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Abstract— Location-aware networks are of great importance
and interest in both civil and military applications. This paper
determines the localization accuracy of an agent, which is
equipped with an antenna array and localizes itself using wireless
measurements with anchor nodes, in a far-field environment.
In view of the Cramér–Rao bound, we first derive the localization
information for static scenarios and demonstrate that such
information is a weighed sum of Fisher information matrices
from each anchor-antenna measurement pair. Each matrix can
be further decomposed into two parts: 1) a distance part
with intensity proportional to the squared baseband effective
bandwidth of the transmitted signal and 2) a direction part
with intensity associated with the normalized anchor-antenna
visual angle. Moreover, in dynamic scenarios, we show that the
Doppler shift contributes additional direction information, with
intensity determined by the agent velocity and the root mean
squared time duration of the transmitted signal. In addition, two
measures are proposed to evaluate the localization performance
of wireless networks with different anchor-agent and array-
antenna geometries, and both formulae and simulations are
provided for typical anchor deployments and antenna arrays.

Index Terms— Array localization, Cramér-Rao bound,
Doppler shift, geometric property, TOA/AOA, wireless network
localization.
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I. INTRODUCTION

LOCALIZATION is of great importance with a wide
variety of civil and military applications such as navi-

gation, mobile network services, autonomous vehicles, social
networking, and seeking and targeting people [1]–[10]. The
global positioning system (GPS) is the most prominent tech-
nology to provide location-aware services, but its effectiveness
is severely degraded in harsh environments, e.g., in buildings,
urban canyons and undergrounds [1]–[3]. Localization using a
wireless network is a feasible alternative to overcome the GPS
limitation since location information can be obtained with the
aid of a network that consists of anchor nodes with known
position and agent nodes aiming to estimate self positions.

Typically, a localization task is achieved by the radio com-
munications between anchors and agents, which are equipping
with a single antenna or an antenna array. By pro-
cessing the received signals, relevant signal metrics can be
extracted for localization, for example, time-of-arrival (TOA)
[11]–[14], time-difference-of-arrival (TDOA) [15]–[17], angle-
of-arrival (AOA) [18]–[21], and received signal strength (RSS)
[22]–[24]. Among these signal metrics, TOA and AOA are
the two widely used in practice. TOA is a time-based metric
obtained via measuring the signal propagation time between
the anchor and agent; then the distance measurements translate
to location information by trilateration [25]. AOA is a metric
characterizing the arriving direction of the signal at the agent,
and it can be obtained using an array of antennas and spatial
filtering; then the angle measurements translate to location
information by triangulation [18]. Techniques using a combi-
nation of these signal metrics, such as many hybrid TOA/AOA
systems, have also been studied in literature [17], [26].

In practical scenarios, the transceived signals encounter non-
ideal phenomena such as noise, fading, shadowing, multipath
(signal reaches the receiver via multiple paths due to reflection)
and non-line-of-sight (NLOS) propagation (the first arriving
signal does not travel on a straight line) [8], and therefore the
location estimates are subject to uncertainty. In the interest
of system design and operation, it is important to know the
best attainable localization accuracy and the corresponding
approaches to achieve such accuracy, which can be rephrased
as obtaining the lower bound for localization errors and the
achievability result in the language of information theory.
For example, in designing the energy-efficient location-aware
networks, attainable localization accuracy can be a meaningful
performance objective to optimize [27]–[33]. To evaluate
the localization performance in the presence of uncertainty,
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some studies consider specific systems that employ certain
signal metrics extracted from the received waveforms, e.g., the
time delay or the angle, and then determine the localization
error based on the joint distribution of these metrics [18], [19].
However, the extracted metrics may discard useful infor-
mation for localization, resulting in suboptimal localization
performance. To address this issue, recent studies directly
utilize the received waveforms [3], [17] to exploit all relevant
information and derive fundamental limits for localization
accuracy. For this purpose, the most commonly used tool is the
Cramér-Rao lower bound (CRLB) [17]–[19], [34], [35] due
to its intriguing property in asymptotic statistics [36] in
the sense of the Hájek convolution theorem [37] and the
Hájek-Le Cam local asymptotic minimax theorem [38], though
some other bounds such as the Barankin bound [39] and
Ziv-Zakai bound [40] are also used.

For general wideband systems, the fundamental limits of
localization accuracy for a single agent has been obtained
in [3] in terms of the CRLB, which are generalized to a
cooperative framework with multiple agents [34]. Moreover,
it has been shown in [3] that AOA measurements obtained
by wideband antenna arrays do not further improve position
accuracy beyond that provided by TOA measurements, which
implies that it suffices to use TOA measurements in wideband
systems. However, the approaches developed for wideband
systems are not applicable to commonly used modulation-
based communication systems, because those systems
modulate a baseband signal onto a carrier frequency with an
unknown initial phase [41]–[44]. Consequently, unlike wide-
band systems, not the entire passband signals can be used for
TOA measurements due to the unknown phase in modulation-
based communication systems. Nevertheless, in far-field envi-
ronments, by using an antenna array, the carrier phases can be
exploited for AOA measurements to improve the localization
as widely recognized [8]. These inherent differences from
wideband systems call for a comprehensive investigation for
the performance limits of localization accuracy in general
wireless localization systems with antenna arrays.

In dynamic scenarios that involve moving objects, the
localization or tracking accuracy can be characterized by the
Posterior CRLB (PCRLB) [45]–[47]. Since the derivation of
PCRLB relies on multiple snapshots and measurable uncer-
tainties of both observations and hidden states of time-varying
locations, the instantaneous localization error of the mobile
user is required as an input of PCRLB. To obtain the instanta-
neous localization error in the dynamic scenario, the Doppler
shift may be favored as another source for localization in
addition to the TOA and AOA measurements. Most existing
research treats the Doppler shift as the frequency-shift solely
on the carrier frequency and obtain the performance bounds
accordingly [42]–[44], whereas the effects of Doppler shift
on the baseband signal are simply neglected. Moreover, the
accuracy limit of navigation in general wireless networks has
only been obtained in the form of block matrices without
considering Doppler shift [47]. The effect of Doppler shift
to the localization information still remains under-explored.

Upon obtaining the localization accuracy, a natural ques-
tion arises concerning the optimal geometry when deploying

anchors and designing antenna arrays. A few studies have opti-
mized the anchor-agent geometry by minimizing the condition
number of the visibility matrix [48], [49], while some others
focused on a CRLB-related cost [50]–[53], where the anchor-
agent geometry is optimized in an isotropic source localization.
In [54], the array-antenna geometry was also studied jointly
with the anchor-agent geometry, and it is proven optimal to
place anchors and antennas symmetrically on two circles,
respectively. However, existing studies do not provide simple
measures to compare two arbitrary geometric structures.

In this paper, we develop a general array localization
system with Doppler shifts and use the CRLB to determine
the performance limits of localization accuracy in a far-field
environment. We also propose two measures to characterize
the impact of the anchor-agent and array-antenna geometry on
localization accuracy. In particular, we highlight the difference
of our model and the wideband model in [3] by introducing
the carrier frequency with unknown initial phases in the
localization problem. The main contributions are as follows.

• We derive the performance limits of localization accuracy
for a static agent equipped with an antenna array in terms
of the equivalent Fisher information matrix (EFIM). The
EFIM can be decomposed as a weighed sum of mea-
suring information matrices, where each matrix contains
both distance and direction information with intensities
determined by the corresponding anchor-antenna mea-
surement pair. Moreover, we show that the direction part
can provide dominant information for localization for
narrowband signals.

• We derive the performance limits of localization accuracy
for a moving agent equipped with an antenna array
in terms of the EFIM. The Doppler shift is shown to
contribute to the direction information with intensity
associated with the root mean squared time duration of
the transmitted signal, and its contribution to the direction
information can be more significant than that of the
antenna array.

• We propose two measures, i.e., the squared array aper-
ture function and anchor geometric factors, to quantify
the effects of anchor-agent geometry and array-antenna
geometry on localization, respectively, and give the opti-
mal geometric design of the anchor and antenna locations.

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the location
estimation problem. In Section III, we derive the squared
position error bound (SPEB) using EFIM for a static agent,
and Section IV generalizes the results for a moving agent.
Based on the SPEB and the EFIM, Section V quantifies the
impact of the anchor-agent and array-antenna geometries with
some examples. Numerical results are given in Section VI, and
conclusions are drawn in Section VII.

Notation: We use upper and lower case boldface to denote
matrices and vectors, respectively; f ∗(x) and f ′(x) denote
the complex conjugate and the first-order derivative of f (x),
respectively; �{z} and �{z} denote the real and imaginary
part of a complex number z, respectively; Ex{·} denotes the
expectation operator with respect to the random vector x;
A � B denotes the Löwner semiorder of matrices which means
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Fig. 1. System model: Nb anchors with known position and one agent with an Na-antenna array characterized by a reference point and orientation ψ . The
angle of the k-th antenna to the reference point is the sum of the original individual angle of this antenna ψk and the array orientation ψ .

that A − B is positive semi-definite; tr{A}, AT, AH and A−1

denote the trace, the transpose, the conjugate transpose and the
inverse of matrix A; [·]r1:r2,c1:c2 denotes a submatrix composed
of the rows r1 to r2 and the columns c1 to c2 of its argument;
‖ · ‖ denotes the Euclidean norm of its argument; x � y
denotes that y > 0 and |x/y| is a negligible number far less
than 1, and A � B denotes that xHAx � xHBx for any
complex column vector x (implying that B is positive definite);
x ∼= y denotes that |x − y| � max{|x |, |y|}; R

n (Cn) and S
n++

denote the n-dimensional real (complex) vector space and the
set of all n×n complex positive definite matrices, respectively.

The notations of frequently-used symbols are listed as
follows.

Nb, Na number of anchors and antennas
p j = (x j , y j ) position of anchor j
p = (x, y) position of the reference point
pArray

k = (xArray
k , yArray

k ) position of the k-th antenna
dk, ψk distance and direction of the k-th

antenna to the reference point
NL,NNL set of anchors with line-of-sight

(LOS) and NLOS to agent
ψ,ψd array orientation and moving

direction of the agent
D j , φ j , τ j distance, direction and signal

propagation time from anchor j
to the agent

c, v, vr � v/c propagation speed of the signal,
speed and relative speed of the
agent

τ,pτ reference time and corresponding
position of the reference point

ξ j initial carrier phase of the
transmitted signal from anchor j

L j number of multipath components
(MPCs) from anchor j to the
agent

α
(l)
j , b(l)j , γ

(l)
j channel gain, range bias and

arrival-angle bias from anchor j
to the agent via
l-th path

τ
(l)
j k signal propagation time from

anchor j to the k-th antenna via l-th path
[ 0, Tob) observation time interval
s(t), s0(t) the entire and the baseband signal
S( f ), S0( f ) Fourier Transform of s(t), s0(t)
r jk(t) received waveform at antenna k

from anchor j
β, fc, γ effective baseband bandwidth,

carrier frequency, and
baseband-carrier correlation (BCC)

Jθ , Je(θ) Fisher information matrix (FIM)
and EFIM w.r.t. parameter θ

Jr(φ) ranging direction matrix (RDM)
with direction φ

N0 spectral density of noise
SNR(l)j received signal-to-noise ratio (SNR)

in l-th path from anchor j
θV

j k, ω j visual angle and its angular
speed from antenna k to anchor j

λ j , χ j information intensity and path
overlap coefficient (POC) from anchor j

trms root mean squared time duration
G(θ) squared array aperture function (SAAF)

II. SYSTEM MODEL

This section presents a detailed description of the system
models and formulates the location estimation problem. Two
scenarios are considered in this work: the static scenario in
which the agent is stationary, and the dynamic scenario in
which the agent is moving.

A. Static Scenario

Consider a 2-D wireless network with Nb anchors and one
static agent equipped with a rigid antenna array consisting of
Na elements (see Fig. 1). Anchors have perfect knowledge
of their positions, denoted by p j = (x j , y j ) ∈ R

2, where
j ∈ Nb = {1, 2, . . . , Nb} is the set of all anchors. The
agent aims to estimate its self-position based on the received



HAN et al.: PERFORMANCE LIMITS AND GEOMETRIC PROPERTIES OF ARRAY LOCALIZATION 1057

waveforms obtained by its Na array-antennas from all anchors,
and pArray

k = (xArray
k , yArray

k ) ∈ R
2 denotes the position of

k-th antenna in the array where k ∈ {1, 2, . . . , Na}.
The array rigidity implies that it has exactly three degrees

of freedom, i.e., translations and rotation, and hence it
can be characterized by a predetermined reference point
p = (x, y) and an orientation ψ . Then, by denoting the
distance between the reference point and k-th antenna by dk ,
and the direction (relative to oreintation) from the reference
point to k-th antenna by ψk , we can express the position of
each antenna as

pArray
k = p + dk

[
cos(ψ + ψk)
sin(ψ + ψk)

]
. (1)

This work focuses on far-field enviroments, where the
distances between anchors and the agent are sufficiently larger
than the array dimension so that (i) the angles from each
anchor to all array-antennas are identical and (ii) the channel
properties from each anchor to all array-antennas are identical,
e.g., the same SNR. Moreover, the phase differences between
received signals in adjacent antennas are assumed to be less
than 2π so that there is no periodic phase ambiguity (i.e., the
array element spacing is smaller than the signal wavelength).
We write the propagation time delay and the direction from
anchor j to the agent (the reference point) as

τ j � D j

c
� ‖p j − p‖

c
, φ j � arctan

y − y j

x − x j
(2)

respectively, where c is the propagation speed of the signal.
As for the signal model, we consider that anchor j transmits

a known signal

s(t) = s0(t) exp( j2π fct + ξ j ) (3)

to the agent, where the signal is formed by the quadrature
modulation that consists of the baseband signal (also called
the complex envelope) s0(t), the carrier wave with central
frequency fc, and the initial carrier phase ξ j .1 In practical
modulation systems, the initial carrier phase ξ j is usually
unknown, and hence we model ξ j as an unknown parameter
in this work.

Our channel model considers both multipath and NLOS
propagation phenomena. Specifically, Nb = NL ∪NNL, where
NL denotes the set of anchors providing LOS signals and
NNL for those providing NLOS signals. Together with the
transmitted signal given in (3), the received waveform at k-th
antenna from anchor j can be written as [3], [43]

r jk(t)

=
L j∑

l=1

α
(l)
j · √2�

{
s0(t − τ

(l)
j k )×exp

(
j (2π fc(t−τ (l)j k )+ξ j )

)}

+z jk(t), t ∈ [ 0, Tob) (4)

where α(l)j ∈ R and τ (l)j k are the amplitude and delay of the l-th
path, respectively, and L j is the number of MPCs, z jk(t) rep-
resents the real observation noise modeled as additive white

1The quadrature demodulation requires that the baseband signal s0(t) be
bandlimited by fc, i.e., S0( f ) = 0 for all | f | ≥ fc, where S0( f ) is the
Fourier Transform of s0(t).

Fig. 2. System model for a moving agent. The agent equipped with an
antenna array moves at a constant speed v along the direction ψd.

Gaussian noise (AWGN) with two-side power spectral density
N0/2, and [ 0, Tob) is the observation time interval. In far-
field environments, by geometry (as shown in Fig. 1) the time
delays can be written as

τ
(l)
j k = τ j + −dk cos((φ j − ψ + γ

(l)
j )− ψk)+ b(l)j

c
(5)

where γ (l)j ∈ [−π, π] and b(l)j ≥ 0 are the arrival-angle bias
and range bias of the l-th path, respectively. In particular, for
the first path of a LOS signal, we have

b(1)j = 0 and γ
(1)
j = 0, j ∈ NL (6)

and otherwise the range biases b(l)j are positive and the arrival-
angle biases can be between −π to π . Note also that in
far-field environments, the multipath parameters L j , α

(l)
j , b(l)j

and γ (l)j do not depend on the choice of the antenna element k.
Remark 1: Intuitively speaking, when the initial phase ξ j is

unknown, the time delays or TOA information τ j is completely
corrupted in the carrier phase, and hence only the baseband
part can be utilized for obtaining the distance information.
Nevertheless, the phase differences between different antennas
can cancel out the unknown parameter ξ j , leading to useful
information about φ j but not τ j . Hence, the direction informa-
tion can be retrieved from the carrier phases of antennas. This
constitutes the key difference from the wideband model in [3]
which assumes the initial carrier phases be precisely known
and consequently both the distance and direction information
can be extracted from the carrier phases.

Throughout this paper, we consider the case where there is
no a priori knowledge about the parameters, i.e., all unknown
parameters are deterministic and non-Bayesian approaches are
used.

B. Dynamic Scenario

Built upon the static scenario, we further consider a system
model for the dynamic scenario in which the agent is moving
at a constant speed v along direction ψd throughout the
observation time (see Fig. 2). Denote the position of reference
point at reference time τ by pτ , then the position of the
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k-th antenna at time t can be written as

pArray
k (t) = pτ + dk

[
cos(ψ + ψk)
sin(ψ + ψk)

]
+ v(t − τ )

[
cosψd
sinψd

]
.

(7)

We still consider far-field environments where the angle
from each anchor to all antennas and channel properties
(e.g., fading gains and multipath delays) remain time-invariant
throughout the observation time.2 Then, similar to (4),
the received waveform can be expressed as

r jk(t)=
L j∑

l=1

α
(l)
j

· √2�
{
s0
(
t−τ (l)j k (t)

)×exp
(

j (2π fc(t−τ (l)j k (t))+ξ j )
)}

+ z jk(t), t ∈ [ 0, Tob) (8)

where the time-variant path delay by the Doppler effect is
given by

τ
(l)
j k (t) = ‖p j − pτ‖ − dk cos(φ j + γ

(l)
j − ψ − ψk)+ b(l)j

c(1 − vr cos(φ j + γ
(l)
j − ψd))

− (t − τ )vr cos(φ j + γ
(l)
j − ψd)

1 − vr cos(φ j + γ
(l)
j − ψd)

(9)

in which vr � v/c denotes the relative speed.
Different from the static scenario, we need to introduce two

assumptions to simplify the expressions of the main results.
Assumption 1 (Narrowband Signal): The baseband sig-

nal s0(t) is bandlimited by B , i.e., S0( f ) = 0 for all | f | > B .
Furthermore, B � fc.

Remark 2: In the dynamic scenario we assume the nar-
rowband signal, while in the static scenario only B ≤ fc is
required for the quadrature demodulation.

Assumption 2 (Balanced Phase): The baseband sig-
nal s0(t) has a balanced phase, i.e.,

∫ ∞

−∞
f |S0( f )|2φ′( f )d f = 0 (10)

where S0( f ) = |S0( f )| exp( jφ( f )).
Remark 3: Assumption 2 holds for signals of the form

s0(t) = ∑
n ang(t − nT ), which is typical in communications

given a white stationary ergodic source {an} and the same
filter g(t) used in I–Q two–way modulation, or for signals with
constant envelope modulation and random phase uniformly
distributed in [0, 2π). Moreover, note that Assumption 2 is
only used for obtaining a simplified result, while the informa-
tion structure for localization does not rely on this assumption.

2This model is valid when Tob � Tco, where Tco is the channel coher-
ence time. Since Tco ∝ c/ fcv [55], the preceding condition translates to
v Tob � c/ fc, which holds for general practical settings, e.g., v = 30 m/s,
fc = 2.5 GHz and Tob = 1 ms for an LTE example, or fc = 1.8 GHz,
Tob = 0.6 ms for a GSM example. Moreover, if we replace Tob with the
effective observation time, which is ∼1/B by the time-frequency duality
(cf. Assumption 1 for the definition of B), the previous condition can be
written as v/c � B/ fc, which usually holds in practice.

C. Location Estimation and Error Bounds

From a statistical inference perspective, a well-formulated
estimation problem involves a parameter set, a statistical exper-
iment, and the random variables generated by this experiment.
According to the system setting, the parameter vector θ to be
estimated is given by

θ = [
pT ψ ψd v κT

1 κT
2 · · · κT

Nb

]T (11)

where

κ j = [
ξ j κ

(1)T
j κ

(2)T
j · · · κ

(L j )T
j

]T (12)

κ
(l)
j �

{[
Para(γ (1)j ) Para(b(1)j ) α

(1)
j

]T
l = 1,[

γ
(l)
j b(l)j α

(l)
j

]T
l > 1.

(13)

and Para(x j ) denotes ∅ if j ∈ NL and x j elsewhere. The
random variable r generated by our statistical experiment is
the vector representation of all the received waveforms r j k

obtained from the Karhunen-Loeve expansion of r jk(t), and
this statistical experiment can be characterized into the log-
likelihood function shown as

ln f (r|θ) = − 1

N0

Nb∑
j=1

Na∑
k=1

∫ Tob

0

∣∣∣r jk(t)−
L j∑

l=1

α
(l)
j

×√
2�
{

s0
(
t − τ

(l)
j k

)
exp

(
j (2π fc(t − τ

(l)
j k )+ ξ j )

)} ∣∣∣2dt

(14)

up to an additive constant. Hence, the estimation problem is to
estimate the parameter θ from the observation r according to
the known parameterized probability distribution in (14). Note
that the received waveforms from different anchors can be
perfectly separated at the agent due to some implicit multiple
access mechanism, but we remark that our estimation problem
and thus the error bounds do not depend on the specific
mechanism.3

Based on (14), to derive an error bound for this estimation
problem, we recall the notion of FIM defined as

Jθ = Er

{(
∂

∂θ
ln f (r|θ)

)(
∂

∂θ
ln f (r|θ)

)T
}
. (15)

The well-known information inequality asserts that, for any
unbiased estimator θ̂ for θ , we have Er{(θ̂ − θ)(θ̂ − θ)T} �
J−1
θ

[56]. It follows that if p̂ is an unbiased estimator for
p, then

Er
{‖p̂ − p‖2} ≥ tr

{[J−1
θ ]1:2,1:2

}
. (16)

The right-hand side of (16) is defined as the SPEB,
cf. [3, Definition 1]. To avoid inverting the FIM with
large dimensions, we also adopt the notion of EFIM in
[3, Definition 2], where the EFIM for the first n components

3For example, in both static and dynamic scenarios, for the time-division
mechanism the likelihood function in (14) remains the same, and for the
frequency-division or the code-division mechanism it suffices to use dif-
ferent down-conversion frequencies fc, j (for FDMA) or different baseband
signals s0, j (t) (for CDMA) for the waveforms from different anchors.
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of θ is defined as Je(θ1:n) = A − BC−1BT, where the original
FIM for θ ∈ R

N is expressed as

Jθ =
[

An×n Bn×(N−n)
BT
(N−n)×n C(N−n)×(N−n)

]
. (17)

The EFIM retains all the necessary information to derive
the information inequality for the parameter vector θ1:n , in the
sense that [Je(θ1:n)]−1 = [J−1

θ
]1:n,1:n according to the Schur

complement theory.

III. LOCALIZATION ACCURACY IN THE STATIC SCENARIO

This section determines the localization accuracy in terms of
the SPEB and EFIM in the static scenario, and highlights the
role that the knowledge of the phase ξ j and array orientation ψ
plays in the reduction of localization errors. For notational
convenience, we define g(q) � qqT and adopt the notion of
RDM [3, Definition 4] given by

Jr(φ) � g
([

cosφ
sin φ

])
=
[

cosφ
sin φ

] [
cosφ
sin φ

]T

. (18)

A. Equivalent Complex Passband Signal Model

For the ease of FIM derivation, one may want to remove
the �{·} operator and favor the following complex passband
signal model

r̃ j k(t) =
L j∑

l=1

α
(l)
j s0(t − τ

(l)
j k ) exp

(
j (2π fc(t − τ

(l)
j k )+ ξ j )

)

+ z̃ j k(t), t ∈ [ 0, Tob) (19)

where {z̃ j k(t), t ∈ [ 0, Tob)} is the complex observation noise
with both real and imaginary components following the same
distribution as {z jk(t), t ∈ [ 0, Tob)}, and all other parameters
remain the same as those in (4). Then, the corresponding log-
likelihood function becomes

ln f (r̃|θ) = − 1

N0

Nb∑
j=1

Na∑
k=1

∫ Tob

0

∣∣∣r̃ j k(t)−
L j∑

l=1

α
(l)
j

× s0
(
t − τ

(l)
j k

)
exp

(
j (2π fc(t − τ

(l)
j k )+ ξ j )

)∣∣∣2dt

(20)

up to an additive constant. We next show that in the deriva-
tion of the FIM, the complex passband signal model given
by (19) and (20) are equivalent to the real passband signal
model in (4) and (14).

Proposition 1 (Equivalent Passband Model): If the base-
band signal s0(t) is bandlimited by fc, the log-likelihood
functions (14) and (20) generate the same FIM.

Proof: See Appendix I-A. �
Remark 4: In fact, when B ≤ fc, we can prove a stronger

result than Proposition 1: the statistical experiments given
by (4) and (19) are equivalent in terms of a vanishing
Le Cam’s distance [57]. As a result, for any loss function
and any estimator θ̂1 for θ in one model, there exists an
estimator θ̂2 in the other model which has the identical risk
as θ̂1 under any realization of the parameter θ . We omit the
proof here, but point out that the key step is to prove that the

random vector r obtained via (4) and r̃ obtained via (19) are
mutual randomizations with the help of the Hilbert transform.

We recall that B ≤ fc is a natural condition required by the
quadrature demodulation. Hence, in the sequel we will stick
to the complex observation model (19) and the log-likelihood
function (20).

Before presenting the main results in following sections, we
first define a few important metrics.

Definition 1 (Effective Baseband Bandwidth [56] and
Baseband-Carrier Correlation): The effective baseband band-
width and the baseband-carrier correlation (BCC) of s0(t) are
defined respectively as

β �
(∫∞

−∞ f 2|S0( f )|2d f∫∞
−∞ |S0( f )|2d f

) 1
2

(21)

and

γ �
∫∞
−∞ f |S0( f )|2d f

(∫∞
−∞ |S0( f )|2d f

) 1
2
(∫∞

−∞ f 2|S0( f )|2d f
) 1

2

. (22)

Definition 2 (Squared Array Aperture Function): The
squared array aperture function (SAAF) for an array is defined
as

G(θ) � 1

N2
a

∑
1≤k<l≤Na

(
dk sin(θ − ψk)− dl sin(θ − ψl)

)2
.

(23)
Remark 5: The SAAF G(θ) is the effective array aperture

observed from incident the angle θ , and fully quantifies the
effect of array-antenna geometry on localization, as will be
shown in Section V.

B. Case With Known Array Orientation and Initial Phase

We first consider the case where both the array orientationψ
and the initial phase ξ j are known. This scenario reduces to
the wideband case studied in [3] in the far-field environment.
The results are given in the following theorem.

Theorem 1 (Full-Knowledge Static EFIM): When both the
array orientation and the initial phase are known, the EFIM
for the position is

Je(p) =
∑
j∈NL

Na∑
k=1

λ j (β
2 + f 2

c + 2γβ fc)Jr(φ j + θV
j k) (24)

where θV
j k is the visual angle expressed as

θV
j k � dk sin(φ j − ψ − ψk)

D j
(25)

and

λ j �
8π2SNR(1)j (1 − χ j )

c2 (26)

with the path-overlap coefficient (POC) χ j ∈ [0, 1] defined
in [3, Th. 1] and the SNR SNR(l)j given by

SNR(l)j �
|α(l)j |2

N0

∫ ∞

−∞
|S0( f )|2d f . (27)

Proof: See Appendix I-B. �
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Theorem 1 implies that in the full knowledge case, the EFIM
for the position is a weighed sum of the RDM from each
anchor-antenna pair, with direction φ j + θV

j k (i.e., from anchor
j to the k-th antenna, cf. Fig. 3) and intensity λ j (β

2 + f 2
c +

2γβ fc). Hence, each anchor-antenna pair provides distance
information for localization, which sums up to the overall
localization information. We also have the following obser-
vations.

• The support of the intensity λ j is NL, which means
that the anchors providing NLOS signal are not useful
for localization, for the actual distance and direction are
completely corrupted by the first range bias b(1)j and first

arrival-angle bias γ (1)j , respectively.
• The intensity λ j depends on the SNR of the first path

and the POC χ j , which characterizes the effect of mul-
tipath propagation for localization. It is shown in [3]
that χ j is determined by the first contiguous cluster
(cf. [3, Definition 3]) of the received waveform and does
not depend on the path amplitudes α(l)j , and χ j = 0 when
the signal of the first coming path from anchor j does
not overlap with those of other paths. Moreover, the POC
χ j is solely determined by the autocorrelation function of
the baseband signal s0(t), the carrier frequency fc, and

channel parameters α(l)j , b(l)j and γ (l)j , 1 ≤ l ≤ L j .
• The β2 + f 2

c + 2γβ fc term is the squared effective
bandwidth of the entire signal s(t) [3], which means that
the entire bandwidth can be utilized for localization in
the full knowledge case.

Hence, the localization performance for the full knowledge
case reduces to the wideband case [3], and AOA measurements
obtained by antenna arrays do not further improve position
accuracy beyond that provided by TOA measurements.

C. Case With Known Array Orientation
But Unknown Initial Phase

We now turn to the case in which the orientation ψ is
known but not the initial phase ξ j . Theorem 2 derives the
corresponding localization information.

Theorem 2 (Orientation-Known Static EFIM): When the
array orientation is known but the initial phase is unknown,
the EFIM for the position is

Je(p) =
∑
j∈NL

λ j

(
(1 − γ 2)β2

Na∑
k=1

Jr(φ j + θV
j k)

+ (γβ + fc)
2

Na

∑
1≤k<l≤Na

(θV
j k − θV

j l)
2Jr
(
φ j + π

2

))

(28)

which yields an equivalent expression in terms of the SAAF
G(θ) as

Je(p) =
∑
j∈NL

λ j

(
(1 − γ 2)β2

Na∑
k=1

Jr(φ j + θV
j k)

+ Na(γβ + fc)
2G(φ j − ψ)

D2
j

Jr
(
φ j + π

2

))
. (29)

Fig. 3. Illustration for the localization information ellipse formed by distance
information and direction information in the case of γ = 0. The ellipse differs
in shape as β or fc varies.

Proof: See Appendix I-C. �
In far-field environments, we have θV

j k � 1 and thus the
following approximation for the EFIM given by (29).

Corollary 1: If θV
j k � 1, the EFIM for the position in

Theorem 2 can be approximated as

Je(p) =
∑
j∈NL

λ j

(
(1 − γ 2)β2

Na∑
k=1

Jr(φ j )

+ Na(γβ + fc)
2G(φ j − ψ)

D2
j

Jr
(
φ j + π

2

))
. (30)

Note that the expression given by (30) does not depend on
the reference point p, and hence we can have the following
alternative expression of (30) when the array center is chosen
as the reference point.

Corollary 2: When the array center is chosen as the refer-
ence point, the EFIM in (30) becomes

Je(p) =
∑
j∈NL

Na∑
k=1

λ j
(
(1 − γ 2)β2Jr(φ j )

+ (γβ + fc)
2(θV

j k)
2Jr(φ j + π

2
)
)
. (31)

Based on the expression of EFIM given in (31), some
observations and insights can be drawn as follows.

1) Distance Information: the Jr(φ j ) term is the mea-
suring information for distance, with intensity proportional
to (1 − γ 2)β2 and direction along the radial angle φ j

to anchor j , i.e., from anchor j to the reference point
(see Fig. 3). Hence, this term is the information from TOA
and provides localization information with direction towards
the agent, and only the baseband signal can contribute to
TOA information.

2) Direction Information: the Jr(φ j + π
2 ) term corresponds

to the measuring information for direction, i.e., from AOA, and
has a tangent direction to anchor j (the direction perpendicular
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to that connecting anchor j and the reference point; see Fig. 3).
The intensity of this term consists of two parts. The first part
θV

j k is the visual angle of the effective aperture for k-th antenna
observed from anchor j , and the second part γβ + fc is the
effective carrier frequency. As a system-level interpretation,
assuming γ = 0 for simplicity, the intensity scaled by c−2,
i.e., (θV

j k fc/c)2, is the squared visual angle normalized by
the wavelength. Hence, the AOA information can be retrieved
from the effective carrier frequency.

3) Geometric Interpretation: the EFIM Je(p) is a weighed
sum of measuring information from each anchor-antenna
pair, where each pair provides information in two orthogonal
directions summing up to the entire localization information
(depicted as an ellipse in Fig. 3). Note that

β2 + f 2
c + 2γβ fc = (1 − γ 2)β2 + (γβ + fc)

2 (32)

and we conclude by Theorem 1 and 2 that, in wideband
cases [3] the effective bandwidth of the entire signal can be
used for obtaining both distance and direction information,
while in our model the overall bandwidth is decomposed into
two parts, i.e., baseband signal for distance information and
carrier frequency for direction information. In particular, AOA
information can make significant contributions to localization
accuracy beyond that obtained by TOA measurements in our
model.

Moreover, the direction of the major axis of ellipse
depends on whether θV

j k fc ≷ β. In traditional TOA systems,

β is comparable to fc, and hence the distance information
dominates since θV

j k � 1 (due to far-field environments).
In contrast, in traditional AOA systems, fc � β, and hence the
direction information dominates. In practice, since dk ∼= c/ fc
holds, the criterion becomes c ≷ βD j . For example, when
β ∼= 1 MHz, the dominance of the direction information
requires D j � 300m, conforming to the fact that AOA
information is more effective in short-distance localization.

Now we discuss some properties of the BCC γ ∈
[−1, 1], which characterizes the extent how close is the base-
band signal s0(t) to a single-frequency signal. For example,
γ = ±1 implies s0(t) = exp(± j2πβt + φ), and thus the
entire baseband signal contributes to the AOA information
and we cannot extract any TOA information from s(t) =
s0(t) exp( j2π fct). On the other hand, when γ = 0 (equivalent
to
∫

f |S0( f )|2d f = 0), the entire baseband signal can be
utilized for obtaining the TOA information.

Without loss of generality, we will assume γ = 0 in the
following sections, since otherwise we can always substi-
tute the baseband signal and carrier frequency by s̃0(t) =
s0(t) exp(− j2πγβt) and f̃c = fc + γβ.

D. Case With Unknown Array Orientation and Initial Phase

We next consider the case in which the array orientation ψ
also becomes an unknown parameter to be estimated. Similar
to Theorem 2, the EFIM for the position and orientation is
derived accordingly.

Theorem 3 (Orientation-Unknown Static EFIM): When
neither the initial phase nor the array orientation is known,
the EFIM for the position and orientation is

Je({p, ψ}) =
∑
j∈NL

Na∑
k=1

λ jβ
2g

⎛
⎜⎝
⎡
⎢⎣

cos(φ j + θV
j k)

sin(φ j + θV
j k)

−D jθ
V
j k

⎤
⎥⎦
⎞
⎟⎠

+λ j Na f 2
c G(φ j − ψ)

D2
j

g

⎛
⎝
⎡
⎣− sin φ j

cosφ j

−D j

⎤
⎦
⎞
⎠. (33)

Proof: See Appendix I-D. �
Corollary 3: If θV

j k � 1, the EFIM for the position in the
orientation-unknown case can be approximated as (34), shown
at the bottom of this page, where Je(p) is given by (30).

Proof: Equations (34) follows directly from (33), θV
j k � 1,

and the definition of EFIM. �
Theorem 3 claims that the EFIM for the position and

orientation is also a weighed matrix sum of measuring infor-
mation from each anchor-antenna pair, and thus the overall
localization information in the orientation-unknown case pos-
sesses a similar structure. Moreover, since Je(p) − Jun

e (p) is
positive semi-definite, the unknown orientation degrades the
localization accuracy.

Note that the approximated EFIM Jun
e (p) for the orientation-

unknown case still does not depend on the reference point p,
which seems contradictory to the wideband case in [3]. How-
ever, we remark that the invariance of Jun

e (p) on p in far-field
enviroments is due to the fact that the AOA information does
not rely on p, and the θV

j k term can be neglected in the TOA
information.

IV. LOCALIZATION ACCURACY

IN THE DYNAMIC SCENARIO

As is shown in the preceding section, the time-invariant
delays between anchor-antenna pairs are all the sources of
localization information in the static scenario. In this section,
we turn to the dynamic scenario where the Doppler effect can
be utilized in addition to the TOA and AOA measurements for
localization.

A. Case With Known Orientation and Velocity

We first consider the scenario in which both the velocity
and orientation of the antenna array are known. This scenario
is relevant in practice, as the agent can obtain its velocity and

Jun
e (p) = Je(p)− Na f 2

c∑
j∈NL

λ j G(φ j − ψ)
g
( ∑

j∈NL

λ j G(φ j − ψ)

D j

[− sin φ j

cosφ j

])

=
∑
j∈NL

Naλ jβ
2Jr(φ j )+ Na f 2

c

∑
i, j∈NL

λiλ j G(φi − ψ)G(φ j − ψ)

2
∑

k∈NL
λk G(φk − ψ)

g
(

1

Di

[− sin φi

cosφi

]
− 1

D j

[− sin φ j

cosφ j

])
(34)
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orientation locally, e.g., by a compass and accelerometer. Note
that in the dynamic scenario, Assumptions 1 and 2 are needed
to simplify the expressions of the EFIM, as shown in the next
theorem.

Theorem 4 (Orientation- and Velocity-Known Moving
EFIM): The EFIM for the position is

Je(pτ ) =
∑
j∈NL

[
A1 j Jr(φ j )+ A2 j Jr(φ j + π

2
)

+ A3 j
(
Jr(φ j + π

4
)− Jr(φ j − π

4
)
)]

(35)

where A1 j , A2 j , A3 j are given by (78), (77) and (87), respec-
tively. Furthermore, under Assumption 1 and 2, the EFIM can
be approximated as

Je(pτ ) ∼=
∑
j∈NL

λ j Na

1 − vr cos(φ j − ψd)

[
β2Jr(φ j )

+ f 2
c

(G(φ j − ψ)

D2
j

+ ω2
j t

2
rms

)
Jr(φ j + π

2
)
]

(36)

where trms is the root mean squared time duration of the
baseband signal s0(t) defined as

trms �
∫∫

t1<t2
(t2 − t1)2|s0(t1)|2|s0(t2)|2dt1dt2(∫ |s0(t)|2dt

)2 (37)

and ω j is the angular speed of the visual angle given by

ω j � v sin(ψd − φ j )

D j
. (38)

Proof: See Appendix I-E. �
Remark 6: By the proof details given in the appendix,

we can show that the EFIM in (36) is a tight approxi-
mation up to a multiplicative approximation error less than
(1 + 3.17B/ fc)

2 − 1.
Due to the invariance of Je(pτ ) on the reference point p and

the reference time τ , similar to Corollary 2, we can choose
the array center to be the reference point and τ = 0 to be the
reference time.

Corollary 4: When the array center is chosen as the refer-
ence point and τ = 0, the EFIM in (36) becomes

Je(pτ ) ∼=
∑
j∈NL

Na∑
k=1

λ j

1 − vr cos(φ j − ψd)

[
β2Jr(φ j )

+ f 2
c

(
(θV

j k)
2 + (ω j trms)

2
)

Jr(φ j + π

2
)
]
. (39)

Some observations on the effect of Doppler shift can be
drawn from Theorem 4 and Corollay 4 as follows.

1) Intensity Effect: Compared with Theorem 2, there is
a new coefficient (1 − vr cos(φ j − ψd))

−1 on the infor-
mation intensity, which we refer to as the intensity effect
of the Doppler shift. Intuitively, the Doppler shift enlarges
both the baseband bandwidth and carrier frequency by
(1−vr cos(φ j −ψd))

−1 times, whereas the the SNR is reduced
by (1 − vr cos(φ j − ψd)) times. Hence, this new coefficient
is obtained by the fact that the EFIM for the position is
proportional to SNR times the squared bandwidth. Note that
whether the intensity effect does help or harm to localization
depends on the array orientation, but this effect is negligible

Fig. 4. Illustration for the localization information ellipse formed by distance
information and direction information. The direction information comes from
both AOA measurement and the Doppler shift.

since vr = v/c � 1. With a slight abuse of notations, we will
still denote λ j (1 − vr cos(φ j −ψd))

−1 by λ j in the following.
2) Direction Effect: The second effect of Doppler shift on

localization is the direction effect, i.e., it provides additional
direction information with intensity f 2

c ω
2
j t

2
rms. This direction

information originates from the dependence of the Doppler
shift on the direction of the anchor, and faster speed is
preferred for accumulating more direction information. Hence,
as shown in Fig. 4, the localization information can be
decomposed into the distance and direction information, where
the latter consists of two parts from AOA measurement and
Doppler shifts, respectively. In particular, the Doppler shifts
do not affect the distance information for localization.

3) Geometric Interpretation: The geometric interpretations
for the new variables ω j and trms are illustrated in Fig. 4.
The variable trms can be interpreted as the equivalent moving
time of the agent from its initial position to the final position,
and ω j trms can be viewed as a synthetic aperture formed by
the moving agent, which has the same effect as the real array
aperture. Hence, similar to the interpretation that θV

j k is the
visual angle between the reference point and k-th antenna at
any fixed time, ω j is the angular speed of the visual angle
formed by the reference points at different time. Moreover,
the overall localization information for direction is simply
the sum of the synthetic aperture and the real array aperture.
In practice, it is likely that the synthetic aperture formed by
the moving agent during the observation time is larger than
the real array aperture, and thus the Doppler effect can provide
considerably more direction information for localization in the
dynamic scenarios. Note that since trms does not depend on
the reference time τ , the localization accuracy for the agent
position remains the same at any time, which is consistent to
our intuition under the known-velocity scenario.

B. Case With Unknown Orientation and Velocity

This subsection will address scenarios in which the array
orientation, agent speed or its moving direction (possibly all)
is unknown to the agent. We first consider the case where
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Je({pτ , ψ,ψd}) ∼=
∑
j∈NL

Naλ j

⎛
⎜⎜⎝β2g

⎛
⎜⎜⎝
⎡
⎢⎢⎣

cosφ j

sin φ j

0
0

⎤
⎥⎥⎦
⎞
⎟⎟⎠+ f 2

c G(φ j − ψ)

D2
j

g

⎛
⎜⎜⎝
⎡
⎢⎢⎣

− sin φ j

cosφ j

−D j

0

⎤
⎥⎥⎦
⎞
⎟⎟⎠+ f 2

c ω
2
j t

2
rmsg

⎛
⎜⎜⎝
⎡
⎢⎢⎣

− sin φ j

cosφ j

0
−D j

⎤
⎥⎥⎦
⎞
⎟⎟⎠
⎞
⎟⎟⎠

(40)

Jun
e (p) = Na

( ∑
j∈NL

λ jβ
2Jr(φ j )+ 1

2
f 2
c

∑
i, j∈NL

λiλ j

(
G(φi − ψ)G(φ j − ψ)∑

k∈NL
λk G(φk − ψ)

+ v2t2
rms sin2(φi − ψd) sin2(φ j − ψd)∑

k∈NL
λk sin2(φk − ψd)

)

×g
(

1

Di

[− sin φi

cosφi

]
− 1

D j

[− sin φ j

cosφ j

]))
(41)

Je({pτ , ψ,ψd, v}) ∼=
∑
j∈NL

Naλ j

⎛
⎜⎜⎜⎜⎝β

2g

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

cosφ j

sin φ j

0
0
0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠+ f 2

c G(φ j − ψ)

D2
j

g

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

− sin φ j

cosφ j

−D j

0
0

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠+ f 2

c ω
2
j t

2
rmsg

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

− sin φ j

cosφ j

0
−D j

cos(φ j −ψd)
ω j

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

(42)

the agent knows its speed but not the array orientation or the
moving direction, which is practically relevant as the speed
is the only local quantity invariant with translation or rotation
among all parameters.

Theorem 5 (Orientation- and Direction-Unknown Speed-
Known Moving EFIM): Under Assumption 1 and 2, when the
agent speed is known but both the array orientation and the
moving direction are unknown, the EFIM for the position,
orientation and moving direction is given by (40), shown at
the top of this page.

Proof: Similar to the proof of Theorem 3. �
Analogous to Corollary 3, the EFIM for the position can be

derived based on (40) as follows.
Corollary 5 Given the conditions of Theorem 5, the EFIM

for the position is given by (41), shown at the top of this page.
The EFIM given by (40) in Theorem 5 implies that the

estimation of parameters ψ and ψd does not affect each
other given all other parameters. Moreover, comparing the
EFIM (41) for the dynamic scenario with (34) for the sta-
tic scenario shows that there is just an additional Doppler
term with intensity proportional to the squared time dura-
tion t2

rms, and consequently, the information decomposition
shown in Fig. 4 remains the same for the dynamic scenario.
Similar to the static scenario, the EFIM Jun

e (p) for the dynamic
scenario does not depend on the reference point p or the
reference time τ in far-field enviroments.

We close this section by presenting the EFIM when the
agent knows nothing about the orientation or velocity. The
results are summarized in the following theorem.

Theorem 6 (Orientation- and Velocity-Unknown Moving
EFIM): Under Assumption 1 and 2, when neither the array
orientation nor the agent velocity is known, the EFIM for
p, ψ,ψd and v is given by (42), shown at the top of this page.

Proof: Similar to the proof of Theorem 3. �
Compared with Theorem 5, Theorem 6 shows that the

unknown speed only contaminates the Doppler term in
the localization information, while the Doppler shift still

contributes additional information to localization compared
with the static scenario.

V. GEOMETRIC PROPERTIES IN LOCALIZATION

In the preceding sections, we have shown that the EFIM
for the position consists of three parts, i.e., the localization
information provided by TOA, Doppler shift, and AOA. Note
that all these parts depend on the geometric structure of
the anchors and agent, and the AOA information is further
dependent on the geometric structure of the antenna array.
We call these geometric structures as anchor-agent geometry
and array-antenna geometry, respectively, and characterize
their effects on the localization accuracy in this section.

A. Effects of Array-Antenna Geometry

We first investigate the array-antenna geometry as it only
affects the AOA information. Based on the EFIMs for the
position given in (36) and (41), the array-antenna geome-
try affects the localization information through the SAAF
G(θ) given in (23). In fact, in the view of traditional AOA
localization, G(θ) is exactly the squared array aperture given
the incident angle θ of the waveform. Moreover, G(θ) is
uniquely determined by the location of all antennas and fully
quantifies the effect of array-antenna geometry on localization,
i.e., different array geometries with the same G(θ) have an
identical performance on localization accuracy.

Based on the EFIM (41) in the case where we know the
speed but do not know the array orientation and moving
direction, some useful observations can be drawn accordingly:

• The EFIM consists of a distance component and a direc-
tion component, where the array-antenna geometry, the
array orientation, and the Doppler shift only affect the
direction component;

• Compared with the EFIM in (36), the missing knowledge
about the array orientation and agent moving direction
causes the information loss only in direction component;
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TABLE I

REQUIREMENTS FOR THE NUMBER OF ANCHORS AND ANTENNAS

• For two types of arrays, if G1(θ) ≥ G2(θ),∀ θ , the first
array will yield a larger EFIM than the second array
in terms of the Löwner semiorder �. Hence, roughly
speaking, arrays with larger G(θ) provide better localiza-
tion accuracy. In particular, joint signal processing among
antennas is required for obtaining AOA information since
G(θ) = 0 when Na = 1;

• The necessary conditions for an array localization system
(i.e., non-singular Je(p)) under various network parame-
ters are given in Table I, which shows the minimum
number of anchors and antennas required for localization.
We remark that the trilateration and triangulation princi-
ples also prove the sufficiency of these conditions disre-
garding the global ambiguity (i.e., two possible locations
of the agent).4 Note that the restrictions on antenna
number are relaxed in the dynamic scenario because
joint processing is not required to obtain the Doppler
information.

In summary, large SAAFs are preferred for localization,
and it requires a large array diameter, a diversified antenna
geometry, a proper incident angle, and at least two antennas.
Since the antenna geometry is of interest in the array design,
we consider the optimal array-antenna geometry given the
antenna number and the array diameter.

Definition 3 (Array Diameter): The diameter of an array is
the diameter of the smallest circle which can fully cover the
array, i.e.,

D � 2 · inf
pc∈R2

sup
1≤k≤Na

‖pc − pArray
k ‖. (43)

Before stepping further, we introduce two special types of
arrays first.

Definition 4 (UOA and UCOA): The uniformly oriented
array (UOA) is an array with x̃y = 0, x̃2 = ỹ2, where
x, y ∈ R

Na contain the x- and y-coordinates, respectively, of
all antennas in order, and we adopt the notation

ṽw � 1

N

N∑
k=1

vkwk − 1

N2

( N∑
k=1

vk

)( N∑
k=1

wk

)
(44)

for any v,w ∈ R
Na , and ṽ2 is abbreviated for ṽv. In addition,

a UOA is called a uniformly circular oriented array (UCOA),
if all antennas lie on a circle centered at the array coordinate
center.

By the preceding definition, we can rewrite the SAAF as

G(θ) = x̃2 sin2 θ + ỹ2 cos2 θ − x̃y sin 2θ (45)

4For example, two anchors can localize the agent using only the baseband
signals, and the ambiguity phenomenon can be overcome by some prior
knowledge.

and thus the SAAF for UOA and UCOA does not depend
on the incident angle θ , which will be abbreviated as
GUOA and GUCOA, respectively. Hence, UOAs possess such
a symmetry that the intensity of the direction information
obtained by a UOA is invariant with its orientation. UCOAs
are more symmetric and has the largest average SAAF, as
shown in the following proposition.

Proposition 2 (Largest Average SAAF): For any array with
diameter D, UCOAs possess the largest SAAF, i.e.,

1

2π

∫ 2π

0
G(θ)dθ ≤ D2

8
= GUCOA. (46)

Proof: See Appendix II-A. �
To obtain the optimal array-antenna geometry, we consider

two widely-used criteria, i.e., the lowest average SPEB and
the lowest worst-case SPEB, which correspond to the Bayes
estimator under the non-informative prior and the minimax
estimator in statistics, respectively. These two criteria char-
acterize the average and worst-case performance of the array
localization system over different array orientations. The next
theorem shows that, when both the array orientation and its
velocity are known, the UCOA meets these two optimality
criteria and thus is suggested to be used in practice.

Theorem 7 (Optimal Array-antenna Geometry): When
both the orientation and velocity are known, UCOA has the
lowest average and worst-case SPEB over all arrays with an
identical diameter, i.e.,

SPEBUCOA ≤ 1

2π

∫ 2π

0
SPEB(ψ)dψ ≤ sup

ψ∈[0,2π]
SPEB(ψ)

(47)

where SPEBUCOA denotes the orientation-invariant SPEB
obtained by UCOA.

Proof: See Appendix II-B. �
We next focus on two specific examples, i.e., we restrict

the array-antenna geometry to two simple but practically
useful cases: uniform linear array (ULA) and uniform circu-
lar array (UCA). A summary of all special arrays is listed
in Fig. 5.

1) ULA: In ULA, all antennas are placed on a line with

pArray
k (ψ) = p + D

Na − 1
·
(

k − Na + 1

2

) [ cosψ
sinψ

]
(48)

where p is the array coordinate center and D is the array
diameter. Then the squared array aperture function can be
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Fig. 5. Examples of special arrays, i.e., UOA, UCOA, ULA and UCA.
Triangles represent the position of antennas, and the circle refers to the
position of the reference point.

easily derived as

GULA(θ) = 1

N2
a

(
D

Na − 1

)2 ∑
1≤k<l≤Na

(k − l)2 sin2 θ

= Na + 1

12(Na − 1)
D2 sin2 θ. (49)

Hence GULA(θ) is determined by the antenna number, the
array diameter and the incident angle. Specifically, GULA(θ)
increases with the physical length of ULA and achieves its
maximum when the incident angle is perpendicular to the array
orientation. The EFIM for the position with unknown array
orientation and moving direction is given by (50), shown at
the bottom of this page.

2) UCA: In UCA, all antennas form a regular polygon with

pArray
k (ψ) = p + D

2

[
cos(ψ + 2kπ

Na
)

sin(ψ + 2kπ
Na
)

]
. (51)

To distinguish UCA with ULA, we assume that Na ≥ 3.
The SAAF is GUCA(θ) = D2/8 based on Proposition 2

and the fact that UCA is a special case of UCOA. Unlike
ULA, the SAAF of UCA is determined purely by the array
diameter and is invariant with θ . The expression for JUCA

e (p)
is given by (52), shown at the bottom of this page.

3) Comparison: Comparing the localization accuracy using
ULA and UCA based directly on (50) and (52) is complicated,
so the alternative method is to compare their SAAFs. Given
an identical diameter for these arrays, it can be shown that

GULA(θ)

GUCA(θ)
= 2(Na + 1)

3(Na − 1)
sin2 θ. (53)

If Na ≥ 5, then GUCA(θ) ≥ GULA(θ) for all incident
direction θ , which indicates that UCA always outperforms
ULA when there are more than four antennas in the array.
If Na = 3, 4, then whether GUCA(θ) ≥ GULA(θ) or not
depends on the incident direction θ . However, note that

1

2π

∫ 2π

0
GULA(θ)dθ = Na + 1

24(Na − 1)
D2 ≤ GUCA(θ) (54)

i.e., the expected GULA(θ) does not exceed GUCA(θ).
In other words, UCA outperforms ULA in average given that
the incident direction is uniformly distributed on [0, 2π). This
result confirms Proposition 2.

B. Effects of Anchor-Agent Geometry

Once the array-antenna geometry is fixed, the anchor-agent
geometry is a significant factor on the SPEB. In the following,
we neglect the trivial fact that a smaller D j is preferable
and consider only the effect of anchor-to-agent directions.
Intuitively, if all φ j ’s are close to each other, the localization
information from the radial or tangent direction will be small
(depending on the dominance between distance information
and direction information), resulting in a low localization
accuracy. On the contrary, if all φ j ’s distribute uniformly
on [0, π], higher accuracy can be expected. To find the optimal
anchor-agent geometry, we take the infimum of the SPEB over
all possible φ j ’s while fixing other variables, e.g., distances
and SNRs. The result is summarized in the following theorem.

Theorem 8 (Optimal Anchor-Agent Geometry): Given a
UOA and a static scenario, the optimal anchor-agent geometry
in the orientation-known case is given by∑

i∈NL

ui exp( j2φi) = 0 (55)

JULA
e (p) = Na

( ∑
j∈NL

λ jβ
2Jr(φ j )+ 1

2
f 2
c

∑
i, j∈NL

λiλ j

(
(Na + 1)D2

12(Na − 1)
· sin2(φi − ψ) sin2(φ j − ψ)∑

k∈NL
λk sin2(φk − ψ)

+ v2t2
rms sin2(φi − ψd) sin2(φ j − ψd)∑

k∈NL
λk sin2(φk − ψd)

)
g
(

1

Di

[− sin φi

cosφi

]
− 1

D j

[− sin φ j

cosφ j

]))
(50)

JUCA
e (p) = Na

( ∑
j∈NL

λ jβ
2Jr(φ j )+ 1

2
f 2
c

∑
i, j∈NL

λiλ j

(
D2

8
∑

k∈NL
λk

+ v2t2
rms sin2(φi − ψd) sin2(φ j − ψd)∑

k∈NL
λk sin2(φk − ψd)

)

× g
(

1

Di

[− sin φi

cosφi

]
− 1

D j

[− sin φ j

cosφ j

]))
(52)
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Fig. 6. The optimal anchor-agent geometry, where
∑

i∈NL
ui exp( j2φi ) = 0

with |NL| = 3.

where ui � λi (β
2 − f 2

c GUOA/D2
i ), while in the orientation-

unknown case, the optimal anchor-agent geometry is given by
both (55) and

∑
i∈NL

λi

Di
exp( jφi) = 0 . (56)

Proof: See Appendix II-C. �
Remark 7: In light of Theorem 7, the UOA assumption

is reasonable for the successive optimization first over the
array-antenna geometry and then over the anchor-agent geom-
etry. Note that we have also shown in the proof that the
orientation-known SPEB is a strictly increasing function of
|∑i∈NL

ui exp( j2φi)|.
We can draw the following observations from Theorem 8.

• In the static orientation-known case, the optimal choice
for φ j ’s requires that all direction vectors with different
intensities be offset by each other, cf. Fig. 6 with |NL|=3.
Hence, φ j ’s should be diversified for a high localization
accuracy.

• A special scenario occurs in the static orientation-known
case when βDi = fc

√
GUOA for some i . Under this

scenario, φi has no impact on SPEB as ui = 0,
i.e., the distance and direction information exactly offset
each other. Consequently, the measuring ellipse in Fig. 3
becomes a circle, yielding an isotropic localization with
respect to anchor direction.

• In the static scenario when the orientation is unknown,
we need an additional condition to offset the accuracy
degradation caused by unknown orientation, which is
generally achievable if there are more than three anchors
because (55) and (56) impose four constraints in total.

Note that Theorem 8 not only provides an optimality
criterion for anchor-agent geometry, but also suggests two
measures to characterize the anchor-agent geometry, i.e., the
first- and the second-type anchor geometric factors

GF1 �
∣∣∣ ∑

i∈NL

ui exp( j2φi)
∣∣∣ (57)

GF2 �
∣∣∣ ∑

i∈NL

λi

Di
exp( jφi)

∣∣∣ (58)

where GF1 fully characterizes the effect of anchor-agent geom-
etry on localization in the orientation-known case, while in the
orientation-unknown case, the second-type anchor geometric
factor GF2 needs to be introduced to characterize the perfor-
mance degradation caused by the unknown orientation.

Now we draw some connections with other existing mea-
sures such as the geometric dilution of precision (GDOP) [58].
Consider an alternative expression for the orientation-known
EFIM in (29) as Je(p) = HTC−1H, where H is a 2|NL| × 2
matrix with (2 j − 1, 2 j)-th rows expressed as

[H]2 j−1:2 j,1:2 �
[

cos θ j sin θ j

−D−1
j sin θ j D−1

j cos θ j

]
(59)

and C is a 2|NL| × 2|NL| square matrix given by

C � diag(�1,�2, · · · ,�|NL|) (60)

� j � 1

Naλ j

[
β−2 0

0 ( f 2
c GUOA)

−1

]
. (61)

If we interpret C as the covariance matrix for all dis-
tance and direction metrics (D j , φ j ), the standard GDOP
approach [59] can be applied to express the standard position-

ing error σp as σp =
√

tr
{ (

HTC−1H
)−1 }, which coincides

with the root SPEB. Moreover, if all diagonal elements of C,
i.e., the measurement errors, are assumed to be equal (denoted
by σ 2

n ), then GDOP is defined as the ratio of standard
positioning error to the measurement error

GDOP � σp

σn
=
√

tr
{ (

HTH
)−1 }

. (62)

By definition, the anchor-agent geometry with low GDOP is
geometrically preferable. The minimization of GDOP in (62)
yields

∑
i∈NL

exp( j2φi) = 0 [59], which is a special case for
constant ui in (55). Hence, the measure GF1 can be treated as a
generalized version of the traditional GDOP in the orientation-
known case, where different information intensities can be
utilized to impose different weights on anchors. Moreover,
in the static orientation-unknown case, we need also GF2 to
characterize the accuracy degradation caused by the unknown
orientation, which is not covered in the traditional GDOP
approach. In conclusion, by dropping the simplified assump-
tion used by traditional GDOP that all measurement errors are
equal, Theorem 8 provides some generalized criteria for the
optimal anchor-agent geometry, as well as two new measures
to compare different anchor-agent geometry.

VI. NUMERICAL RESULTS

This section presents numerical results evaluating the local-
ization performance with respect to various system parameters,
array-antenna geometry, and anchor-agent geometry.

A. Determinants for SPEB

We first check two determinants for SPEB, i.e., the
absolute position and orientation which are both to be esti-
mated. We place five identical anchors on (−20 m, 20 m),
(−10 m, 20 m), · · · , (20 m, 20 m) and a ULA with diameter
D = 0.5 m and Na = 6. We consider a channel model with
SNR(1)j = 30 dB for all j ∈ Nb and no multipath or NLOS,
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Fig. 7. Root SPEB contours with five anchors placed on a line and static
ULA with Na = 6, β = 1 MHz, fc = 100 MHz, SNR(1)j = 30 dB for all
j ∈ Nb. The array is parallel to anchors and the units are all meters.

Fig. 8. Root SPEB contours with five anchors placed on a line and static
ULA with Na = 6, β = 1 MHz, fc = 100 MHz, SNR(1)j = 30 dB for all
j ∈ Nb. The array is perpendicular to anchors and the units are all meters.

and a signal model with β = 1 MHz, fc = 100 MHz and
γ = 0. Given that the array diameter is small, it is reasonable
to adopt static far-field environments here.

We consider two typical array orientations: in the first
case, the array is parallel to anchors, i.e., antennas have
identical y-coordinates, while in the second case, the array
is perpendicular to anchors, i.e., antennas have identical
x-coordinates. Any other case can be seen as a combination of
the two. Figs. 7 and 8 show the root SPEB contours in these
two cases with known array orientation.

When the array is parallel to the anchors, the line on which
anchors are placed yields the lowest accuracy since SAAF is
zero on that line. Moreover, there are valleys for root SPEB
where the anchor-agent geometry and distance are balanced

Fig. 9. Root SPEB contours with five anchors placed on a line and moving
ULA with Na = 6 and a known velocity v = 30 m/s along the array
orientation. Other parameters are β = 1 MHz, fc = 100 MHz, trms = 10 ms
and SNR(1)j = 30 dB for all j ∈ Nb. The array is parallel to anchors and the
units are all meters.

for localization. Meanwhile, when the array is perpendicular
to the anchors, there are peaks when the array points to
one of the anchors for similar SAAF reasons, but the line
which the anchors are placed on no longer yields the lowest
accuracy. Moreover, in Fig. 8 it seems that arbitrarily high
localization accuracy can be obtained by placing the array
close to some anchor, but we remark that the previous results
cannot be applied here due to the contradiction to the far-field
assumption.

Now we turn to the dynamic scenario where the agent is
moving at v = 30 m/s along its orientation, and the root mean
squared time duration of the signal is trms = 10 ms. Fig. 9 plots
the corresponding root SPEB contours, where for simplicity
only the first scenario that anchors are parallel to the array is
considered here. Compared with Fig. 7, there is a remarkable
gain in the localization accuracy due to the involvement of the
Doppler shift.

Then we examine the effects of array orientation on SPEB
by fixing the array position at p = (0, 0) and changing its
orientation ψ from 0 (parallel to anchors) to π/2 (perpendic-
ular to anchors) with different β = 10 KHz, 100 KHz, 1 MHz
and a constant fc = 100 MHz. The array is assumed to be
static. Fig. 10 illustrates the relationship between root SPEB
and orientation in two cases, i.e., with known or unknown
array orientation.

We have the following observations from Fig. 10. When the
baseband bandwidth is large, root SPEB is almost invariant
with orientation, and the reverse conclusion holds for small β.
This is attributed to the fact that with a large β, distance
information is the main source of localization information
which is invariant with array orientation and vice versa.
In addition, the dashdot lines are lower than solid lines,
indicating that unknown orientation will degrade localization
accuracy. Moreover, when β decreases with fc fixed, the root
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Fig. 10. Root SPEB of a static ULA as a function of orientation ψ
with fixed fc = 100 MHz. The reference point is (0, 0), and Nb = 5,
Na = 6,SNR(1)j = 30 dB for all j ∈ Nb. Solid line represents the orientation-
unknown case, while dashdot line represents the orientation-known case.
Curves with different line types correspond to different baseband bandwidth
β = 10 KHz, 100 KHz, 1 MHz, respectively.

SPEB in all three cases rise but tend to converge, indicating
that in contrast to the wideband cases, AOA can provide
information alone when there is no available TOA information,
as we proved in Section III.

B. Anchor-Agent Geometry

The setting of our experiments is as follows. There
are 4 anchors providing LOS signals with fc = 200 MHz,
and the distance between each anchor and array is D j = 50 m
with different SNRs, i.e., 20 dB, 25 dB, 30 dB and 35 dB. The
anchor directions are randomly set according to a uniform
distribution in [ 0, π). As for the array, we set Na = 6 and
consider a static UCA with diameter D = 1 m, and denote the
constant SAAF by GUCA. In addition, D j � D entails the
far-field environments here.

To investigate the relationship between SPEB and the
anchor-agent geometry, we observe how SPEB varies with the
measures provided in Theorem 8, i.e., two anchor geometric
factors given by (57) and (58) with a further normalization into
the unit interval [0, 1]. Fig. 11 and Fig. 12 display this rela-
tionship in both orientation-known and orientation-unknown
cases, respectively, under 10,000 Monte Carlo simulations.

In Fig. 11, root SPEBs are monotonically non-decreasing
with GF1, and the ascendent extent tends to zero when dis-
tance information and direction information offset each other,
i.e., β/ fc = √

GUCA/D j = 0.007. All these observations are
consistent with Theorem 8. Hence, GF1 is a sufficient indicator
for the effect of anchor-agent geometry on SPEB. Moreover,
as shown in the two sub-diagrams in Fig. 11, a large GF1
requires anchor distributions with concentrated directions, but
diversified directions are preferred to obtain a small GF1 to
be propitious to localization.

In Fig. 12, we focus on the degradation of localization
accuracy caused by unknown orientation. Since the root SPEB
does not depend uniquely on GF2 in the orientation-unknown
case, we adopt an order-5 polynomial fit curve (the solid line

Fig. 11. Orientation-known root SPEB as a function of the normalized
first-type anchor geometric factor GF1. Four curves with different line types
correspond to different relative bandwidths β/ fc = 0.02, 0.01, 0.007, 0.002,
respectively, and small diagrams illustrate two specific examples of anchor
distribution with small and large GF1 (circle as the array location and squares
as anchor locations).

Fig. 12. Orientation-known (dashdot line) and orientation-unknown
(solid line) root SPEB as a function of normalized second-type anchor
geometric factor GF2. Curves with different markers correspond to
GF1 = 0.4, 0.6, 0.8, respectively. The signal parameters are β = 40 MHz
and fc = 200 MHz.

in Fig. 12) for clarity. Note that this fit curve is sufficiently
accurate, with a root MSE less than 0.005. It can be observed
that the degradation tends to rise with large GF2, hence GF2
is a good indicator (though not sufficient) for the degradation
phenomenon. As one can observe, the minimum orientation-
unknown SPEB is achieved when both GF1 and GF2 are small,
conforming again to the results in Theorem 8.

C. Array-Antenna Geometry

Finally, we consider two kinds of arrays, i.e., the ULA and
UCA, to investigate the effect of the array-antenna geometry
on localization. For simplicity, we only explore the SPEB
with unknown array orientation and velocity. In addition
to the same parameters in the experiment on anchor-agent
geometry, we have four anchors evenly distributed instead
of random locations and a moving agent at v = 30 m/s
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Fig. 13. Orientation- and Velocity-unknown SPEB (solid line for ULA,
dashdot line for UCA) as a function of array orientation ψ . Four anchors
transmit the signal with SNR = 20 dB, 25 dB, 30 dB and 35 dB, respectively,
and β = 1 MHz, fc = 100 MHz. Three curves with different line types
correspond to different antenna numbers Na = 3, 6, 12, respectively (from
up to down).

instead of the static one. Fig. 13 shows the SPEB as a
function of array orientation ψ varying in [ 0, 2π) and antenna
number Na taking value in {3, 6, 12}, with baseband bandwidth
β = 1 MHz and carrier frequency fc = 100 MHz.

We draw the following observations from Fig. 13. Firstly,
the SPEB for ULA is affected more significantly by array
orientation than that for UCA, for UCA has a constant SAAF.
Secondly, for both arrays, the SPEB decreases (approximately)
to its half when the antenna number is doubled. Thirdly,
UCA outperforms ULA uniformly in this example. All these
observations are consistent with the theoretical comparison
between their SAAFs in the preceding subsection.

VII. CONCLUSION

In this paper, we determined the performance limit of the
array localization accuracy that exploits all relevant informa-
tion in received waveforms, and showed that the localiza-
tion information is a weighed sum of measuring information
from each anchor-antenna measurement pair. In the static
scenario, the measuring information can be decomposed into
the TOA (distance) information with intensity proportional to
the squared bandwidth of baseband signal along the radial
direction, and the AOA (direction) information with intensity
associated with visual angles and carrier frequency along
the tangent direction. In the dynamic scenario, the Doppler
shift contributes additional direction information with intensity
determined by the speed of the agent and the root mean
squared time duration of the transmitted signal, implying
that the effect of agent mobility can be interpreted as an
equivalent aperture synthesized along the course of moving.
These results establish a complete physical interpretation for
the structure of localization information in general localization
networks.

Moreover, we proposed two measures, i.e., the squared
array aperture function and anchor geometric factors, to
quantify the impacts of network geometric structures on the

localization performance. We proved that the UCOA and
anchors with zero anchor geometric factors have the optimal
localization performance over all kinds of anchor-agent and
array-antenna geometries. These results can be used as guide-
lines for localization system design, as well as benchmarks for
localization-aware networks and localization algorithms.

APPENDIX I
DERIVATION OF EFIMS

We will use the notation

Fz(w; x, y) � Ez

{( ∂
∂x

ln f (w)
)( ∂
∂y

ln f (w)
)T
}

(63)

and

q1 j =
[

cosφ j

sin φ j

]
, q2 j =

[− sin φ j

cosφ j

]
(64)

throughout this appendix.

A. Proof of Proposition 1

Denote by F and F̃ the FIMs generated by the log-likelihood
function (14) and (20), respectively, and further denote by
F′ the FIM obtained by the modified log-likelihood function
where we replace all �{·} operators by �{·} in (14). Since
|z|2 = |�{z}|2 + |�{z}|2 for any z ∈ C, it is straightforward
to show that F + F′ = 2F̃. Moreover, it can be easily shown
that each entry of the difference F − F′ is a finite sum of the
terms taking the following form

c
∫

tl s(m)0 (t)(s(n)0 (t))∗ exp( j2π · 2 fct)dt (65)

for some coefficient c ∈ R and nonnegative integers l,m, n.
If s0(t) is bandlimited by fc, then by the differential
and convolutional properties of the Fourier Transform,
tl s(m)0 (t)(s(n)0 (t))∗ is bandlimited by 2 fc for any nonnegative
integers l,m, n. As a result, the terms in (65) are all zero.
Hence, F = F′, and we conclude that F = F′ = F̃.

B. Proof of Theorem 1

Denote by S( f ) the Fourier Transform of s(t), we have
S( f ) = S0( f − fc). Applying the conclusion of [3, Th. 1],
the proof is completed by plugging the definition of β and γ
into∫ ∞

−∞
f 2|S( f )|2d f =

∫ ∞

−∞
f 2|S0( f )|2d f + f 2

c

∫ ∞

−∞
|S0( f )|2d f

+2 fc

∫ ∞

−∞
f |S0( f )|2d f (66)

and the identity φ j k = φ j + θV
j k (see Figure 3).

C. Proof of Theorem 2

We first consider the case where there is no multipath or
NLOS phenomenon. By Theorem 1 we know that

Fr(r|θ; p,p) =
Nb∑
j=1

Na∑
k=1

λ j (β
2 + f 2

c + 2γβ fc)Jr(φ j + θV
j k).

(67)
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Now we proceed to compute Fr(r|θ; p, ξ j ) and
Fr(r|θ; ξi , ξ j ). The details are as follows:

Fr(r|θ; τi , ξ j )

= 2|α j |2δi j

N0
�
{ Na∑

k=1

∫
( j s∗

0 )(s
′
0 + j2π fcs0)dt

}

= −2δi j · �
{ Na∑

k=1

2π(γβ + fc)SNR j

}

= −4π(γβ + fc)SNR j · Naδi j (68)

Fr(r|θ;φi , ξ j )

= 2|α j |2δi j τ j

N0
�
{ Na∑

k=1

∫
( j s∗

0 )(s
′
0 + j2π fcs0)θ

V
j kdt

}

= −2δi j τ j · �
{ Na∑

k=1

2π(γβ + fc)SNR j · θV
j k

}

= −4πτ j (γβ + fc)SNR j · δi j

Na∑
k=1

θV
j k (69)

Fr(r|θ; ξi , ξ j )

= 2|α j |2δi j

N0
×

Na∑
k=1

∫
( j s∗

0 )(− j s0)dt = 2 SNR j · Naδi j

(70)

where δi j is the discrete Dirac function which equals 1 if i = j
and 0 otherwise. Combining these identities yields

Fr(r|θ; p, ξ j )

=
Nb∑

i=1

[
Fr(r|θ; τi , ξ j ) · q1i

c
+ Fr(r|θ;φi , ξ j ) · q2i

cτi

]

= −4π(γβ + fc)SNR j

c
·
(

Na q1 j +
Na∑

k=1

θV
j kq2 j

)
. (71)

Then the EFIM is given by (72), shown at the bottom of
this page, where we have used

Jr(φ j + θV
j k)

∼= q1 j qT
1 j + (θV

j k)
2q2 j qT

2 j

+ θV
j k(q2 j qT

1 j + q1 j qT
2 j ) (73)

in the third step by the far-field assumption θV
j k � 1.

In the general case with multipath and NLOS phenom-
ena, we involve the path-overlap coefficient χ j and the
set of anchors NNL providing NLOS signals following the
same way as that in the proof of [3, Th. 1]. The proof is
complete.

D. Proof of Theorem 3

Since ψ and φ j appear in pairs in the log-likelihood function
in (20) through φ j − ψ , it can be obtained that

Fr(r|θ; x, ψ) = −
∑
j∈NL

Fr(r|θ; x, φ j ) (74)

for any parameter x. Hence, the entries of FIM for the position
and orientation are given by (75) and (76), respectively,
shown at the top of next page. The combination of these two
completes the proof.

E. Proof of Theorem 4

Without loss of generality we assume that τ = 0, otherwise
s1(t) = s0(t − τ ) can be used instead. Similar to the proof
of Theorem 2, it suffices to consider the scenario without
multipath or NLOS. Define δ j � vr cos(φ j − ψd), and
write

Je(p) ≡
Nb∑
j=1

[
A1 j q1 j qT

1 j + A2 j q2 j qT
2 j

+A3 j

(
q1 j qT

2 j + q2 j qT
1 j

)]
. (77)

Je(p) = Fr(r|θ; p,p)−
Nb∑
j=1

Fr(r|θ; p, ξ j )Fr(r|θ; ξ j , ξ j )
−1Fr(r|θ; p, ξ j )

T

=
Nb∑
j=1

Na∑
k=1

8π2SNR j (β
2 + f 2

c + 2γβ fc)

c2 Jr(φ j + θV
j k)

−
Nb∑
j=1

8π2SNR j (γβ + fc)
2

c2 Na

(
Naq1 j +

Na∑
k=1

θV
j kq2 j

)(
Naq1 j +

Na∑
k=1

θV
j kq2 j

)T

∼=
Nb∑
j=1

8π2SNR j

c2

[
(1 − γ 2)β2

Na∑
k=1

Jr(φ j + θV
j k)+ (γβ + fc)

2 ·
∑

1≤k<l≤Na
(θV

j k − θV
j l)

2

Na
q2 j qT

2 j

]

=
Nb∑
j=1

λ j

[
(1 − γ 2)β2

Na∑
k=1

Jr(φ j + θV
j k)+ Na(γβ + fc)

2G(φ j − ψ)

D2
j

Jr

(
φ j + π

2

) ]
(72)
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[Je({p, ψ})]1:2,3
= Fr(r|θ; p, ψ)−

∑
j∈NL

Fr(r|θ; p, ξ j )Fr(r|θ; ξ j , ξ j )
−1Fr(r|θ;ψ, ξ j )

T

= −
∑
j∈NL

Fr(r|θ; p, φ j )+
∑

i∈NL

∑
j∈NL

Fr(r|θ; p, ξ j )Fr(r|θ; ξ j , ξ j )
−1Fr(r|θ;φi , ξ j )

T

= −
∑
j∈NL

λ j D j

(
(β2 + f 2

c )

Na∑
k=1

[
θV

j kq1 j + (θV
j k)

2q2 j

]
− f 2

c

[
q1 j + 1

Na

Na∑
k=1

θV
j kq2 j

] ·
Na∑

k=1

θV
j k

)

= −
∑
j∈NL

λ j D j

[
β2

Na∑
k=1

θV
j k(q1 j + θV

j kq2 j )+ Na f 2
c G(φ j − ψ)

D2
j

q2 j

]
(75)

[Je({p, ψ})]3,3

= Fr(r|θ;ψ,ψ)−
∑
j∈NL

Fr(r|θ;ψ, ξ j )Fr(r|θ; ξ j , ξ j )
−1Fr(r|θ;ψ, ξ j )

T

=
∑
j∈NL

Fr(r|θ;φ j , φ j )−
∑
j∈NL

Fr(r|θ;φ j , ξ j )Fr(r|θ; ξ j , ξ j )
−1Fr(r|θ;φ j , ξ j )

T

=
∑
j∈NL

λ j D2
j

[
β2

Na∑
k=1

(θV
j k)

2 + Na f 2
c G(φ j − ψ)

D2
j

]
(76)

A2 j = 1

(cτ j )2

[
Fr(r|θ;φ j , φ j )− Fr(r|θ;φ j , ξ j )Fr(r|θ; ξ j , ξ j )

−1Fr(r|θ;φ j , ξ j )
T
]

= 2|α j |2
c2(1 − δ j )N0

[ Na∑
k=1

∫
|s′(t)(θV

j k + ω j t)|2dt − |α j |2/N0

NaSNR j

( Na∑
k=1

�
{ ∫

( j s(t))∗ · s′(t)(θV
j k + ω j t)dt

})2]

= λ j

1 − δ j

[
Na f 2

c

(G(φ j − ψ)

D2
j

+ ω2
j t

2
rms

)
+ Na fcω

2
j

π
∫ |s0(t)|2dt

( ∫
�{s′

0(t)s
∗
0 (t)t

2}dt − (
∫

t|s0(t)|2dt)(
∫ �{s′

0(t)s
∗
0 (t)t}dt)∫ |s0(t)|2dt

)

+ 1

4π2

Na∑
k=1

∫ |s′
0(t)(θ

V
j k + ω j t)|2dt∫ |s0(t)|2dt

+
Na∑

k=1

fcω jθ
V
j k

π
·
∫ �{s′

0(t)s
∗
0 (t)t}dt∫ |s0(t)|2dt

− Naω
2
j

4π2 ·
(∫ �{s′

0(t)s
∗
0 (t)t}dt∫ |s0(t)|2dt

)2
]

(79)

1) Derivation of A1 j : By the variable substitution t̃ = t −
τ
(1)
j k (t), it is obvious that

A1 j = 1

c2

[
Fr(r|θ; τ j , τ j )

−Fr(r|θ; τ j , ξ j )Fr(r|θ; ξ j , ξ j )
−1Fr(r|θ; τ j , ξ j )

T
]

= λ j

1 − δ j

[ Na∑
k=1

(β2 + f 2
c )− (Na fc)

2

Na

]
= λ j Naβ

2

1 − δ j
. (78)

2) Derivation of A2 j : Using the same variable substitution
method, A2 j can be expressed as (79), shown at the top of
this page. Note that∫

|s′
0(t)|2dt =

∫
|2π f S0( f )|2d f

= 4π2β2
∫

|S0( f )|2d f

= 4π2β2
∫

|s0(t)|2dt (80)∫
t2|s′

0(t)|2dt ≤
∫

2
(
|(ts0(t))

′|2 + |s0(t)|2
)

dt

= 2
∫

| f S′
0( f )|2d f + 2

∫
|s0(t)|2dt

≤ 2B2
∫

|S′
0( f )|2d f + 2

σ 2

∫
|ts0(t)|2dt

≤ (8π2 B2 + 32π2β2)

∫
|ts0(t)|2dt

� 4π2 f 2
c

∫
|ts0(t)|2dt (81)

where

σ �
[∫ |ts0(t)|2dt∫ |s0(t)|2dt

] 1
2

(82)

and we have used the uncertainty principle βσ ≥ 1/4π and
the assumption β ≤ B � fc. Then by the Cauchy-Schwarz
inequality, we further have

∫
t|s0(t)|2dt ≤

√(∫
t2|s0(t)|2dt

)(∫
|s0(t)|2dt

)

= σ

∫
|s0(t)|2dt (83)

∫
�{s′

0(t)s
∗
0 (t)t}dt ≤

√(∫
t2|s′

0(t)|2dt

)(∫
|s∗

0 (t)|2dt

)

� fcσ

∫
|s0(t)|2dt (84)
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∫
�{s′

0(t)s
∗
0 (t)t

2}dt ≤
√(∫

t2|s′
0(t)|2dt

)(∫
t2|s∗

0 (t)|2dt

)

� fcσ
2
∫

|s0(t)|2dt (85)

and thus conclude that all other terms in (79) are negligible
compared with the first term. In other words, we have

A2 j ∼= λ j Na f 2
c

1 − δ j

(G(φ j − ψ)

D2
j

+ ω2
j t

2
rms

)
. (86)

3) Derivation of A3 j : A3 j can be expressed in (87), shown
at the bottom of this page. By Cauchy-Schwarz inequality,

∫
t|s′

0(t)|2dt ≤
√(∫

t2|s′
0(t)|2dt

)(∫
|s′

0(t)|2dt

)

� β fcσ

∫
|s0(t)|2dt (88)

thus we conclude that

λ j

1 − δ j

[
β2

Na∑
k=1

θV
j k + Naω j∫ |s0(t)|2dt

∫
t|s′

0(t)|2dt

]

� √
A1 A2. (89)

For the last term in the expression of A3, suppose that
S0( f ) = |S0( f )| exp( jφ( f )), it can be shown that

�
{∫

ts∗
0 (t)s

′
0(t)dt

}
= �

{∫
f S∗

0 ( f )S′
0( f )d f

}

=
∫

f |S0( f )|2φ′( f )d f = 0 (90)

where the last equality holds due to the balanced phase
assumption. Hence, we conclude that A3 j � √

A1 j A2 j , and
thus

A1 j q1 j qT
1 j + A2 j q2 j qT

2 j � √
A1 j A2 j

(
q1 j qT

2 j + q2 j qT
1 j

)

� A3 j

(
q1 j qT

2 j + q2 j qT
1 j

)
. (91)

In conclusion, we have

Je(p) =
Nb∑
j=1

λ j Na

1 − δ j

[
β2Jr(φ j )

+ f 2
c

(G(φ j − ψ)

D2
j

+ ω2
j t

2
rms

)
Jr(φ j + π

2
)

]
(92)

which is the desired result.

APPENDIX II
PROOF OF GEOMETRIC PROPERTIES

A. Proof of Proposition 2

Based on (45), we have

1

2π

∫ 2π

0
G(θ)dθ = x̃2 + ỹ2

2
. (93)

By the definition of the infimum, for any ε > 0, the array can
be covered by a circle centered at some (xc, yc) with diameter
D + ε, then

x̃2 + ỹ2 = 1

Na

Na∑
k=1

[
(xk − x̄)2 + (yk − ȳ)2

]

≤ 1

Na

Na∑
k=1

[
(xk − xc)

2 + (yk − yc)
2
]

≤
(D + ε

2

)2
(94)

where the first inequality utilizes the following fact

(x̄, ȳ) = arg min
(xc,yc)

Na∑
k=1

[
(xk − xc)

2 + (yk − yc)
2
]
. (95)

Then the inequality to be proved is the combination of (93)
and (94) by letting ε → 0+. In particular, for UCOA, G(θ)
is invariant with θ , and all equalities in (94) hold, which
completes the proof for the second part.

B. Proof of Theorem 7

Define TES : S
n++ �→ R as the mapping from EFIM

for the position to SPEB, and TES(A) = tr{A−1} for
A ∈ S

n++. First we show that TES(·) is convex and
monotonically non-increasing in terms of the Löwner
semiorder �. Suppose A � B are two positive definite matri-
ces, and denote by {λk}, {μk} their eigenvalues in descend-
ing order. The Courant-Fischer-Weyl min-max principle [60]
yields

λk = inf
C∈C2×(k−1)

sup
Cx=0,‖x‖=1

xTAx

≥ inf
C∈C2×(k−1)

sup
Cx=0,‖x‖=1

xTBx = μk (96)

by taking supremum and infimum successively. Hence

TES(A) = tr{A−1} =
∑

λ−1
k ≤

∑
μ−1

k = TES(B) (97)

A3 j = 1

c2τ j

[
Fr(r|θ; τ j , φ j )− Fr(r|θ; τ j , ξ j )Fr(r|θ; ξ j , ξ j )

−1Fr(r|θ;φ j , ξ j )
T
]

= 2|α j |2
c2(1 − δ j )N0

[ Na∑
k=1

∫
|s′(t)|2(θV

j k + ω j t)dt − 2π fc

Na∑
k=1

�
{ ∫

( j s(t))∗ · s′(t)(θV
j k + ω j t)dt

}]

= λ j

1 − δ j

[
β2

Na∑
k=1

θV
j k + Naω j∫ |s0(t)|2dt

( ∫
t|s′

0(t)|2dt + 2π fc

∫
�{s′

0(t)s
∗
0 (t)t}dt

)]
(87)
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gives the monotonicity of TES(·). The convexity follows from
the fact that TES(·) is a compound function of a convex
function g : S

n++ �→ S
n++ with g(A) = A−1 and a linear

function h : S
n++ �→ R with h(A) = tr{A}.

Then by Jensen’s inequality, we have

1

2π

∫ 2π

0
SPEB(ψ)dψ = 1

2π

∫ 2π

0
TES(Je(p, ψ))dψ

≥ TES

( 1

2π

∫ 2π

0
Je(p, ψ)dψ

)

≥ TES(JUCOA
e (p))

= SPEBUCOA (98)

where we have used the monotonicity of TES(·) and
Proposition 2 in the last inequality. Since the Bayes estimator
takes constant value in the support of the prior, we conclude
that UCOA is also optimal in the minimax sense [61], which
completes the proof.

C. Proof of Theorem 8

Defining ri � λiβ
2, si � λi f 2

c D−2
i GUOA, the orientation-

known EFIM for the position is given by

Je(p) =
∑
j∈NL

(
r j Jr(φ j )+ s j Jr(φ j + π

2
)
)
. (99)

Hence the SPEB is expressed as

SPEB = 2
∑

k∈NL
(rk + sk)∑

i,i ′∈NL
(ui ui ′ sin2(φi − φi ′ )+ siri ′ + ri si ′ )

(100)

where ui � ri − si . Then minimizing SPEB is equivalent to
maximizing the denominator

∑
i,i ′∈NL

ui ui ′ sin2(φi − φi ′ )

= 1

2

[∣∣∣ ∑
i∈NL

ui

∣∣∣2 −
∣∣∣ ∑

i∈NL

ui exp( j2φi)
∣∣∣2]. (101)

As a direct corollary, the minimum SPEB requires φi ’s to
satisfy

∑
i∈NL

ui exp( j2φi) = 0, which completes the proof
for orientation-known case. In the orientation-unknown case,
it follows from Corollary 3 that

∑
i∈NL

λi

Di
exp( jφi) = 0 (102)

provides a further criterion.
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