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For most outdoor applications, systems such as Global Positioning
System (GPS) provide users with accurate location estimates.
However, similar range-only localization techniques in dense cluttered
environments typically lack accuracy and reliability due, notably, to
dense multipath, line-of-sight (LOS) blockage and excess propagation
delays through materials. In particular, range measurements between
a receiver and a transmitter are often positively biased. Furthermore,
the quality of the range measurement degrades with distance, and the
geometric configuration of the beacons also affects the localization
accuracy.

In this paper we derive a fundamental limit of localization
accuracy for an ultrawide bandwidth (UWB) system operating in
such environments, which we call the position error bound (PEB).
The impact of different ranging estimation errors due to beacons
distance and biases on the best positioning accuracy is investigated.
The statistical characterization of biases coming from measurement
campaigns can easily be incorporated into this analysis. We show
that the relative importance of information coming from different
beacons varies depending on the propagation conditions, such as
whether the beacon is LOS or non-line-of-sight (NLOS). We show,
in particular, that any a priori information knowledge on NLOS
beacons can significantly improve the localization accuracy, especially
in dense cluttered environments. Finally we put forth the concept of
localization outage probability and ²-localization accuracy outage, and
use them to characterize the quality of localization throughout the
area.
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I. INTRODUCTION

Since the Global Positioning System (GPS)
became widely accessible [1], localization in the
absolute frame (or geolocation) has found application
in many different fields. In areas where there is
a good line-of-sight (LOS) to GPS satellites, this
technique provides a good estimate (within a few
meters) of the user’s location on the Earth. However,
in indoor and dense urban environments, geolocation
has always been a more challenging problem for
several reasons. The GPS signal is, for example, not
strong enough to penetrate through most materials.
As soon as an object hides the GPS satellite from the
user’s view, the signal is corrupted. This constrains
the usefulness of GPS to open environments, and
limits its performance in forests or in dense urban
environments, as retaining a lock on the GPS signals
becomes more difficult. GPS typically becomes
completely useless inside buildings. However there
is an increasing need for accurate geolocation in
cluttered environments, in addition to open spaces.
In commercial applications for example, the tracking
of inventory in warehouses or cargo ships is an
emerging need. In military applications the problem
of “blue force tracking,” i.e., knowing where friendly
forces are, is of vital importance, especially in urban
scenarios.
To address the problem of geolocation in

cluttered environments, we consider a network of
fixed beacons (or anchor nodes) emitting ultrawide
bandwidth (UWB) signals for ranging purposes. UWB
technology potentially provides high ranging accuracy
in cluttered environments [2—7] owing to its inherent
delay resolution and ability to penetrate obstacles
[8—13]. Further information on the fundamentals of
UWB can be found in [14]—[18] and the references
therein. We assume that the location of these beacons
is known, for example because they are placed outside
and can rely on GPS. The agent (or unknown node)
estimates the ranges to these beacons to determine
its position. These ranges are often obtained by
estimating the time-of-arrival of the signal, for which
several techniques exist [2, 3, 6, 19, 20].
The accuracy of range-only localization systems

depends mainly on two factors. The first is the
geometric configuration of the system, i.e., how
the beacons are placed relative to the agent. The
second is the quality of the range measurements
themselves. If the range estimates to the beacons were
perfect, then three beacons, placed at any (but distinct)
locations would be sufficient to determine the agent
position unambiguously in 2D, using any triangulation
technique. In practice, however, these measurements
are corrupted due to the propagation properties of
the environment. Partial and complete LOS blockage
(see Section II) lead, for example, to biased range
estimates. Furthermore, the measurement variance
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increases as the received signal-to-noise ratio (SNR)
decreases, which is in general related to an increase
in distance between agent and beacon [3]. All these
factors will affect the localization accuracy to different
degrees.
A measure of the localization performance used

extensively in the GPS community is the geometric
dilution of precision (GDOP) [1]. The GDOP provides
a systematic way to compare geometric configurations
of beacons. Bounds on the GDOP have also been
derived in [21]. It turns out that there is a close
relationship between the GDOP and the Cramér-Rao
bound (CRB) from estimation theory [22, 23]. Along
this line, estimation bounds for localization of sensors
in a sensor network, either with or without anchor
nodes, have been derived in [24]. The effect of
geometric configurations and node density on the
localization accuracy has been investigated in [25].
It has been shown numerically that collaborative
localization, where sensors use range information not
only from the anchor nodes but also from each other,
is superior to localization relying solely on the anchor
nodes [26].
Biases in bearing measurements are treated

as additional noise with particular known a priori
statistics in [27]. In [28], [29] the biases on range
measurements are treated as additional parameters to
be estimated for a range-only localization system. It
was shown that in the absence of prior information
about the biases, the non-line-of-sight (NLOS)
beacons do not improve the geolocation accuracy
[28], whereas if some prior information (such as
their probability density function (pdf)) is available,
NLOS beacons can improve it [29]. In [30], the
authors investigate the improvement in positioning
accuracy if all multipath delays, instead of simply the
first path, are processed. It is shown that using the
first arrival only is sufficient for optimal localization
when no prior information is known about the NLOS
delays, whereas when such prior information is
available, then the multipath delays can improve the
accuracy (with the drawback of a more complex
receiver). These papers are restricted to particular
bias models, and they do not take into account the
dependence on distance of the variance of the range
measurements. This dependence was addressed by
numerical simulations in [26] and briefly discussed
in [24]. We note that another bound was suggested in
[31], and analyzed via simulations.
In this paper we derive the position error bound

(PEB), a fundamental limit of localization accuracy
using the information inequality [22] for the UWB
localization system. This bound accounts for the
dependence on distance of the range measurements
and the presence of positive biases. The PEB can
easily incorporate any statistical characterization
of the biases, e.g., coming from measurement
campaigns.

The structure of the PEB shows explicitely that the
contribution in localization accuracy from each beacon
is weighted by a factor reflecting the propagation
environment, thereby providing insights into the
importance of information coming from each beacon.
In particular, it is shown that LOS beacons contribute
with a larger weight than NLOS ones (at equal
distance).
We quantify the importance of information

from NLOS beacons to show that NLOS beacons
can significantly improve the localization accuracy
(provided some minimum a priori statistical
knowledge of the biases) compared to the case where
only LOS beacons are considered, especially in dense
cluttered environments characterized by a low number
of LOS beacons. Although most theoretical results are
generalized to 3D, we restrict our numerical analysis
to the 2D case.
The results derived thereafter are not limited to

UWB ranging, however this technique is the only
one able to guarantee high localization accuracy in
cluttered environments. Knowing such limit can guide
engineering decisions. It can also serve to map the
area in terms of localization accuracy, so that the
agent does not venture in locations with unsatisfactory
coverage.
Finally we put forth the concept of localization

accuracy outage to characterize the quality of
localization throughout the area. It can be used to
design the localization network in deciding how many
sensors to deploy and where to place them, or when
additional sensor deployment is needed [32].
The paper is organized as follows. In Section II we

derive the bound for our system of UWB beacons,
while in Section III we use this bound to conduct
several numerical case studies. We conclude this paper
in Section IV.

II. DERIVATION OF A LOWER BOUND ON THE
LOCALIZATION ACCURACY

We consider a system of nB UWB beacons used to
localize a single target, or agent. We start by modeling
the UWB range measurements, and then proceed to
derive a lower bound on the position error for this
system.

A. Modeling of Range Measurements

Let us first define a few terms. We refer to a range
measurement between a transmitter and a receiver
as a direct path (DP) measurement if the range is
obtained from the signal traveling along a straight
line between the two points. A measurement can be
non-DP if the DP signal is completely obstructed. In
this case, the first signal to arrive at the receiver may
come from reflected paths only. An LOS measurement
is one obtained when the signal travels along an
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unobstructed DP, while an NLOS measurement can
come from complete DP blockage or DP excess delay
(in the latter case the DP is partially obstructed so that
the signal has to traverse different materials, which
results in additional delays).
In the case of radio-based localization, range

measurements are typically corrupted by four sources:
multipath fading, thermal noise, DP blockage, and DP
excess delay. Multipath fading is due to destructive
and constructive interference of signals arriving at the
receiver via different propagation paths. This makes
the detection of DP, if present, challenging. However
UWB signals have the capability to resolve multipath
components, which greatly reduce multipath fading
[8—11]. The presence of thermal noise also limits the
ability to accurately determine ranges as the distance
increases, i.e., as the SNR decreases. We account
for this effect by introducing a suitable model for
the variance of the range measurements error as a
function of the beacons distance [6, 3].
The third difficulty is due to DP blockage. In

some areas of the environment the DP to certain
beacons may be completely obstructed, so that the
only received signals are from reflections, resulting
in measured ranges larger than the true distances.
The fourth difficulty is due to DP excess delay
incurred by propagation of the partially obstructed
DP through different materials, such as walls. When
such a partially obstructed DP signal is observed
as first arrival, the propagation time depends not
only upon the traveled distance, but also upon the
materials it encountered. Because the propagation of
electromagnetic signals is slower in some materials
than in the air, the signal arrives with excess delay,
yielding again a range estimate larger than the true
one. An important observation is that the effect of
DP blockage and DP excess delay is the same: they
both add a positive bias to the true range between
agent and beacon, so that the measured range is
larger than the true value (from now on we therefore
refer to such measurements as NLOS). This positive
error has been identified as a limiting factor in
UWB ranging performance [7, 3], so it must be
accounted for.
In our system, the range measurements r̃i between

the agent and the ith beacon can therefore be
positively biased due to NLOS propagation. If we
denote by di the true distance, the measured range r̃i
can be expressed as

r̃i = di+ bi+ ²i (1)

where bi is the bias added to the ith beacon and ²i
is a random Gaussian noise, independent of bi, with
zero-mean and variance ¾2i . Following the analysis
found in [6], [10], we model the dependence of the
variance of ²i on the distance di as ¾

2
i ´ ¾2(di) = ¾20d®i ,

where ® is the path-loss exponent and ¾20 is the

variance at 1 m. The pdf of ²i is therefore:

f²i (²) =
1p

2¼¾(di)
e¡²

2=2¾2(di): (2)

Let us now model the statistics of the bias.
In most applications it is unrealistic to assume a

perfect knowledge of the bias; in that case it could
be simply subtracted from the range measurement.
A more realistic option is to consider some a priori
statistical characterization derived from measurements
or induced from the environment configuration.
Let us start by making some general observations

about the biases using real data from UWB range
measurements. From the results presented in [33]
it can be concluded that the bias will always be
nonnegative. Its actual value, however, will largely
depend on the environment. We expect it to take a
wider range of values in a cluttered environment
with many walls, machines, and furniture (such as a
typical office building), than in an open space. Indeed
actual UWB range measurements performed in an
office environment in [33], [2] show that the bias
jumps from one value to another as the transmitter
is moved through the building. In [33] the bias is seen
to vary between 0 and 1.5 m, depending on the room
in which the measurements were taken. Note finally
that the bias cannot grow infinitely large, regardless of
the propagation environment.
Although a detailed map of the environment

may not be available, most of the time we will be
able to classify the environment in broad terms,
such as “concrete office building,” or “wooden
warehouse” (which we call an environment class).
By performing range measurements in typical
buildings of different classes beforehand, we can
build a library of frequency histograms valid for
different environments classes. We can then use these
histograms to approximate the pdf of the biases in the
building of interest. An example of such histogram
is derived from [33], where range measurements
were performed at different locations in the corridor
of an office building. The corresponding frequency
histogram of the bias is plotted on Fig. 1(a). Such
histograms account for the positivity of the biases, as
well as an approximate distribution of their expected
value throughout the building. From Fig. 1 a we can
see that biases around 0.5 m are most common, while
they were never larger than 1.1 m.
Let us assume such frequency histograms are

available for each beacon. They may differ from
beacon to beacon, so we index them by the beacon
number i. The ith histogram has K(i) bars, where
the kth bar goes from ¯(i)k¡1 to ¯

(i)
k and has frequency

(height) p(i)k , as shown on Fig. 1(a). We can therefore
associate to the frequency histogram the pdf of bi as

fbi (b) =
K(i)X
k=1

w(i)k uf¯(i)
k¡1,¯

(i)
k
g(b) (3)
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Fig. 1. (a) Frequency histogram of bias from range measurements performed in office building [33]. (b) Corresponding pdf of error in
range measurements r̃i ¡ di from beacon i, for di = 15 m and ¾0 = 10

¡3 m.

where w(i)k = p
(i)
k =(¯

(i)
k ¡¯(i)k¡1), ufa,a0g(b) = 1 if a· b ·

a0, 0 otherwise, and ¯(i)0 = 0. We note that if beacon i
is LOS (i.e., it has no bias), then fbi (b) = ±(b) where
±(b) is the Dirac pseudo function. In any case, even in
absence of measured data, given a fixed scenario we
can always determine the maximum expected bias ¯m
and, in absence of other a priori information, assume
a uniform distribution in [0,¯m], i.e., K = 1, ¯1 = ¯m,
and w1 = 1=¯m.
In [29] the biases are treated as additional

parameters to be estimated. However it can be shown
that if the biases are modeled as described above,
this approach fails to yield a bound lower than that
when the NLOS beacons are ignored. In this paper
we instead treat the biases as additional noise terms
on the range estimate, and we show that a better
performance limit can be obtained, as the information
from NLOS beacons can help improve the accuracy
bound.
Let us then lump the bias term with the Gaussian

measurement noise º̃i = bi+ ²i and obtain the
corresponding pdf:

fº̃i (º̃i) =
Z 1

¡1
fbi (x)f²i (º̃i¡ x)dx (4)

=
K(i)X
k=1

w(i)k

Z ¯(i)
k

¯(i)
k¡1

f²i (º̃i¡ x)dx (5)

=
K(i)X
k=1

w(i)k

"
Q

Ã
º̃i¡¯(i)k
¾(di)

!
¡Q

Ã
º̃i¡¯(i)k¡1
¾(di)

!#
(6)

where Q(x) = (1=
p
2¼)

R +1
x e¡t

2=2dt is the Gaussian Q
function. If the ith beacon is LOS, then ºi is Gaussian
distributed with zero mean and variance ¾2(di). The

mean of º̃i is denoted mi, and in order to obtain an
unbiased estimator we subtract mi from the ith range
measurement. This is equivalent to replace º̃i by
ºi
¢
= º̃i¡mi. Let pA = (xA,yA) be the vector of the

agent’s coordinates so that

di(pA) =
q
(xA¡ xi)2 + (yA¡ yi)2,

i= 1, : : : ,nB (7)

where (xi,yi) are the coordinates of the ith beacon,
assumed to be known. The unbiased range
measurements are therefore modeled as

ri = di(pA)+ ºi (8)

with pdf given by

fi(ri j pA)

=
K(i)X
k=1

w(i)k

"
Q

Ã
ri¡ di(pA)+mi¡¯(i)k

¾(di(pA))

!

¡Q
Ã
ri¡ di(pA)+mi¡¯(i)k¡1

¾(di(pA))

!#
:

(9)

The pdf corresponding to the bias profile of Fig. 1(a)
is plotted on Fig. 1(b) as a function of the error in
range measurement r̃i¡ di for di = 15 m and ¾0 =
10¡3 m.

B. Position Error Bound

A lower bound on the covariance of any position
estimator p̂A = (x̂A, ŷA) based on r= [r1,r2, : : : ,rnB],
the vector of nB range measurements, is given by
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the information inequality (or the Cramér-Rao lower
bound) [22]1:

Erf(pA¡ p̂A)(pA¡ p̂A)Tg ¸ J¡1 (10)

where J is the Fisher information matrix (FIM) given
by

J= Erf[rpA ln(f(r j pA))][rpA ln(f(r j pA))]Tg
(11)

and f(r j pA) is the pdf of the vector r conditioned on
pA, and rpAf:g denotes the gradient of a scalar with
respect to pA. Note that we haveq

Erf(xA¡ x̂A)2 + (yA¡ ŷA)2g ¸
q
TfJ¡1g (12)

for any estimator of the position pA = (xA,yA), where
Tf:g is the trace of a square matrix. In the remaining
we refer to this expression as the PEB:

PEB(xA,yA)
¢
=
q
TfJ¡1g: (13)

The PEB is a fundamental limit on the accuracy of
any localization method.

C. Derivation of FIM

We now seek to calculate the FIM for our
system. Because the measurements are assumed to be
independent we have

f(r j pA) =
nBY
i=1

fi(ri j pA) (14)

where fi(ri j pA) is given by (9). We have

rpA
ln(f(r j pA)) =

nBX
i=1

1
fi(ri j pA)

264
@fi(ri j pA)
@xA

@fi(ri j pA)
@yA

375
(15)so that

J=Er

(
nBX
i=1

nBX
j=1

1
fi(ri j pA)

1
fj(rj j pA)

£

264
@fi(ri j pA)
@xA

¢ @fj(rj j pA)
@xA

@fi(ri j pA)
@xA

¢ @fj(rj j pA)
@yA

@fi(ri j pA)
@yA

¢ @fj(rj j pA)
@xA

@fi(ri j pA)
@yA

¢ @fj(rj j pA)
@yA

375
9>=>; :
(16)

1The notation Erf:g denotes the expectation operator with respect to
the random variable r, the notation V ¸W means that the matrix
V¡W is positive semi-definite, and superscript T denotes the
transpose.

We show in the Appendix that all the terms in (16) for
which i 6= j are 0. We therefore have

J=Er

(
nBX
i=1

1
fi(ri j pA)2

£

2664
μ
@fi(ri j pA)
@xA

¶2
@fi(ri j pA)
@xA

@fi(ri j pA)
@yA

@fi(ri j pA)
@yA

@fi(ri j pA)
@xA

μ
@fi(ri j pA)
@yA

¶2
3775
9>>=>>; :
(17)

After a few algebraic manipulations we obtain

@fi(ri j pA)
@xA

= gi(ºi)cosμi (18)

@fi(ri j pA)
@yA

= gi(ºi) sinμi (19)

where μi is the angle between the agent and the ith
beacon measured with respect to the horizontal,
ºi = ri¡ di, and gi(ºi) is given by

gi(ºi)
¢
=

1

¾0d
®=2
i

p
2¼

K(i)X
k=1

w(i)k

£
"μ

1+
®

2di
(ºi+mi¡¯(i)k )

¶
e¡(ºi+mi¡¯

(i)
k
)2=2¾2

0
d®
i

¡
μ
1+

®

2di
(ºi+mi ¡¯(i)k¡1)

¶
e
¡(ºi+mi¡¯(i)k¡1)

2=2¾2
0
d®
i

#
:

(20)
We finally obtain

J=
nBX
i=1

A(¯(i),di)M(μi) (21)

with ¯(i)
¢
=f¯(i)1 , : : : ,¯(i)K(i)g,

M(μ)
¢
=
·
cos2 μ cosμ sinμ

cosμ sinμ sin2 μ

¸
(22)

and

A(¯(i),di)
¢
=
Z 1

¡1

gi(ºi)
2

fi(ri j pA)
dºi: (23)

The expression (21) provides us with some useful
insights. First, note that M(μi) contains geometric
information about the relative position of the agent
with respect to the ith beacon. The FIM is therefore a
weighted sum of this geometric information, where
the weights A(¯(i),di) depend on ¯

(i) and di. We
show in Section IID that these weights correspond
to the importance of the information coming from the
corresponding beacon, in the sense of how much new
information is brought by this beacon.
We also note that our analysis can easily be

extended to 3D. If the position vector pA is a 3D
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vector, we define ¸ as its longitude (angle between the
x axis and the projection of pA on the x-y plane) and
Á as its latitude (angle between the projection of pA
on the x-y plane and pA). Then (18) and (19) become

@fi(ri j pA)
@xA

= gi(ºi)cos¸i cosÁi (24)

@fi(ri j pA)
@yA

= gi(ºi) sin¸i cosÁi (25)

@fi(ri j pA)
@zA

= gi(ºi) sinÁi (26)

where gi(ºi) is given by (20). The only change from
(21), (22), and (23) is in the matrix M(μ) which now
becomes

M(¸,Á) =264 cos2¸cos2Á cos¸sin¸cos2Á cos¸cosÁsinÁ

cos¸sin¸cos2Á sin2¸cos2Á sin¸cosÁsinÁ

cos¸cosÁsinÁ sin¸cosÁsinÁ sin2Á

375 :
(27)

D. Analysis of Weights A(¯,d)

Let us investigate the behavior of A(¯,d) as a
function of ¯ and d. As a sanity check let us first
consider the case when all the biases go to 0, with
d fixed. This implies that the ¯k tend to 0 for all k,
and that the mean of the corresponding measurement
noise m also goes to 0, according to (6). We write this
as m¡¯! 0. We then have the following first-order
approximation for small m¡¯k:

Q

μ
º

¾
+
m¡ ¯k
¾

¶
=Q

³
º

¾

´
¡ m¡¯k
¾
p
2¼
e¡º

2=2¾2 + o(m¡¯k)

(28)

e¡(º+m¡¯k )
2=2¾2 =

³
1¡ (m¡¯k)

º

¾2

´
e¡º

2=2¾2 + o(m¡¯k):

(29)
We use these to calculate the limit of (9) when
m¡¯! 0:

lim
m¡¯!0

f(r j pA)

= lim
m¡¯!0

KX
k=1

wk

·
Q

μ
º+m¡¯k
¾(d)

¶
¡Q
μ
º+m¡¯k¡1

¾(d)

¶¸
(30)

= lim
m¡¯!0

KX
k=1

wk

·
¡ m¡¯k
¾(d)

p
2¼
+
m¡¯k¡1
¾(d)

p
2¼

¸
e¡º

2=2¾2(d)

(31)

=
1

¾(d)
p
2¼
e¡º

2=2¾2(d) lim
m¡¯!0

KX
k=1

wk(¯k ¡¯k¡1) (32)

=
1

¾(d)
p
2¼
e¡º

2=2¾2(d) (33)

where we have used the fact that
PK
k=1wk(¯k ¡¯k¡1)

= 1. The pdf of the range measurements converges to
a zero-mean Gaussian of variance ¾2(d), as expected.
We now look at the limit of g(º). We have

lim
m¡¯!0

³
1+

®

2d
(º+m¡¯)

´
e¡(º+m¡¯)

2=2¾2

= e¡º
2=2¾2 lim

m¡¯!0

μ
1+

®

2d
º+(m¡ ¯)

μ
®

2d
¡ º

¾2
¡ ®º2

2d¾2

¶¶
(34)

so that

lim
m¡¯!0

g(º)

=
1

¾(d)
p
2¼
e¡º

2=2¾2(d) lim
m¡¯!0

KX
k=1

wk

£
·μ

®

2d
¡ º

¾2(d)
¡ ®º2

2d¾2(d)

¶
(¯k¡1¡¯k)

¸
(35)

=
1

¾(d)
p
2¼

μ
®º2

2d¾2(d)
+

º

¾2(d)
¡ ®

2d

¶
e¡º

2=2¾2(d):

(36)

We can then calculate A(¯,d) when ¯ is 0. If we let
y = º=

³
¾(d)

p
2
´
, we obtain

A(0,d) =
1p
¼

Z 1

¡1

μ
®

d
y2 +

p
2

¾(d)
y¡ ®

2d

¶2
e¡y

2
dy (37)

=
1p
¼

·
®2

d2

Z 1

¡1
y4e¡y

2
dy+

μ
2

¾2(d)
¡ ®

2
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=
1p
¼

·
®2
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p
¼

4
+
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2

¾2(d)
¡ ®

2

d2

¶p
¼

2
+
®2

4d2
p
¼

¸
(39)

=
1

¾2(d)
+
®2

2d2
: (40)

In the following we consider the particular case
where the biases are uniformly distributed between 0
and ¯m, with the purpose of emphasizing in a simple
way the role played by the NLOS beacons when
the biases grow. As already mentioned, it can also
model the case where all that is known about the
environment is that the bias cannot be greater than
¯m. The corresponding pdf (9) is plotted on Fig. 2. In
this case the weights A(¯m,d) are equal to

A(¯m,d) =
1

¯m¾(d)¼
p
2

Z 1

¡1
h(y,¯m,d)dy (41)
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Fig. 2. Pdf of error in range measurements r̃i ¡ di when K(i) = 1, given true distance di = 15 m and ¯(i) = ¯m = 2 m.

Fig. 3. A(¯m,d) for several values of d in the case where ¾0 = 0:001 m and ®= 3.

where

h(y,¯,d) =

·μ
e¡y2 ¡ e¡

¡
y+(¯=¾(d)

p
2)
¢2¶³

1+
®¾(d)

d
p
2
ý ¡ ®¯

2d
e
¡
¡
y+(¯=¾(d)

p
2)
¢2¸2

Q
¡p
2y
¢
¡Q
³p

2y+
¯

¾(d)

´ :

(42)

We now turn our attention to the case when the
biases grow to infinity. When ¯m!+1 for a
given d, the integral in (41) tends to a constant so that
we have

A(¯m,d)»
1
¯m

when ¯m!+1: (43)

For a given d, A(¯m,d) therefore approaches 0
as ¯m goes to infinity. From (40) we see that the
same is true when d goes to infinity (so that the
range estimation variance goes to infinity). This is
consistent with our intuition that the larger the bias
or the range estimation variance, the less valuable
the corresponding range information will be in
determining the agent’s position: the corresponding
M(μ) in (21) will receive a low weight and the
contribution from the ith beacon will be small. The
weights A(¯(i),di) therefore quantify the importance
of the information coming from the ith beacon. This
implies that the information from beacons that are
far away (large range measurement variance) or
that are in highly cluttered areas (large bias) will
not contribute much to the FIM. This behavior is
illustrated on Fig. 3, where we used (41) to plot
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A(¯m,d) as a function of ¯m, for several values of d.
It can be seen that when d is small, the weights are
sensitive to changes in ¯m. Indeed at short distances
the variance ¾2(d) of the Gaussian noise is small,
and therefore the dominating term in measurement
inaccuracy is the bias value. However as the
distance increases, the value of ¯m is less significant
since the large ¾2(d) tends to dominate the error. In
any case, as d or ¯m increase, the importance of the
information coming from the corresponding beacon
decreases.
Consider a mix of LOS (for which ¯(LOS)m = 0) and

NLOS beacons with no a priori knowledge of their
biases (the biases can take any nonnegative value
so they have no upper bound, or ¯(NLOS)m !+1).
Then the information from the NLOS beacons is
not used at all in the calculation of the PEB since
lim¯m!+1A(¯m,d) = 0. This observation is consistent
with [28], in which it was shown that in the presence
of a mix of LOS and NLOS beacons (with no
a priori knowledge about the NLOS statistics), the
performance depends only on the LOS beacons. Our
result shows however that in the case where a priori
knowledge of the NLOS beacon biases is available
(which is always the case since biases cannot be
infinitely large), the NLOS beacons should indeed be
taken into account since they contribute to the PEB. In
Section III it will be shown that the contribution from
NLOS beacons can be quite significant.

E. Analytical Expression for PEB

We now use the analytical expression for the FIM
to obtain the PEB in (13). Recall from (21) that the
FIM is a 2£ 2 matrix, so its inverse is easily obtained
as

J¡1 =
1
detJ

266664
nBX
i=1

Ais
2
i ¡

nBX
i=1

Aicisi

¡
nBX
i=1

Aicisi

nBX
i=1

Aic
2
i

377775 (44)

where Ai = A(¯
(i),di), ci = cosμi, and si = sinμi. The

PEB is then equal to

PEB(xA,yA)

=

vuut PnB
i=1Ai¡PnB

i=1Aic
2
i

¢¡PnB
i=1Ais

2
i

¢¡ ¡PnB
i=1Aicisi

¢2 :
(45)

We can also expand the denominator to obtain the
alternate expression:

PEB(xA,yA) =

s PnB
i=1AiP

i<j AiAj sin
2(μj ¡ μi)

: (46)

We stress that the limit on the localization accuracy
given in (45) and (46) depends on the distance
between the agent and the beacons, as well as on the
presence of biases. If the variance were not dependent
on the distance (®= 0) and if no bias were present
(¯(i) = 0 for all i), then according to (40) Ai = 1=¾

2
0 for

all i and the PEB is equal to

PEB(xA,yA) = ¾0

s
nB¡PnB

i=1 c
2
i

¢¡PnB
i=1 s

2
i

¢¡ ¡PnB
i=1 cisi

¢2
(47)

which is the product of the measurement standard
deviation ¾0 and the GDOP. This is the case most
commonly treated in the literature for range-only
localization [28, 25, 23].

III. NUMERICAL CASE STUDIES

We consider a set of nB beacons where nLOS of
them are LOS, while the remaining nNLOS = nB¡nLOS
are NLOS. For the sake of these case studies we
assume we know whether a beacon is LOS or NLOS
(if a map of the environment is available, channel
modeling tools can be used [34], otherwise NLOS
identification techniques exist [35—37]). We note that
in practical applications it may be more realistic to
assign each beacon with a probability of being LOS
and NLOS. Our analysis can be easily extended to this
case.
We call ½ the fraction of LOS beacons, that is

½= nLOS=nB. Typically LOS beacons have no bias
so ¯(i) = 0 for i= 1, : : : ,nLOS. We assume that LOS
beacons are placed such that they are visible from any
location in the area. On the other hand we assume that
all the biases related to NLOS beacons are uniformly
distributed between 0 and ¯m, i.e., ¯

(i) = ¯m for
i= nLOS +1, : : : ,nb. This value will vary from building
to building depending on whether the environment is
highly cluttered or not.
We acknowledge that assuming that beacons

remain LOS or NLOS irrespective of the agent’s
position is not quite realistic, but our goal in the
following case studies is to understand the general
behavior of the PEB as we vary some key parameters
in a simple scenario. The analysis of the previous
sections is perfectly amenable to cases where beacons
are LOS and NLOS depending on the agent’s
location.
The following case studies are carried out with

®= 3 (a typical value for UWB indoor environments
[10]) and ¾0 = 10

¡3 m (derived from the experimental
data described in [33]).
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Fig. 4. Case 1 when d = 5 m (left), and d = 20 m: PEB as function of ¯m (solid), bounded below by PEB when all 6 sensors are LOS
(dotted), and above by PEB when only the 3 LOS beacons are considered (dashed). Lower values of PEB indicate a better localization

accuracy.

A. Case Study 1: Importance of NLOS Beacons

We first consider 6 beacons placed at the vertices
of a polygon of radius d = 5 m and 20 m, and we
assume that 3 beacons are LOS, while the 3 others are
NLOS (therefore ½= 0:5) with a common maximum
bias ¯m. We plot PEB at the center of the polygon as
a function of d and varying ¯m from 0 to 2 m (solid
curve on Fig. 4). Also shown on the figure are the
PEB values if all beacons were LOS (lower dotted
line) and if the NLOS beacons were ignored (upper
dashed line).
It can be seen that when ¯m goes to 0, PEB

converges to the PEB when all beacons are LOS, as
expected since ¯m = 0 corresponds to all beacons
being LOS. On the other hand when ¯m goes to
infinity PEB converges to the upper line. This is
also expected since the information from the NLOS
beacons reduces as ¯m grows larger: for ¯m!+1
their contribution is altogether ignored (as shown
in Section IID). However it is interesting to note
that the NLOS beacons can help significantly in
reducing the PEB, especially when ¯m is small (NLOS
measurements have small biases) or when d is large
(the standard deviation of the range measurements is
large compared to the biases). Therefore the range
information from NLOS beacons should not be
dismissed, as it can greatly improve the localization
accuracy. In particular, if there is an incentive in using
as few beacons as possible to estimate the agent’s
position (e.g. minimization of the number of beacons
deployed, energy conservation in communication, or
computational complexity), these results can be used
to decide which beacons to involve in the localization
process.

B. Case Study 2: Mapping PEB Throughout an Area

For a practical system we may be interested in the
quality of localization not just at one point, but over

an area. Let us map the value of the PEB throughout
a square area for 6 LOS beacons placed at the vertices
of a polygon of radius d = 10 m (Fig. 5). This contour
plot reveals that the center of the polygon is no longer
the location with minimum PEB, contrary to the
common conclusions in the literature based on a
model where the range measurement variance does not
depend on distance between agent and corresponding
beacons [38]. In other words, when the beacons are so
arranged, the agent should not expect to have optimal
localization accuracy in the center of the polygon.
The situation becomes all the more complicated when
NLOS beacons are included.
Suppose that we desire the PEB to be below a

certain threshold ¿ for all points in the area. If at some
location we have PEB> ¿ , then whatever position
estimator is used, the localization accuracy will be
above the required threshold (since the PEB is a lower
bound on the estimator accuracy). In this case we
say that the localization system is in outage at this
location, and we define the outage probability for a
given ¿ as

pout(¿)
¢
=PfPEB> ¿g: (48)

The outage probability tells us that as the agent moves
through the area, with probability pout(¿ ) the PEB will
exceed the required threshold so that the localization
accuracy will be unsatisfactory. If the threshold ¿ is
chosen large enough, then the outage probability will
approach 0, otherwise it will grow as more locations
in the area will not meet the accuracy requirement.
We illustrate this on Fig. 6 where we plot the relative
frequency diagram of the PEB over a 20 m by 20 m
area where 10 beacons are placed at the vertices
of a polygon, with ¯m = 2 m and ½= 0:3. The area
covered for PEB> ¿ represents the outage probability.
Note that in most practical cases beacons will not
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Fig. 5. Case 2: Contour map of PEB when 6 LOS beacons are placed at vertices of polygon with d = 10 m.

Fig. 6. Case 2: Frequency histogram of PEB over area for 10 beacons placed at vertices of polygon, where ¯m = 2 m and ½= 0:3.
Area to right of ¿ represents outage probability.

remain LOS or NLOS for all possible target positions
(exception made for particular cases). However, we
assume here that this is the case in order to show the
importance of the outage probability and the impact
of NLOS beacons. Our approach remains valid in the
more general case.
On Fig. 7 we plot the outage probability as a

function of the threshold ¿ for ½= 0:3 and different
values of ¯m. We also show pout(¿) for the extreme
cases when only the LOS beacons are taken into
account (¯m!+1, rightmost curve) or when all the
beacons are LOS (¯m = 0, leftmost curve). The curves
for positive values of ¯m lie between these two. In

addition, we can observe that for low ¿ the sensitivity
of the outage probability to ¯m becomes larger. If a
certain accuracy threshold is desired, these curves
can help determine whether more beacons should be
deployed. In Table I we show the outage probability
for different values of the threshold ¿ and ¯m.

C. Case Study 3: Results with ²-Localization Accuracy
Outage

In order to capture with a single number the
quality of localization throughout the area, we
define PEB1¡², the ²-localization accuracy outage,
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Fig. 7. Case 2: Outage probability over area of 10 beacons of Fig. 6 for ¯m = 0,0:1, 0.5, 1, 2, 10 m, and limit as ¯m!+1.

TABLE I
Outage Probability for Different Values of ¿ [m] and ¯m [m]

¯m = 0:1 m ¯m = 1 m ¯m = 2 m ¯m!+1
¿ = 0:05 m 0.025 0.4 0.57 0.9
¿ = 0:1 m < 10¡3 0.012 0.04 0.33
¿ = 0:15 m < 10¡3 < 10¡3 < 10¡3 0.09

as the value of the threshold ¿ for which the outage
probability is ², that is

²= PfPEB> PEB1¡²g: (49)

In the remainder of this paper we consider ²= 0:1, so
that PEB90 gives a good indication of the performance
we can expect 90% of the time as we move through
the area. We plot PEB90 as a function of ¯m for
different values of ½ on Fig. 8, when 10 beacons are
placed randomly in a 20 m by 20 m area. Since the
beacons are placed randomly, results are averaged
over 100 trials to form the curves of Fig. 8. It can be
seen that the proportion of LOS and NLOS beacons
has a significant impact on the PEB. If we have
control over ½, then we should try to increase it
especially when ¯m is large and the number of LOS
is relatively small. In other words, increasing the
proportion of LOS beacons in cluttered environments
(if it is possible) will significantly improve the
PEB throughout the area. This plot also tells us
the performance loss if a beacon initially thought
to be LOS turns out to be NLOS. For example
notice the large increase in PEB between ½= 0:5
and ½= 0:4. This penalty grows for larger ¯m and
smaller ½.

We now investigate the benefit of taking NLOS
information into account, compared with the case
where we neglect it. On Fig. 9 we plot the ratio
between PEB90(+1) obtained by using only the LOS
beacons and PEB90(¯m), obtained with both LOS and
NLOS beacons. Large values of this ratio indicate that
the use of NLOS beacons yields a large reduction in
the PEB compared with using only the LOS ones.
The results show that the information from NLOS
beacons can lower the PEB by several factors. This
is especially true when the number of LOS beacons
is relatively small. Also, lower uncertainty in the bias
provides larger improvements in the PEB, indicating
that the information from NLOS beacons is more
useful when ¯m is small.

IV. CONCLUSION

We determined the PEB that describes the limit
on the accuracy of localization using UWB beacons.
We considered the dense cluttered environment in
which range measurements can be positively biased,
and where their variance depends on the distance
between agent and corresponding beacons. The PEB
derived is easy to compute and accounts for the
geometric configuration of the system, the increase
of measurement variance with distance, and the
presence of positive biases with general statistical
characterization.
We then investigated properties of this bound. We

found that, contrary to results where the measurement
variance is treated as constant [38], when the beacons
are at the vertices of a regular polygon the minimum
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Fig. 8. Case 3: Average PEB90(¯m) for 10 beacons randomly placed for different values of ½= nLOS=nB.

Fig. 9. Case 3: Average PEB90(+1)=PEB90(¯m). Large values indicate large reduction in PEB when NLOS beacons are taken into
account.

value of the PEB is not found at the center. We also
found that, in the case of a mix of LOS and NLOS
beacons, the information from the NLOS beacons
can be very valuable: taking the NLOS beacons into
account often yields a significantly lower localization
bound, especially in cluttered environments. We
finally put forth the concept of localization accuracy
outage, which can guide in making design decisions
about the network such as the number and placement
of the beacons, or whether to deploy additional
beacons [32].
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APPENDIX

Referring to (16), let us examine the generic
element in the sum of the upper left element of J. For
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i 6= j we have

Er

(
1

fi(ri j pA)
1

fj(rj j pA)
@fi(ri j pA)
@xA

@fj(rj j pA)
@xA

)

= Er

½
1

fi(ri j pA)
@fi(ri j pA)
@xA
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¢Er
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@fj(rj j pA)
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(50)

since the measurements from beacons i and j are
independent. We can write

Er

½
1

fi(ri j pA)
@fi(ri j pA)
@xA

¾
=
Z +1

¡1

1
fi(ri j pA)

@fi(ri j pA)
@xA

fi(ri j pA)dri

(51)

=
Z +1

¡1

@fi(ri j pA)
@xA

dri: (52)

We know that fi(ri j pA) is a continuous function
of (ri,xA). It is also easy to show that its derivative
@fi(ri j pA)=@xA (see equation (18)) is also continuous,
and that its absolute value is integrable in ri for all
xA. We can therefore exchange the integral with the
derivative so thatZ +1

¡1

@fi(ri j pA)
@xA

dri =
@

@xA

Z +1

¡1
fi(ri j pA)dri = 0

(53)

since
R +1
¡1 fi(ri j pA)dri = 1. The same holds for the

derivative with respect to yA.
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