectively. An
explicit expression for can be determined by using (62)
and (63) in (61), along with the expression for given
in (4). Equating similar terms gives

(64)

Canceling terms and solving for gives (60).

Using Theorem 8, the SNR penalty of an NSNC system with
respect to an ISIC system, , can be approximated as

(65)

where is given in (60) and the second equality follows
from the fact that .

Theorem 9: The conditional SNR penalty of one NSNC SSD
system with respect to another NSNC SSD system with
greater channel estimation energy is given by

(66)

Proof: The conditional SNR penalty is the expression
that satisfies

(67)
where is the conditional SEP as given by (63).
In this case, it is possible to find an explicit expression for
by using (63) in(67) and setting similar terms equal to each
other, yielding the following quadratic equation:

(68)

Taking the positive root gives the expression in (66).

The following observations about the conditional SNR
penalty (66) are made, but the proofs are omitted for brevity:

(69a)

(69b)

(69c)

(69d)

Using Theorem 9, the SNR penalty of one NSNC system
with respect to another NSNC system can be approx-
imated by

(70)

where is given in (66).
Now, using (65) and (70), the SEP of NSNC systems can be

approximated as

(71)

(72)

Equation (71) states that the SEP of an NSNC system with
estimation energy operating at an SNR is approximately

equal to the SEP of an ISIC system operating at a SNR of
. Similarly, (72) indicates that the SEP of an

NSNC system with estimation energy operating at an SNR
is approximately equal to the SEP of an NSNC system with
estimation energy at an SNR of .

C. Combination of SNR Penalties

An ISICMRC system provides the best possible performance
and thus can be used as a reference system. The comparison
of any other system with respect to this reference can then be
obtained via a combination of SNR penalties. In particular, it
can be shown that the SNR penalty of NSNC SSD with respect
to ISIC MRC, defined as

(73)

is given by

(74a)

(74b)

Note that these two expressions are equivalent, but arise from
considering different penalties in the process of formulating
the overall comparison. The expression in (74a) first uses the
penalty of NSNC SSD with respect to ISIC SSD, and then with
respect to ISICMRC. On the other hand, the expression in (74b)
first uses the penalty of NSNC SSDwith respect to NSNCMRC,
and then with respect to ISIC MRC.
In general, since the exact expressions for all the penalties

involved in the aforementioned expressions are not known, we
can use the previously developed bounds to approximate .
Specifically, starting from (74a), we approximate with the
geometric mean of its lower and upper bounds, as in (58), and

with the approximation in (65), resulting in9

(75)

D. Approximation Accuracy

To evaluate the efficacy of the approximations, we have de-
veloped, we examine the SNR difference (in dB) between these
approximations and the true penalty determined numerically. In
particular, we will consider metrics of the following form:

(76)

9Equation (74a) was chosen over (74b) because the approximation for is
better than that for , since the upper and lower bounds are closer.
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Fig. 3. SNR penalty for 16-QAM, 16-branch SSD for various values of and
. Upper and lower bounds are also shown.

for an SNR penalty and its approximation . Here,
is chosen such that , for an SEP threshold
which indicates the smallest SEP of interest. The metric in

(76) gives the maximum difference (in dB) between the approx-
imation and the true performance for any SEP greater than .
This metric measures the overall accuracy of an approximation
by considering its accuracy for all SEPs greater than or,
equivalently, all SNRs less than .

VI. DISCUSSION

The methodology and expressions developed in this paper
are applicable for different combining architectures, varying de-
grees of channel estimation energies, and arbitrary two-dimen-
sional signal constellations. We now demonstrate how these ex-
pressions facilitate system design using specific examples. In
particular, we consider 16-QAM systems to illustrate the be-
havior of the SNR penalty, bounds, and the accuracy of the ap-
proximations derived in the previous sections. First, we discuss
the two penalties for the comparison of systems with different
combining architectures ( and ). Second, we examine the two
penalties for the comparison of systems with different estima-
tion accuracies ( and ). Third, we discuss the comparison be-
tween ideal MRC and non-ideal SSD, which can be viewed as a
combination of the previous two types of penalties. In all cases,
the exact penalties are computed by numerically evaluating the
SEP expressions in conjunction with a numerical root-finding
operation. Specifically, we consider H-S/MRC systems where
the receiver combines the signals from the antennas with
the largest estimated channel magnitude out of available an-
tennas.10 For this selection policy

which yields , for , and , for
.

10Recall that NSNC systems utilize the estimates of the channel gains during
both the selection and combining processes.

Fig. 4. Lower and upper bounds for the SNR penalty between two ideal sys-
tems and two non-ideal systems .

A. Combining Architecture

Figure 3 shows the SNR penalty between SSD and MRC
systems for both ISIC and NSNC with
branches. The figure also shows the upper and lower bounds on
these penalties as well as the large and small asymptotes. Note
that , i.e., the SNR penalties between
two ISIC systems and two NSNC systems share the
same upper bound and this bound is asymptotically tight. It can
be seen that the difference between and is typically in the
second or third significant digit as reported in [23] for the spe-
cific case of -PSK ISIC systems. Thus, little is lost in using
the lower bound to assess the asymptotic performance. The dif-
ference between the values of and in dB is half that of
and , since and . From this figure,

we also see that for larger values of the estimation accuracy, ,
the SNR penalty approaches the ideal SNR penalty
more quickly . However, the upper and lower bounds, as well
as the large and small asymptotes, remain independent of .
We see in Fig. 3 that the difference between the upper and

lower bounds depends on the specific value of . To obtain
further insights, Fig. 4 shows , , , and , as a func-
tion of for . It is clear from Figs. 3 and 4 that
there is a large difference in the range of and . Examining the
upper and lower bounds for both cases reveals that this differ-
ence is (in dB). Since the bounds are tight, this implies that
the SNR penalty as a function of varies more in non-ideal sys-
tems. However, the worst case SNR penalty is the same for both
cases, since they share the same upper bound. For the case of ,
the maximum difference between the upper and lower bounds
is 1.57 dB, while for it is 4.95 dB.

B. Channel Estimation Accuracy

Figure 5 shows the SNR penalty of an NSNC system with
respect to an ISIC system (24), along with the approximation
(65), for various values of and . From these plots, it can
be observed that the approximation is quite accurate for a range
of SNRs. These SNRs, those less than about 20 dB, are rea-
sonable for practical systems. Also note that the approximation
becomes increasingly more accurate as the estimation energy
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Fig. 5. SNR penalty between NSNC and ISIC for 16-QAM, 16-branch
SSD systems.

Fig. 6. SEP for a 16-QAM, SSD system and the SEP approx-
imation for NSNC with using an ISIC system [based on in
(65)].

increases. To better quantify this effect, Table II lists the approx-
imation accuracy for various and (top number in each
table entry). All values in Table II are based on , but
a similar table can be produced for any of interest. These
values are conservative since typical values of for uncoded
systems, such as or , are greater than . These data
indicate that the performance gaps are approximately equal over
the range of and, as suggested by Fig. 5, the gap decreases
quickly as increases. The table also indicates that the perfor-
mance gap is at worst about 0.6 dB for a 16-QAM, 16-branch
system with . To further illustrate the application of the
approximation, Fig. 6 shows the SEP of ISIC
and NSNC systems with , along with an approximation
to the NSNC performance curve. The approximation is formed
as indicated by (71). From the figure, it can be noted that the
approximation is accurate for all SNRs of interest.
Similarly, Fig. 7 shows the SNR penalty of one NSNC system

with respect to an NSNC system (26) with , along with
the approximation (70), for various values of and . Again,
it is clear that the approximation is accurate for a range of SNRs
that are reasonable for practical systems. As for the case above,

Fig. 7. SNR penalty between twoNSNC systems for 16-QAM, 16-branch
SSD .

Fig. 8. SEP for a 16-QAM, SSD system and the SEP approx-
imation for NSNC with using an NSNC system with [based on

in (70)].

the SNR penalty quickly decreases and the approximation be-
comes more accurate as approaches . To better quantify
the difference between the true SNR penalty and the approx-
imation, Table II lists the estimation accuracy for various
values of and (middle number in each table entry). The
data indicate that the performance gap is at most about 0.65 dB
for a 16-QAM, 16-branch system with . For increasing
values of , the table shows that the performance gap decreases
quickly. To further illustrate the application of the approxima-
tion, Fig. 8 shows the SEP of two NSNC sys-
tems: one with and another with . The approx-
imation to the system, formed as indicated by (72), is
also shown. Also in this case, it can be noted from the figure that
the approximation is accurate for all SNRs of interest.

C. Combination of SNR Penalties

The SNR penalty of an NSNC system employing SSD with
respect to an ISIC system employing MRC (73), along with
the approximation (75), is shown in Fig. 9 for various values
of and . This figure shows the combined effect of channel
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estimation accuracy, as well as combining architecture. To
assess the aggregate effect, we combine the approximations
for the SNR penalty of ideal SSD with respect to ideal MRC
(58), as well as the penalty of non-ideal SSD with respect to
ideal SSD (65). The approximation accuracy improves as the
number of combined branches , or the estimation accuracy
increases. This behavior is further verified by the data given

in Table II. The table lists the approximation accuracy
for various values of and (bottom number in each table
entry). The data indicate that the performance gap is at worst
about 1.01 dB for SEPs greater than .

VII. CONCLUSION

This paper defines the SNR penalty between two systems
with different combining architectures and varying degrees
of channel estimation energy, for arbitrary two-dimensional
signal constellations. According to this definition, we derive
the asymptotic SNR penalties, for both small and large SNR,
between a variety of SSD systems. We also derive upper and
lower bounds, as well as approximations, on the SNR penalty.
We demonstrate that the SNR penalty of SSD with respect to

MRC has the same upper bound and asymptotic behavior (large
SNR) for both ISIC and NSNC systems. On the other hand, the
lower bounds and asymptotic behaviors (small SNR) of these
penalties differ by a power of two. Thus, NSNC systems suffer
a penalty which is at most equal to that of ISIC systems, but the
range of the penalty for NSNC is larger. These behaviors illus-
trate the dual role of channel estimation in practical diversity
systems.
The derived SNR penalties enable simple and accurate perfor-

mance assessment of one diversity system in terms of another.
Specifically, it is shown that the approximations are a fraction
of a decibel away from the exact SNR penalty that require ex-
tensive numerical evaluation. The notion of SNR penalty allows
system designers to assess sensitivity to channel estimation en-
ergy, combining architecture, and signal constellation, which in
turn facilitates making decisions during the design of wireless
systems.

APPENDIX A
SEP EXPANSION FOR ASYMPTOTICALLY SMALL SNR

In this appendix, the expansion of the SEP for NSNC at
asymptotically small SNR is derived for two cases.

Lemma 3: For asymptotically small , the expansion of

where , for finite and , is given by

Proof: Let

Fig. 9. SNR penalty between SSD NSNC and ideal MRC for 16-QAM,
16-branch systems.

(77)

Let , then

(78)

It can be shown by induction that
and . Using this fact, (78) becomes

where . This implies

Note that since , and hence

(79)

On the other hand, it is clear from the definition of that
. Thus, in conjunction with (79), we have

Thus, . This result, combined with (77), completes
the proof of Lemma 3.
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TABLE II
APPROXIMATION ACCURACY IN DECIBELS. (TOP), AND (MIDDLE), AND (BOTTOM) ARE SHOWN FOR

Lemma 4: For asymptotically small , the expansion of

where , for finite and , is given by

Proof: Let

(80)

Define a sufficiently small , such that and
. The continuity of ,

around , implies that there exists such that

(81)

whenever . For such , can be rewritten in
terms of two separate integrals as

(82)

where

(83)

(84)

First, as a consequence of Lemma 3, we have

(85)

Now, we will show that for any

(86)

From (83)

Using (81)

(87)

where, in the second equation, we have used the change of vari-
ables . Taking the on both
sides of (87) gives

and therefore

(88)
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A similar argument using the right inequality of (81) yields

(89)

Equations (88) and (89) imply that

(90)

which completes the proof of (86).
Using (82) and (85) in conjunction with (90) gives

The above is true for all , and thus

This, together with (82), implies that

which completes the proof of Lemma 4.

APPENDIX B
PROOF OF THE SEP BOUNDS FOR NSNC

In this appendix, a proof is given for the SEP bounds for com-
paring NSNC systems employing SSD with respect to NSNC
systems employing MRC.

Proof (Lower Bound): For each , , , and ,
let

Since , [23, Th. 3] implies that, for any probability vector

Using and applying Lemma 5 gives

where . Integrating the inverse of both

sides over and scaling by gives

where is given by (6), and therefore

Recognizing that (3) with (9) and (3) with (4) are convex com-
binations of the terms on the left-hand side and right-hand side,
respectively, yields

Proof (Upper Bound): Using ESF-Sum Inequality [23, Th.
4], it can be shown for any nonnegative that

(91)

For each , , , and , let

Now, (91) becomes

Application of Lemma 5 to the right-hand side gives

where . Integrating the inverse of both
sides over and scaling by gives

where is given by (6) and, therefore
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Recognizing that (3) with (4) and (3) with(9) are convex com-
binations of the terms on the left-hand side and right-hand side,
respectively, yields

APPENDIX C
BOUNDS ON

As discussed in Section III, the vector has elements
which are a function of the SNR. The following lemma deals
with the properties of functions with a form similar to
given in (6).

Lemma 5: For any and , the function

satisfies the following:

Proof: Omitted for brevity.
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