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Abstract—Quantum state discrimination (QSD) is a key
enabler in quantum sensing and networking, for which we
envision the utility of non-coherent quantum states such as
photon-added coherent states (PACSs). This paper addresses the
problem of discriminating between two noisy PACSs. First, we
provide representation of PACSs affected by thermal noise during
state preparation in terms of Fock basis and quasi-probability
distributions. Then, we demonstrate that the use of PACSs instead
of coherent states can significantly reduce the error probability in
QSD. Finally, we quantify the effects of phase diffusion and pho-
ton loss on QSD performance. The findings of this paper reveal
the utility of PACSs in several applications involving QSD.

Index Terms—Quantum state discrimination, photon-added
coherent state, quantum noise, quantum communications.

I. INTRODUCTION

QUANTUM STATE DISCRIMINATION (QSD)
addresses the problem of identifying an unknown

state among a set of quantum states [1]–[3]. QSD enables
several applications including quantum communications [4]–
[6], quantum sensing [7]–[9], quantum illumination [10]–[12],
quantum cryptography [13]–[15], quantum networks [16]–
[18], and quantum computing [19]–[21]. The discrimination
error probability (DEP) depends on the set of quantum
states and the measurement used to discriminate among
them. Determining the DEP and identifying the quantum
measurement that minimizes the DEP are difficult tasks,
especially for states prepared in the presence of thermal noise
(hereafter referred to as noisy states).

Understanding how the choice of quantum states impacts
the discrimination performance plays an important role in
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Fig. 1. Illustration of binary QSD with PACSs: hypotheses are described by
the Wigner functions corresponding to the quantum states.

QSD applications. In particular, continuous-variable quantum
states have been considered in quantum optics as they supply
a quantum description of the electromagnetic field and can
be efficiently prepared, manipulated, and measured [22]–[28].
Previous works on continuous-variable QSD have devoted
particular attention to the analysis of discrimination between
coherent states [29]–[34], largely motivated by the success of
the Glauber theory [35]–[38].

In contrast, QSD with non-coherent states has received less
attention except for attempts made on the use of squeezed
states [39]–[41] and number states [42]–[44]. Photon-added
coherent states (PACSs) are another important class of non-
coherent quantum states that can be generated in a lab-
oratory [45]–[47]. PACSs have been considered for quan-
tum communications [48] and quantum cryptography [49]
but a characterization of QSD with PACSs is still missing.
Determining the effects of thermal noise on QSD requires
a mathematical representation of the quantum states. The
Wigner function of noisy PACSs was given in [50]–[52].
However, a complete representation of noisy PACSs is still
missing.

The fundamental questions related to QSD with non-
coherent states are: (i) which class of quantum states can be
used to minimize the DEP; and (ii) how does this class of
states perform when affected by thermal noise? The answers
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to these questions provide insights into the utility of non-
coherent states for QSD. The use of non-coherent states can
be envisioned for many applications relying on QSD. In par-
ticular, PACSs can provide significant benefits to QSD and
pave the way for innovative applications in quantum sensing
and networking. The goal of this paper is to establish the use
of PACSs to improve QSD.

This paper characterizes the QSD with PACSs (see Fig. 1).
In particular, the key contributions of the paper can be
summarized as follows:
• representation of noisy PACSs in terms of Fock basis,

Wigner W -function, Glauber–Sudarshan P -function, and
Husimi–Kano Q-function;

• characterization of QSD with noisy PACSs in terms of
DEP for optimal/suboptimal quantum measurements; and

• quantification of decoherence effects, such as phase
diffusion and photon loss, on QSD performance.

The remainder of the paper is organized as follows.
Section II characterizes QSD with noiseless PACSs. Section III
provides a mathematical representation of noisy PACSs.
Section IV analyzes the discrimination of noisy PACSs.
Section V quantifies the effects of phase and photon losses
on the QSD. Final remarks are given in Section VI.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Operators
are denoted by uppercase letters. For example, a random
variable and its realization are denoted by x and x ; a ran-
dom operator and its realization are denoted by X and X ,
respectively. The sets of complex numbers and of positive
integer numbers are denoted by C and N, respectively. For
z ∈ C : |z | and arg(z ) denote the absolute value and the
phase, respectively; z r and z i denote the real part and the
imaginary part, respectively; z∗ is the complex conjugate;
and ı =

√−1. The trace and the adjoint of an operator are
denoted by tr{·} and (·)†, respectively. The annihilation, the
creation, and the identity operators are denoted by A, A†,
and I , respectively. The trace norm of an operator is rep-
resented by ‖·‖1 . The displacement operator with parameter
μ ∈ C is Dμ = exp{μA† −μ∗A}. The rotation operator with
parameter φ ∈ R is Rφ = exp{−ıφA†A}. The Kronecker
delta function, the discrete delta function, and the generalized
delta function are denoted by δn,m , δn , and δ(·), respectively.

II. PRELIMINARIES

This section briefly reviews binary QSD, and the discrimi-
nation of noiseless PACSs.

A. Binary Quantum State Discrimination

Binary QSD aims to identify an unknown state among
a set of two quantum states. This requires the design of a
binary positive operator-valued measure (POVM)1 to distin-
guish between two quantum states described by the density
operators Ξ0 and Ξ1. This can be formulated as an hypothe-
sis testing problem [1], as depicted in Fig. 1. In particular, let

1A binary POVM is a set with two positive operators {Π0,Π1} such that
Π0 +Π1 = I .

be the unknown quantum state,2 then the binary hypotheses
are described by

H0 : = Ξ0

H1 : = Ξ1. (1)

The quantum states Ξ0 and Ξ1 have prior probability p0 and
p1, respectively. Under these premises, the DEP is

Pe = p0tr{Ξ0Π1}+ p1tr{Ξ1Π0}. (2)

The problem of finding an optimal POVM that minimizes
the DEP has been extensively studied in [1]. In the binary
case, the minimum DEP (MDEP) is given by the well known
Helstrom bound

P̆e =
1

2

(
1− ‖p1Ξ1 − p0Ξ0‖1

)
. (3)

The optimal POVM that achieves the Helstrom bound is given
by the following expressions

Π0 =
∑

i
λi<0

|λi 〉〈λi | (4a)

Π1 = 1−Π0 =
∑

i
λi≥0

|λi 〉〈λi | (4b)

where |λi 〉 is the eigenvector of p1Ξ1−p0Ξ0 associated with
the eigenvalue λi . For pure states, i.e., Ξ0 = |ψ0〉〈ψ0| and
Ξ1 = |ψ1〉〈ψ1|, the MDEP is given by

P̆e =
1

2

(
1−

√
1− 4p0p1|〈ψ0|ψ1〉|2

)
. (5)

Note that, in this case, the MDEP is zero when the two states
are orthogonal, i.e., 〈ψ0|ψ1〉 = 0. In the case of mixed states,
the MDEP is zero when the density operators Ξ0 and Ξ1 have
support on orthogonal subspaces [53].

B. Discrimination of Noiseless Photon-Added Coherent
States

PACSs were first introduced in [45] and successfully gen-
erated in a laboratory [46], [47]. A PACS is defined as
follows

|μ(k)〉 = (A†)k |μ〉
√

〈μ|Ak (A†)k |μ〉
(6)

where |μ〉 is a coherent state of amplitude μ ∈ C and k ∈ N

represents the number of addition operations.
Consider now the discrimination of PACS in a noiseless

scenario, i.e., the states associated with the hypotheses in (1)
are given by Ξ0 = |ξ(h)〉〈ξ(h)| and Ξ1 = |μ(k)〉〈μ(k)|. Since
the states are pure, the MDEP is determined by (5) with |ψ0〉 =
|ξ(h)〉 and |ψ1〉 = |μ(k)〉, and its dependence on the quantum
states is manifested by the following Lemma.

2In the following, the term “quantum state” and corresponding “density
operator” will be used interchangeably.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 06,2020 at 02:56:45 UTC from IEEE Xplore.  Restrictions apply. 



GUERRINI et al.: QUANTUM DISCRIMINATION OF NOISY PHOTON-ADDED COHERENT STATES 471

Lemma 1: Consider two PACSs |ξ(h)〉 and |μ(k)〉 according
to (6). Without loss of generality, let h ≤ k . It is

〈ξ(h)|μ(k)〉 = (ξ∗)k−hLk−h
h (−μξ∗)e− 1

2
(|μ|2+|ξ|2−2μξ∗)

√
k !
h!Lk (−|μ|2)Lh (−|ξ|2)

(7)

where Lh (x ) is the Laguerre polynomial of degree h and
Lk−h
h (x ) is the generalized Laguerre polynomial of degree

h with parameter k − h [54].
Proof: See Appendix A. �
The MDEP is found by using (7) in (5). Note that the scalar

product between the two states, and thus the MDEP, is zero
if one of the following orthogonality conditions holds

(i) ξ = 0 and h �= k (8a)

(ii) Lk−h
h (−μξ∗) = 0. (8b)

The orthogonality condition (8a) is of particular interest
because |ξ(h)〉 with ξ = 0 corresponds to the Fock state |h〉. In
particular, this is related to the fact that the photon-addition
operation on |μ〉 generates a state |μ(k)〉 orthogonal to the
span of the set {|n〉 : n ≤ h}. If both ξ = 0 and h = 0,
then |ξ(h)〉 corresponds to the ground state, and therefore the
QSD reduces to the discrimination between a PACS and the
ground state. The orthogonality condition (8b) represents the
situation in which there are canceling cross-terms in the scalar
product of the two states. It can also be observed that the
exponential factor in (7) makes the DEP vanish as |μ − ξ|
increases. Therefore, in the absence of noise, the use of PACSs
can provide an optimal solution to the QSD problem.

In the following, it is shown that the presence of thermal
noise during state preparation increases the DEP. Since a noise
component is unavoidable in quantum systems, it is essential
to represent the noisy quantum states and characterize the QSD
that accounts for thermal noise in state preparation.

III. REPRESENTATION OF NOISY QUANTUM STATES

This section provides the representation of noisy PACSs
accounting for the presence of thermal noise during the
preparation of the quantum states.

A. Noisy Coherent States

A noisy coherent state with amplitude μ ∈ C is obtained
by displacing the thermal state Ξth as

Ξth(μ) = DμΞthD
†
μ. (9)

The thermal state is given by [55]

Ξth =
∞∑

n=0

n̄n

(1 + n̄)n+1
|n〉〈n| (10)

where n̄ is the mean number of thermal photons given by
Planck’s law

n̄ = (exp{�ω/kBT0} − 1)−1

in which � is the reduced Planck constant, ω is the angular
frequency of the field, kB is the Boltzmann constant, and T0

is the absolute temperature of the quantum system.

The Fock representation of a noisy coherent state Ξth(μ)
is given by [1]

〈n|Ξth(µ)|m〉 = (1− v) e−(1−v)|μ|2
√

n!

m!

× vn [(1− v)µ∗]m−nLm−n
n

(−(1− v)2|µ|2
v

)

(11)

where

v =
n̄

1 + n̄
. (12)

The Wigner W -function, the Glauber–Sudarshan P -function,
and the Husimi–Kano Q-function associated with Ξth(μ) are
respectively given by [55]

Wth(α) =
1

π(n̄ + 1
2 )

exp

{
− |α− μ|2

n̄ + 1
2

}
(13)

Pth(α) =
1

πn̄
exp

{
− |α− μ|2

n̄

}
(14)

Qth(α) =
1

π(n̄ + 1)
exp

{
− |α− μ|2

n̄ + 1

}
. (15)

For n̄ approaching 0, Pth(α) tends to δ(αr − μr)δ(αi − μi)
and the noisy coherent state Ξth(μ) reduces to the coherent
state |μ〉〈μ|.

B. Noisy Photon-Added Coherent States

Photon addition on a quantum state Ξ produces a new state
given by [56]

Ξ+ =
A†ΞA

tr{A†ΞA} .

If Ξ is a coherent state affected by thermal noise, the cor-
responding photon-added state Ξ+ is referred to as noisy
PACS.3 Therefore, a noisy PACS is defined as

Ξ(μ, k) =
(A†)kΞth(μ)A

k

Nk (μ, n̄)
(16)

where k ∈ N represents the number of addition operations,
and Nk (μ, n̄) = tr{(A†)kΞth(μ)A

k}. From [38, eq. (7.16)],
we obtain4

Nk (μ, n̄) = k !(n̄ + 1)kLk

(
− |μ|2
n̄ + 1

)
. (17)

Note that a noisy PACS is uniquely determined by the param-
eters k , μ, and n̄; such dependencies will not be explicated
unless strictly needed. The mean number of photons np(μ, n̄)
in a noisy PACS is given by 〈A†A〉. Since

〈A†A〉 = tr{Ξ(μ, k)A†A} = tr{Ξ(μ, k)AA†} − 1

we found

np(μ, n̄) =
Nk+1(μ, n̄)

Nk (μ, n̄)
− 1. (18)

3This definition of noisy PACS is in accordance with that of photon-added
displaced thermal state (PADTS) in [50], a special case of a photon-added dis-
placed squeezed thermal state [51], [52] with no squeezing. We then provide
new representations, all in closed form, for PADTS.

4This result is in accordance with [50, eq. (7)] for V = 2n̄ + 1.
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Fig. 2. Wigner W -function W (α) of a noisy PACS for different values of k and n̄ with μ = 0.8.

For a given noise level n̄ , the np(μ, n̄) has a minimum at
μ = 0. From (18) and (17) such a minimum is given by

np(0, n̄) = (k + 1)(n̄ + 1)− 1. (19)

In the following, the Fock representation, the Wigner W -
function, the Glauber–Sudarshan P -function, and the Husimi–
Kano Q-function are given for noisy PACS.

Theorem 1 (Fock representation): The Fock representation
of a noisy PACS Ξ(μ, k) is found to be

〈n|Ξ(μ, k)|m〉 =
{
c
(k)
n,m for both n,m ≥ k

0 otherwise
(20)

where k ∈ N, and

c
(k)
n,m =

(1− v)k+1e−(1−v)|μ|2

vk

√
n!

m!

(
m

k

)

× vn [(1− v)μ∗]m−n
Lm−n
n−k

(−(1−v)2|μ|2
v

)

Lk

(− |μ|2(1− v)
) . (21)

Proof: See Appendix B. �
The probability distribution for the number of photons n in

a PACS Ξ(μ, k) is obtained using Theorem 1 as

P{n = n} = 〈n|Ξ(μ, k)|n〉 =
{
p
(k)
n for n ≥ k

0 otherwise
(22)

where p
(k)
n = c

(k)
n,n is obtained from (21) with m = n . The fol-

lowing Theorems 2–4 provide a noisy PACS representation in
terms of Wigner W -function, Glauber–Sudarshan P -function,
and Husimi–Kano Q-function, respectively.

Theorem 2 (W -function): The Wigner W -function of a
noisy PACS Ξ(μ, k) is found to be

W (α) =
(−1)k

(2n̄ + 1)k

Lk

( |2α(n̄+1)−μ|2
(2n̄+1)(n̄+1)

)

Lk

(
− |μ|2

n̄+1

) Wth(α) (23)

where k ∈ N and Wth(α) is the Wigner W -function of a
noisy coherent state given by (13).

Proof: See Appendix C. �
Fig. 2 shows W (α) for different values of k and n̄ . Notice

that the Wigner function gets stretched and loses its negativity
as n̄ increases. Recalling that the negativity of the Wigner
function is an indicator of non-classicality of the state [57],
this behavior shows that the quantum state decoheres as the
thermal noise increases.

Theorem 3 (P -function): The Glauber–Sudarshan
P -function of a noisy PACS Ξ(μ, k) is found to be

P(α) =
(−1)k

n̄k

Lk

( |α(n̄+1)−μ|2
n̄(n̄+1)

)

Lk

(
− |μ|2

n̄+1

) Pth(α) (24)

where k ∈ N and Pth(α) is the Glauber–Sudarshan P -function
of a noisy coherent state given by (14).

Proof: See Appendix D. �
Theorem 4 (Q-function): The Husimi–Kano Q-function of

a noisy PACS Ξ(μ, k) is found to be

Q(α) =
|α|2k

k !(n̄ + 1)k Lk

(
− |μ|2

n̄+1

) Qth(α). (25)
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Fig. 3. MDEP for discrimination between a noisy PACS and a noisy coherent state as a function of μ and ξ, with p0 = p1 = 1/2.

where k ∈ N and Qth(α) is the Husimi–Kano Q-function of
a noisy coherent state given by (15).

Proof: See Appendix E. �
It is worth noting that the developed representation of a

noisy PACS has relevant special cases. First, in case of no
photon addition (i.e., k = 0) the representation of a noisy
PACS reduces to that of a noisy coherent state, as described in
Section III-A. Moreover, in the absence of noise (i.e., n̄ = 0),
the representation of a noisy PACS reduces to that of a noise-
less PACS presented in [45]. Furthermore, in the absence
of displacement (i.e., μ = 0), the representation of a noisy
PACS reduces to that of a photon-added thermal state (PATS)
presented in [58]. Finally, in the absence of both noise and
displacement (i.e., n̄ = μ = 0), the representation of a noisy
PACS reduces to that of a Fock state shown in [55].

IV. DISCRIMINATION OF NOISY PHOTON-ADDED

COHERENT STATES

This section characterizes the binary QSD with noisy PACSs
using the representations given in Section III. In particular, the
quantum states associated with the binary hypotheses in (1) are

Ξ0 = Ξ(ξ, h) (26a)

Ξ1 = Ξ(μ, k). (26b)

Recall that, according to the Helstrom bound (3), the MDEP
for a binary QSD depends on ‖Δ‖1 with Δ = p1Ξ1−p0Ξ0.
The following lemma shows that the MDEP for a binary
QSD with quantum states as in (26) does not depend on the
individual phases of ξ and μ, but only on the phase difference.

Lemma 2: Consider the PACSs Ξ0 = Ξ(ξ, h), Ξ1 =

Ξ(μ, k), Ξ(θ)
0 = Ξ(ξeıθ, h), and Ξ

(φ)
1 = Ξ(μeıφ, k) with

θ, φ ∈ R, defined as in (16). Then,

‖p1Ξ(φ)
1 − p0Ξ

(θ)
0 ‖1 = ‖p1Ξ1 − p0Ξ

(θ−φ)
0 ‖1 . (27)

Proof: See Appendix F. �
This result simplifies the QSD characterization, especially

when one of the states is the thermal state for which the phase
is irrelevant, as shown in the following corollary.

Corollary 1: Consider the PACSs of Lemma 2 with ξ =
h = 0, for which Ξ0 = Ξth. Then,

‖p1Ξ(φ)
1 − p0Ξ

(θ)
0 ‖1 = ‖p1Ξ1 − p0Ξth‖1 . (28)

Proof: From Ξ
(θ−φ)
0 = Rθ−φΞthR

†
θ−φ and rotational

invariance of Ξth, the (27) reduces to (28). �
The operator Δ has an infinite number of eigenvalues

that have no closed-form expression. This is a long stand-
ing problem [1] and a tractable approximation of Δ is needed
to compute the MDEP. A simple way to approximate Δ is
to use an operator Δ̃N , of finite dimension N , in the Fock
representation. In particular, Δ 
 Δ̃N where

Δ̃N =
N−1∑

n=0

N−1∑

m=0

〈n|Δ|m〉|n〉〈m|

with entries 〈n|Δ|m〉 obtained using (20). The accuracy of
MDEP approximation using Δ̃N depends on N .5

5N = 30 will be used in the remainder of the paper.
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Fig. 4. Performance of the QSD between a noisy PACS and the thermal state as a function of np, with n̄ = 10−2, and p0 = p1 = 1/2.

A. Case Studies

To quantify the noise effects on QSD, two case studies will
be considered.

1) Ξ0 noisy coherent state, Ξ1 noisy PACS: The quantum
states associated with the binary hypotheses in (1) are

Ξ0 = Ξ(ξ, 0)

Ξ1 = Ξ(μ, k).

Recall from (3) and Lemma 2 that, since h = 0, the MDEP
only depends on n̄ , k , |ξ|, |μ|, and arg(ξ)− arg(μ).

Fig. 3 shows the MDEP as a function of μ and ξ, for dif-
ferent values of k and n̄ .6 Note that, for n̄ �= 0, the MDEP
is always greater than zero and, differently from (8a) in the
noiseless case, ξ = 0 is no longer an optimal solution.

2) Ξ0 thermal state, Ξ1 noisy PACS: The quantum states
associated with the binary hypotheses in (1) are

Ξ0 = Ξ(0, 0)

Ξ1 = Ξ(μ, k).

Recall from (3) and Corollary 1 that the MDEP only depends
on n̄ , k , and |μ|.

Fig. 4(a) shows the MDEP as a function of the mean num-
ber np of photons in Ξ1, for different values of k . Note
that the use of a PACS improves the QSD performance com-
pared to the use of a coherent state (k = 0). Moreover,
the performance improves with the number of photon addi-
tion operations, which is inversely proportional to the state
generation efficiency. Therefore, there is a trade-off between
the MDEP and the state generation rate. Furthermore, the
minimum value of np is given by (19).

Consider also the case of counting discriminator, which sim-
ply counts the number of photons in the quantum state and
compares it with a threshold that depends on the state Ξ1.
The counting discriminator is more feasible than the optimal
discriminator and admits a purely classical description [59].

6While ξ and μ are complex in general, here they are plotted for real values.

Fig. 4(b) shows the DEP of a counting discriminator as a
function of the mean number np of photons in Ξ1, for different
values of k . In comparison to Fig. 4(a), it can be observed that
the DEP with a counting discriminator is higher than that of the
optimal quantum discriminator (i.e., the MDEP), as expected.
Note that the use of a PACS improves the QSD performance
compared to the use of a coherent state (k = 0), even for the
counting discriminator. Note also that the DEP of a counting
discriminator approaches the MDEP for low values of np. This
can be attributed to the fact that, when np is low the off-
diagonal terms in the Fock representation, hence the quantum
advantage, of a PACS vanish.

Fig. 5 shows the quantum gain ζ, the ratio between the DEP
with a counting discriminator and the MDEP with the optimal
discriminator, as a function of np, for different values of k .
Note that the use of the optimal quantum discriminator always
allows for improvement of the performance with respect to a
classical discriminator.

Fig. 6 shows the MDEP as a function of the mean num-
ber n̄ of thermal photons, for different values of k and for
fixed np=8. Note that the use of a PACS improves the QSD
performance compared to the use of a coherent state (k =0),
especially for small n̄ . Therefore, PACSs are particularly
valuable in situations when thermal noise is low.

B. Application to Quantum Communications

A direct application of QSD is the transmission of clas-
sical information. A classical source generates a symbol a,
from a finite alphabet A = {a0, a1, . . . , aM−1}, with prior
probabilities P{a = ai} = pi for i = 0, 1, . . . ,M − 1.
When the source generates the symbol ai , the transmitter
prepares a quantum state Ξi , and sends it to the receiver
through a physical channel. The set of all the quantum
states Aq = {Ξ0,Ξ1, . . . ,ΞM−1} is referred to as quantum
constellation [5]. The prepared state traverses a quantum chan-
nel, mathematically described by a completely positive trace
preserving map C, which transforms the transmitted state Ξi

into Υ i = C{Ξi}. At the receiver side, the quantum state is
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Fig. 5. Quantum gain ζ as a function of np, with n̄ = 10−2, and p0 =
p1 = 1/2.

converted back to classical information by means of a quantum
measurement and a decision is made to infer the transmitted
symbol.

Consider a quantum on-off keying (OOK) system, which
employs a binary alphabet (M = 2) and discriminates between
Ξ0 = Ξth and an arbitrary state Ξ1. In practice, the quantum
source (e.g., a laser) prepares the state Ξ1 when the symbol a1
is emitted, and the quantum source is turned off when the sym-
bol a0 is emitted. The MDEP of an OOK system employing
a PACS corresponds to the MDEP studied in Section IV-A2.

V. THE EFFECT OF DECOHERENCE

This section quantifies the effects of a quantum channel (i.e.,
phase diffusion and photon loss) on the QSD performance. The
quantum states associated with the binary hypotheses in (1) are

Υ 0 = C{Ξ(0, 0)}
Υ 1 = C{Ξ(μ, k)}

where Υ = C{Ξ} is the state at the output of the quantum
channel described by C{·} with input Ξ.

A. Phase Diffusion

The phase diffusion model [55] is a purely quantum
mechanical model that has no classical counterparts and can
be used to model different phenomena (e.g., the random scat-
tering of photons in a waveguide). In the presence of phase
diffusion, the quantum state Ξ becomes Υ such that

〈n|Υ |m〉 = e−(n−m)2σ2〈n|Ξ|m〉
where σ is the phase diffusion parameter. Therefore, the effect
of phase diffusion is the exponential damping of the off-
diagonal elements in the Fock representation. Note that this
model can be used to describe the reception of a state with
unknown phase. For example, when the phase of a state is
unknown, a uniform random model is used [22] and the

Fig. 6. MDEP for the discrimination between a noisy PACS and the thermal
state as a function of n̄ , with np = 8, and p0 = p1 = 1/2.

evolution Υ of state Ξ results in

Υ =

∫ 2π

0

1

2π
RφΞR†

φdφ.

In such a case, 〈n|Υ |m〉 = δn,m 〈n|Ξ|m〉, which resembles to
the phase diffusion model with large σ (high-phase diffusion),
for which Υ reduces to a purely classical state.

We now quantify the effects of phase diffusion on the MDEP
as described in Section IV. Fig. 7 shows the MDEP as a
function of σ2 for different values of k . Note that the use
of a PACS improves the QSD performance compared to the
use of a coherent state (k = 0). It can be observed that, for
small σ, MDEP with phase diffusion approaches to that with-
out phase diffusion. It can also be observed that, for large σ,
the MDEP with the optimal discriminator approaches the DEP
with a counting discriminator as the off-diagonal terms van-
ish. Therefore, in the presence of a strong phase diffusion, the
counting discriminator is asymptotically optimal. This can be
attributed to the fact that the off-diagonal terms in the Fock
representation vanish as the diffusion parameter increases.

B. Photon Loss

The photon loss model [60] describes the energy loss of a
photon due to propagation from source to destination, and it
can be used to model different phenomena (e.g., the free-space
propagation). In the presence of photon loss, the quantum state
Ξ becomes Υ such that

〈n|Υ |m〉 = 1

η2
√
n!m!

∫∫
PΞ

(
α

η

)
e−|α|2(α∗)nαmdαrdαi

where η ∈ [0, 1] is the transmissivity parameter. Therefore, the
effect of photon loss is a joint attenuation and scaling of the
P -function.

We now quantify the effects of photon loss on the MDEP
as described in Section IV. Fig. 8 shows the MDEP as a func-
tion of η for different values of k . Note that the use of a
PACS improves the QSD performance compared to the use of
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Fig. 7. MDEP for the discrimination between a noisy PACS and the thermal
state affected by phase diffusion as a function of σ2, with np = 6, n̄ = 10−2,
and p0 = p1 = 1/2. The two dashed lines for each k represent the MDEP
without phase noise (bottom) and the DEP of a counting discriminator (top).

a coherent state (k = 0), especially for high η. Note also that,
in the high-loss regime (i.e., when η ≈ 0), MDEP with a PACS
approaches to that with a coherent state for all k . Therefore,
PACSs are particularly valuable in situations when the loss is
low. This can be attributed to the fact that the quantum state
loses its non-classical properties more rapidly as η decreases.

VI. CONCLUSION

This paper addresses the problem of discriminating between
two noisy PACSs. First, the representation of PACSs affected by
thermal noise during state preparation is given in terms of Fock
basis, WignerW -function, Glauber–SudarshanP -function, and
Husimi–Kano Q-function. Then, it is shown that the use of
PACSs instead of coherent states with the same energy can
significantly improve the QSD performance. It is also shown
how this advantage depends on the decoherence and the losses in
the system. The findings of this paper open the way for the use of
non-coherent states, in particular PACSs, for QSD applications.

APPENDIX A
PROOF OF LEMMA 1

From (6) and the normalization in [45],

〈ξ(h)|μ(k)〉 = 〈ξ|Ah(A†)k |μ〉
√

h!k !Lk (−|μ|2)Lh (−|ξ|2) . (29)

The enumerator of (29) can be written as

〈ξ|Ah(A†)k |μ〉 = 〈ξ|μ〉
h∑

n=0

n!

(
k

n

)(
h

n

)
μh−n(ξ∗)k−n

= 〈ξ|μ〉h!(ξ∗)k−h
h∑

n=0

(
k

h − n

)
(μξ∗)n

n!

= 〈ξ|μ〉h!(ξ∗)k−hLk−h
h (−μξ∗) (30)

where the first equality is obtained by using [37, eq. (5.12)]
to express Ah (A†)k in the normal order and noticing that
A|μ〉 = μ|μ〉 when |μ〉 is a coherent state; the second equality

Fig. 8. MDEP for the discrimination between a noisy PACS and the thermal
state affected by photon loss as a function of η, with np = 6, n̄ = 10−2,
and p0 = p1 = 1/2.

follows from simple algebra; and the third equality follows from
the definition of generalized Laguerre polynomials. From (30),
and [36, eq. (3.32)], the (29) results in (7).

APPENDIX B
PROOF OF THEOREM 1

The coherent-state representation of a noisy PACS Ξ(μ, k),
defined as [36, eq. (6.1)], can be written as

R(α∗, β) = e
1
2
(|α|2+|β|2)〈α|Ξ(μ, k)|β〉.

From (16),

R(α∗, β) = e
1
2
(|α|2+|β|2)

Nk
〈α|(A†)kDμΞthD

†
μA

k |β〉

=
(α∗β)k
Nk

e
1
2
(|α|2+|β|2)〈α|DμΞthD

†
μ|β〉 (31)

where the first equality is from (16) and (9), and the sec-
ond equality follows from the fact that a coherent state is an
eigenvector of A. From the coherent-state representation of
a displaced thermal state [1, eq. (4.15)] together with (17)
and (12), the (31) becomes

R(α∗, β) = (α∗β)k (1− v)k+1

k !Lk (−|μ|2(1− v))
exp{−(1− v)|μ|2}

× exp{vα∗β + (1− v)(α∗μ+ βμ∗)}. (32)

From the Mollow–Glauber double generating function for the
associated Laguerre polynomials [61, eqs. (A1) and (A6)] and
by applying some simple algebra, the (32) results in

R(α∗, β) =
∞∑

n=k

∞∑

m=k

(α∗)nβm√
n!m!

(1− v)k+1

Lk (−|μ|2(1− v))vk

× exp{−(1− v)|μ|2}
√

n!

m!

(
m

k

)
vn

× [(1− v)μ∗]m−n Lm−n
n−k

(
− (1− v)2|μ|2

v

)
.

(33)
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W (α) =
2(1− v)k+1e2|α|2−(1−v)|μ|2

π2k !Lk (−|μ|2(1− v))

∫∫
(−β∗β)k e−(1+v)|β|2+β∗(2α−(1−v)μ)−β(2α−(1−v)μ)∗dβrdβi (36)

P(α) =
(1− v)k+1e |α|2−(1−v)|μ|2

π2k !Lk (−|μ|2(1− v))

∫∫
(−β∗β)k e−v |β|2+β∗(α−(1−v)μ)−β(α−(1−v)μ)∗dβrdβi (42)

From the relationship between coherent-state representa-
tion (33) and Fock representation [36, eq. (6.2)], the (20) is
obtained.

APPENDIX C
PROOF OF THEOREM 2

The Wigner W -function of a noisy PACS Ξ(μ, k), defined
according to [45, eq. (3.5)], can be written as

W (α) =
2 e2|α|2

π2

∫∫
〈−β|Ξ(μ, k)|β〉e2(β∗α−βα∗)dβrdβi.

(34)

From (31),

〈−β|Ξ(μ, k)|β〉 = R(−β∗, β)e−|β|2 (35)

and by using it together with (32) in (34), the (36) at the top
of the page is obtained. Then, by applying a double change
of variable

γ = β
√
1 + v (37a)

ξ =
2α− (1− v)μ√

1 + v
(37b)

we obtain

W (α) =
2(1− v)k+1e2|α|2−(1−v)|μ|2

πk !Lk (−|μ|2(1− v))(1 + v)k+1
I (k)(ξ) (38)

where

I (k)(ξ) =
1

π

∫∫
(−γ∗γ)k e−|γ|2+γ∗ξ−γξ∗dγrdγi.

Using [62, eq. (A.28)] and the Wirtinger derivatives7 [63],

I (k)(ξ) =
∂2k

∂ξ∗k ∂ξk
e−|ξ|2

and, from the definition of Laguerre polynomials,

I (k)(ξ) = (−1)k k ! e−|ξ|2Lk (|ξ|2). (39)

From (39), the (38) can be rewritten as

W (α) =
(v − 1)kLk (|ξ|2)

(1 + v)kLk (−|μ|2(1− v))

× 2(1− v) e−|ξ|2e2|α|2−(1−v)|μ|2

π(1 + v)
. (40)

From (37b) together with (12) and (13), the (40) results in (23).

7Recall that the Wirtinger derivatives are defined as ∂
∂ξ = 1

2 (
∂

∂ξr
− ı ∂

∂ξi
)

and ∂
∂ξ∗ = 1

2 (
∂

∂ξr
+ ı ∂

∂ξi
), from which ∂

∂ξ (ξ
∗)k = 0 and ∂

∂ξ∗ (ξ)
k = 0

for k ∈ N.

APPENDIX D
PROOF OF THEOREM 3

The Glauber–Sudarshan P -function of a noisy PACS
Ξ(μ, k), defined according to [64, eq. (6)], can be written
as

P(α) =
e |α|2

π2

∫∫
〈−β|Ξ(μ, k)|β〉e |β|2eβ∗α−βα∗

dβrdβi.

(41)

Using (32) and (35) in (41), the (42) at the top of the page is
obtained. Then, by applying a double change of variable

γ =
√
vβ (43a)

ξ =
α− (1− v)μ√

v
(43b)

we obtain

P(α) =
(1− v)k+1e |α|2−(1−v)|μ|2

π2k !Lk (−|μ|2(1− v))vk+1
I (k)(ξ). (44)

From (39), (44) can be written as

P(α) =
(v − 1)kLk (|ξ|2)

vkLk (−|μ|2(1− v))

× (1− v) e−|ξ|2e |α|2−(1−v)|μ|2

πv
. (45)

From (43b) together with (12) and (14), the (45) results in (24).

APPENDIX E
PROOF OF THEOREM 4

The Husimi–Kano Q-function of a noisy PACS Ξ(μ, k),
defined according to [65, eq. (12.7)], can be written as

Q(α) =
1

π
〈α|Ξ(μ, k)|α〉. (46)

From (31),

Q(α) =
e−|α|2

π
R(α∗, α). (47)

From (32) together with (12) and (15), the (47) results in (25).

APPENDIX F
PROOF OF LEMMA 2

From (16) and (9),

Ξ
(φ)
1 =

1

Nk
(A†)kDνΞthD

†
νA

k
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where ν = μeıφ. By using the relationships between the
operators A, A†, Dμ, and Rφ [66], we obtain

Ξ
(φ)
1 =

1

Nk
(A†)kRφDμΞthD

†
μR

†
φA

k

=
1

Nk
Rφ(A

†)kDμΞthD
†
μA

kR†
φ

= RφΞ1R
†
φ (48)

where the first equality follows from RφDμR
†
φ = Dν and

the rotational invariance of Ξth for which R†
φΞthRφ = Ξth;

the second equality follows from R†
φARφ = Ae−ıφ; and the

third equality follows from the definition of Ξ1. Therefore,
by using (48) for both Ξ

(φ)
1 and Ξ

(θ)
0 in the left-hand side

of (27),

‖p1Ξ(φ)
1 − p0Ξ

(θ)
0 ‖1 = ‖p1RφΞ1R

†
φ − p0RθΞ0R

†
θ‖1

= ‖p1Ξ1 − p0Rθ−φΞ0R
†
θ−φ‖1 (49)

where the last equality follows from the isometric invariance
of the trace norm [53], and R†

φ = R−φ. From the definition

of Ξ(θ−φ)
0 , the (49) results in (27).
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