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Abstract— Distributed learning is an important task in emerg-
ing applications such as localization and navigation, Internet-
of-Things, and autonomous vehicles. This paper establishes a
theoretical framework for learning states that evolve in real
time over networks. Specifically, each agent node in the network
aims to infer a time-varying state in a decentralized manner by
using the node’s local observations and the messages received
from other nodes within its communication range. As a result,
the inference accuracy of a node is significantly affected by
the quality of its received messages. This calls for carefully
designed strategies for generating messages that are able to
provide sufficient information for the receiver and are robust
to channel impairments. This paper presents communication-
efficient encoding strategies for generating transmitted messages
and derives a sufficient condition for the boundedness of the
distributed inference error of all the agent nodes over time.
The findings of this paper provide guidelines for the design
of communication-efficient distributed learning in complex net-
worked systems.

Index Terms— Distributed learning, decentralized network
inference, noisy inference, anytime capacity, multi-agent
networks.

I. INTRODUCTION

DISTRIBUTED learning is critical for complex networked
systems and enables various applications such as location

based services [1], [2], [3], [4] and Internet-of-Things [5], [6],
[7]. In distributed learning, the sensing, communication, and
computing capabilities of different nodes in a network are
exploited for learning unknown states with no or minimum
involvement of a central processor [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19]. In many applications,
the states to be learned are time-varying and central processors
may not be available. For these applications, a node needs to
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learn the unknown states in real time by efficiently fusing the
information contained in its sensor observations and that in
the messages received from other nodes. Such a learning task
is referred to as distributed inference in this paper. Example
applications of distributed inference include localization and
navigation [20], [21], [22], [23], [24], environmental moni-
toring [25], [26], [27], [28], as well as target detection and
tracking [29], [30], [31].

Distributed inference is challenging due to the following
reasons. First, the nodes in the network typically have con-
straints on their communication resources (e.g., power and
bandwidth). Therefore, communication-efficient algorithms
and protocols are required in order to reduce the commu-
nication overhead and to ensure desirable inference accuracy
simultaneously. Second, inter-node communication is typically
affected by channel impairments, leading to corruption and
failures of communication. Consequently, channel coding tech-
niques are required to protect the transmitted messages against
channel impairments. Finally, distributed inference is a time-
sensitive task as the states of interest vary with time. This calls
for low-latency techniques for communication and computing
in order to improve the nodes’ capabilities of inferring their
current states in real time.

Distributed learning and related optimization techniques
have been studied extensively [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42]. An emerging technique that has
attracted significant research interest is federated learning [13],
[14], [15], [16], where nodes in the network aim to learn
a statistical model by performing local computing based on
data they generated and by communicating with a central
processor iteratively. Consensus and diffusion techniques have
been proposed for distributed inference over networks [35],
[36], [37], [38], [39], where each node iteratively exchanges
messages containing information of the unknown states with
other nodes and updates its own estimator based on the
received messages. In addition, many papers study real-time
methods for generating encoded messages exchanged among
nodes, where the encoder only uses currently available infor-
mation without waiting to collect more data [43], [44], [45],
[46], [47], [48], [49], [50], [51], [52], [53], [54]. An important
notion for real-time encoding is the anytime capacity proposed
in [55], which is used for establishing necessary and sufficient
conditions under which a dynamic system can be stabilized
over noisy channels.

Common limitations of known results on distributed learn-
ing and distributed inference are that they do not consider
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constraints on the data rates of transmitted messages or do
not account for channel impairments. In addition, some works
rely on iterative mechanisms for exchanging messages and
integrating information across the network, which can incur
significant latency and communication overhead. As a result,
communication-efficient distributed inference in complex net-
worked systems remains a challenging problem.

Fundamental questions related to distributed inference
include what are the requirements on sensing and communica-
tion capabilities of the network for achieving desirable accu-
racy and how to perform communication-efficient message
generation and message exchange in the network? Answers
to these questions will provide guidelines for the design of
distributed learning algorithms in networked systems. The
goal of this paper is to establish a theoretical foundation
for distributed inference of time-varying states in complex
networked systems. The key contributions of this paper are
as follows:
• we present a general model for distributed inference

of time-varying states in complex networked systems
without any central processors;

• we design real-time methods for generating encoded
messages exchanged among nodes and for inferring the
unknown states in a distributed manner;

• we establish a sufficient condition on the network’s
sensing and communication capabilities under which the
distributed inference error is bounded; and

• we evaluate the performance of the designed distributed
encoding and inference methods for the application of
network localization and navigation (NLN).

This paper focuses on sufficient conditions for the dis-
tributed inference error to be bounded. A companion paper
[56] derives a necessary condition on the network’s sensing
and communication capabilities of the network under which
the distributed inference error is bounded. The remaining
sections are organized as follows: Section II presents the
problem formulation. Section III describes preliminaries used
in the paper. Section IV presents a few important notions
for presenting the results of the paper. Section V presents
the main result of the paper: a sufficient condition under
which the distributed inference error is bounded over time.
Section VI presents case studies of the established sufficient
condition, together with results for the application of NLN.
Finally, Section VII gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x; a random vector and its realization
are denoted by x and x, respectively. The expectation of x
is denoted by E{x}, whereas the conditional expectation of
x given a random vector y is denoted by E{x | y}. Given
a discrete-time stochastic process {xt}t⩾0, the notation xs : t

represents the vertical concatenation of xs, xs+1, . . . , xt for
integers 0 ⩽ s ⩽ t. The sets of real numbers and complex
numbers are denoted by R and C, respectively. Logarithms
of a positive number x with base 2 is denoted by log x. The
cardinality of a set X is denoted by |X |. The dimensionality

Fig. 1. Distributed inference over networks via sensing and communication.

of a linear subspace S is denoted by dim(S). The sum
and direct sum of two subspaces S1 and S2 are denoted by
S1 + S2 and S1 ⊕ S2, respectively. The precedence of sum
and direct sum is lower than that of the operator ∩ in all
expressions. For example, S1 + S2 ∩ S3 = S1 + (S2 ∩ S3)
for subspaces S1, S2, and S3. The Euclidean norm and
the ith entry of a vector x are denoted by ∥x∥ and [x]i,
respectively. The transpose, column space, and spectral norm
(i.e., the largest singular value) of matrix A are denoted by
AT, C(A), and ∥A∥, respectively. Notation diag{·} represents
a block diagonal matrix with the arguments being its diagonal
blocks. For example, diag{A, B} :=

[
A 0
0 B

]
. The horizontal

concatenation of matrices A and B (resp. row vectors aT

and bT) with the same number of rows is denoted by [A B]
(resp.

[
aT bT

]
). The Kronecker product of matrices A and

B is denoted by A ⊗B. The m-by-n matrix of zeros (resp.
ones) is denoted by 0m×n (resp. 1m×n); when n = 1, the
m-dimensional vector of zeros (resp. ones) is simply denoted
by 0m (resp. 1m); the m-by-m identity matrix is denoted by
Im: the subscript is omitted when the size of the matrix is
clear from the context. Notations and definitions for important
quantities used in the paper are summarized in Table I.

II. PROBLEM FORMULATION

Consider a set V of nodes where each node is associated
with a time-varying unknown state. Each node in the network
can perform observations and exchange messages with other
nodes within its communication range. Based on whether a
pair of nodes are within the communication range of each
other, an undirected graph Gu = {V, Eu} with vertex set V and
edge set Eu is constructed, as shown in Fig. 1. Specifically,
the vertex set V consists of all the nodes, and an edge
(i, j) ∈ Eu exists if and only if nodes i and j are within the
communication range of each other. In this case, node j is a
neighbor of node i and vice versa. The neighbor set of node j

is denoted by N (j)
u . This paper considers connected graph Gu,

i.e., there is a path between any two different vertices in the
graph.

Each node in the network performs noisy observations
of its own state and the states of its neighbors. Moreover,
a node generates encoded messages and transmits them to
its neighbors. A block diagram containing the unknown state,
observations, and encoded messages associated with a node j

Authorized licensed use limited to: MIT Libraries. Downloaded on March 19,2023 at 15:54:48 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: COMMUNICATION-EFFICIENT DISTRIBUTED LEARNING OVER NETWORKS—I 1083

TABLE I
NOTATIONS AND DEFINITIONS OF IMPORTANT QUANTITIES

is shown in Fig. 2. A discrete-time model is adopted for these
quantities with details presented below.
• Unknown state: The d-dimensional state of node j at time

t is represented by x
(j)
t ∈ Rd. In particular, x

(j)
t satisfies

x
(j)
t = A(j)x

(j)
t−1 + ζ(j)t for t = 1, 2, . . . (1)

where A(j) is a known matrix called dynamic matrix
of node j, and ζ(j)t is a zero-mean random vector
representing the disturbance to the state. In this paper,
the dimensions of the states for different nodes are the
same for notational simplicity. The extension to scenarios
where these dimensions are different is straightforward.

• Observations: Node j is equipped with sensors ja and
jb for obtaining intra-node observations and inter-node
observations, respectively. Specifically, node j obtains an
intra-node observation z

(jj)
t and obtains an inter-node

observation z
(ji)
t with each neighbor i ∈ N (j)

u at time t.
Therefore, the observations obtained by node j at time t

consist of z
(jj)
t and z

(ji)
t for all i ∈ N (j)

u . In particular,

z
(jj)
t depends on node j’s state and can be written as

z
(jj)
t = Γ (jj)x

(j)
t + n

(jj)
t for t = 0, 1, . . . (2)

where Γ (jj) is a known sensor gain matrix, and n
(jj)
t is a

zero-mean random vector representing observation noise.
The observation z

(ji)
t depends on the states of node j as

well as node i and can be written as

z
(ji)
t = Γ

(ji)
1 x

(j)
t + Γ

(ji)
2 x

(i)
t + n

(ji)
t for t = 0, 1, . . .

(3)

where Γ
(ji)
1 and Γ

(ji)
2 are known sensor gain matrices,

and n
(ji)
t is a zero-mean random vector representing

observation noise.
The sensor gain matrices Γ (jj), Γ

(ji)
1 , and Γ

(ji)
2 deter-

mine the sensing capability of node j. For example,
if Γ (jj) = I , then the intra-node observation z

(jj)
t is

a noisy version of node j’s state x
(j)
t and is informative

for inferring x
(j)
t . By contrast, if Γ (jj) = 0, then z

(jj)
t
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Fig. 2. Block diagram of node j: sensor ja observes z
(jj)
t whereas sensor jb observes z

(ji)
t and z

(jk)
t at time t. The observations and received messages

are used for generating encoded messages m
(ji)
t and m

(jk)
t and for computing estimator x̂

(j)
opt,t.

contains only noise n
(jj)
t and is thus not useful for

inferring x
(j)
t .

• Encoded message: Node j performs real-time encoding
and transmits encoded message m

(ji)
t to its neighbor i ∈

N (j)
u via channel ji. The transmitted message m

(ji)
t is a

deterministic function of the local observations made by
node j up to time t as well as the messages received by
node j up to time t − 1. Specifically, let r

(kj)
t represent

the data received by node j from node k ∈ N (j)
u at a

general time step t. Then m
(ji)
t can be written as

m
(ji)
t = µ

(ji)
t

(
z
(jj)
0:t ,

{
z
(jk)
0:t , r

(kj)
0:t−1 : k ∈ N (j)

u

})
where µ

(ji)
t is referred to as the encoding function of

node j for node i at time t. Moreover, the sequence of
encoding functions µ

(ji)
0 , µ

(ji)
1 , . . . is referred to as the

encoding strategy of node j for node i.
The following assumptions are made on the initial state

x
(j)
0 , state disturbance ζ(j)t , as well as observation noise n

(jj)
t

and n
(ji)
t .

A1. Vectors x
(j)
0 , ζ(j)t , n

(jj)
t , and n

(ji)
t have probability den-

sities for all j ∈ V , i ∈ N (j)
u , and t ⩾ 0.

A2. Vectors ζ(j)t are independent over time t. Similarly, n
(jj)
t

and n
(ji)
t are independent over t for all j ∈ V and

i ∈ N (j)
u . Moreover, x

(j)
0 ,

{
ζ
(j)
t

}
t⩾0

,
{
n

(jj)
t

}
t⩾0

, and{
n

(ji)
t

}
t⩾0

are independent over all j ∈ V and i ∈ N (j)
u .

A3. For any real number a > 0, sequences
{
E

{∥∥ζ(j)t

∥∥a}}
t⩾0

,{
E

{∥∥n
(jj)
t

∥∥a}}
t⩾0

, and
{
E

{∥∥n
(ji)
t

∥∥a}}
t⩾0

are bounded

from above for all j ∈ V and i ∈ N (j)
u .

Assumption A3 holds if the tail of the distribution for each
entry of ζ(j)t , n

(jj)
t , and n

(ji)
t is not heavy. As an example,

if ζ(j)t has an identical distribution for all time steps t, and

each entry of ζ(j)t is a sub-exponential random variable,1 then{
E

{∥∥ζ(j)t

∥∥a}}
t⩾0

is bounded from above for all a > 0. This
example shows that Assumption A3 applies to various types of
distributions for ζ(j)t , n

(jj)
t , and n

(ji)
t . Therefore, unlike some

existing works with strong assumptions on the distributions of
the disturbance and noise (e.g., they have Gaussian distribu-
tions or bounded supports), the model considered in this paper
is general.

For simplicity of the presentation, the magnitudes of all
the eigenvalues of A(j) are considered to be no smaller than
one for all j ∈ V . Results in this paper can be extended to
scenarios where the magnitudes of certain eigenvalues of A(j)

are smaller than one.
The following assumptions are made for the channels in the

network.
A4. Given the transmitted message m

(ji)
t , the received mes-

sage r
(ji)
t is conditionally independent of x

(j)
0 ,

{
ζ
(j)
t

}
t⩾0

,{
n

(jj)
t

}
t⩾0

, and
{
n

(ji)
t

}
t⩾0

.
A5. The channel between each pair of nodes is memoryless.

Moreover, the channel state information is known to both
the transmitter and the receiver.

Moreover, the paper considers scenarios where a multi-
ple access scheme such as time-division multiple access or
frequency-division multiple access is employed so that the
communications among different channels do not interfere
with each other. In fact, the sufficient condition established
in Section V can be used to facilitate the design of a multiple
access scheme.

The network contains a subset Va ⊆ V of nodes referred
to as agents. Note that Va can be any non-empty subset of V ,
from a singleton {j} to the entire set V . An agent node j aims

1A random variable x is sub-exponential if there exists a constant c > 0
such that P{|x| > x} ⩽ 2 exp{−cx} for any x ⩾ 0 [57, Chapter 2].
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to learn its state x
(j)
t in a distributed manner using its local

observations and messages received from its neighbors (see
Fig. 2). In particular, a distributed estimator x̂

(j)
t of x

(j)
t is a

function of node j’s observations
{
z
(jj)
0:t

}
∪

{
z
(ji)
0:t : i ∈ N (j)

u

}
and received messages

{
r
(ij)
0:t : i ∈ N (j)

u

}
up to time t.

A widely used metric for the inference error associated with
x̂
(j)
t is its mean-square error (MSE). To minimize the MSE,

the optimal distributed estimator for node j at time t is the dis-
tributed minimum-mean-square-error (MMSE) estimator x̂

(j)
opt,t

given by the conditional expectation

x̂
(j)
opt,t := E

{
x
(j)
t

∣∣∣ z(jj)
0:t ,

{
z
(ji)
0:t , r

(ij)
0:t : i ∈ N (j)

u

}}
.

The MSE of this estimator, which is referred to as the
individual distributed inference MSE of agent j at time t, is
given by

ε
(j)
t := E

{∥∥x̂
(j)
opt,t − x

(j)
t

∥∥2
}

. (4)

The objective function Ft at time t for the learning problem
is the total distributed inference MSE of all the agents when
distributed MMSE estimators are employed, i.e.,

Ft :=
∑
j∈Va

ε
(j)
t .

The objective function Ft is affected by the messages
exchanged across the network, which are determined by the
encoding strategies employed by the nodes. The fundamental
limit of distributed inference is the value of Ft achieved by
optimal encoding strategies. Such a value is determined by
the sensing and communication capabilities of the network.
The paper aims to study the fundamental limit of distributed
inference by establishing a sufficient condition under which
encoding strategies can be designed so that the sequence
{Ft}t⩾0 is bounded from above, i.e.,

sup
t⩾0

Ft < ∞ . (5)

This is equivalent to

sup
t⩾0

ε
(j)
t < ∞ ∀j ∈ Va . (6)

In other words, the boundedness of the total distributed
inference MSE over time is equivalent to the boundedness
of the individual distributed inference MSE of each agent.
Boundedness of error is an important property of estimators
and it has been studied in [25], [58], and [59]. Moreover,
the boundedness of {Ft}t⩾0 can be viewed as the stability of
the inference error x̂

(j)
opt,t − x

(j)
t for all j ∈ Va. Stability is

so critical for dynamic systems that it has piqued significant
research interest [46], [51], [60].

The distributed learning problem described above is non-
linear even though the state evolution and observation models
are linear, as the encoding function µ

(ji)
t is not limited to

be linear. This increases the difficulty of the problem as
conventional linear estimation techniques such as Kalman
filtering cannot be directly applied. The problem studied in this
paper is different from those in many existing works on the
distributed inference of a global unknown state. These works

typically employ a consensus mechanism to ensure that the
estimators of the global unknown state at different nodes in the
network are consistent. By contrast, each agent in our problem
aims to infer in real time its own state, and thus a consensus
mechanism is not employed.

III. PRELIMINARIES

This section presents preliminaries on invariant subspaces
and real generalized eigenspaces as well as notions of anytime
reliability and anytime capacity.

A. Invariant Subspaces and Real Generalized Eigenspaces

First, the notion of invariant subspace, which is used for
the design of real-time encoder in Section V, is introduced.
Consider a subspace Y ⊆ Rn and a linear mapping f : Rn 7→
Rn defined as f(u) = Fu for all u ∈ Rn, where F is an
n-by-n real matrix. A subspace Y is said to be F -invariant if
and only if Fu ∈ Y for all u ∈ Y . The sum and intersection of
a finite number of F -invariant subspaces are also F -invariant.
Define subspace IF (Y) as

IF (Y) := C
([

Y FY · · · F n−1Y
])

(7)

where Y is a matrix whose columns form a basis of Y . Sub-
space IF (Y) contains Y and is F -invariant. Subspace IF (Y)
is referred to as the minimum F -invariant subspace over Y
[61, Chapter 2], since there is no F -invariant subspace that
both contains Y and is strictly contained by IF (Y). Moreover,

IF (Y1 + Y2) = IF (Y1) + IF (Y2) (8)

for any two subspaces Y1,Y2 ⊆ Rn.
Next, the notion of real generalized eigenspace is intro-

duced. Let Λ(F ) represent the set of all the eigenvalues of
F ∈ Rn×n that are either real or have positive imaginary
parts. Mathematically,

Λ(F ) :=
{
λ : Im(λ) ⩾ 0; ∃u ∈ Cn, u ̸= 0 s.t. Fu = λu

}
(9)

where Im(λ) represents the imaginary part of λ. A real
generalized eigenspace Mλ(F ) is defined for each λ ∈ Λ(F )
as

Mλ(F ) :=

{
MC

λ (F ) ∩ Rn if λ ∈ R(
MC

λ (F ) +MC
λ∗(F )

)
∩ Rn otherwise

(10)

where

MC
λ (F ) :=

{
u ∈ Cn :

(
F − λI

)n
u = 0

}
(11)

represents the subspace spanned by generalized eigenvectors
[62] of F associated with λ over the field C of complex
numbers. Definition (10) indicates that Mλ(F ) is a set of
real vectors. If λ ∈ R, then each element of Mλ(F ) is a
generalized eigenvector of F associated with λ. Otherwise,
each element of Mλ(F ) can be written as the sum of two
generalized eigenvectors of F associated with λ and λ∗,
respectively. The set Mλ(F ) is a subspace of Rn and we
refer to such a subspace as a real generalized eigenspace of
F associated with λ. Real generalized eigenspaces can be
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used for representing a real square matrix as its real Jordan
canonical form via similarity transformation. This technique
has been used for the investigation of dynamic systems in
the literature. It is also used in this paper for analyzing the
accuracy of the designed distributed estimator.

Real generalized eigenspace Mλ(F ) can be shown to be
F -invariant. Moreover, the next proposition shows a decom-
position of invariant subspaces using real generalized
eigenspaces.

Proposition 1: For any real square matrix F , an arbitrary
F -invariant subspace Y can be decomposed as

Y =
⊕

λ∈Λ(F )

(
Y ∩Mλ(F )

)
.

Notation ⊕ in this proposition represents the direct
sum of subspaces and its definition can be found in
[62, Chapter 4]. Proposition 1 is adapted from the theorem
stating that a complex invariant subspace can be decom-
posed using complex generalized eigenspaces [62, Chapter 4].
Different from that theorem, Proposition 1 focuses on the
decomposition of a real subspace using real generalized
eigenspaces. As a special case, consider F ∈ Rn×n and
Y = Rn. Proposition 1 shows that Rn = ⊕λ∈Λ(F )Mλ(F ).

B. Anytime Reliability and Anytime Capacity

The notions of anytime reliability and anytime capacity
were introduced in [55]. Consider a communication system
consisting of a transmitter node and a receiver node. The
transmitter aims to send a sequence of data symbols to the
receiver via a channel. Unlike classical block-coding where all
the data symbols are available to the transmitter beforehand,
the transmitter in this communication system obtains data
symbols sequentially: at each time t, a new data symbol st

from an alphabet with 2r elements is available to the trans-
mitter. Based on available data symbols s0:t, the transmitter
generates an encoded message mt and sends it at each time
t. In other words, the transmitter performs real-time encoding
without waiting for the entire data symbol sequence to be
available. Such a transmitter is referred to as an anytime
encoder.

Let rt represent the message obtained by the receiver at
time t, which can be different from mt due to impairments
in the communication channel. At each time, the receiver
estimates all the symbols that have been sent by the transmitter.
Specifically, at time t, the receiver generates an estimator
ŝt′(r0:t) of st′ based on r0:t for all t′ ∈ {0, 1, . . . , t}. In other
words, the receiver decodes the transmitted symbols without
waiting for the transmitter to complete sending the entire
data symbol sequence. Such a receiver is referred to as an
anytime decoder. The estimators ŝt′(r0:t1) and ŝt′(r0:t2) for
st′ computed at two different times t′ ⩽ t1 < t2 are
not necessarily equal. In fact, the accuracy of the estimator
ŝt′(r0:t2) is expected to be higher compared with that of
ŝt′(r0:t1) as more messages have been received at t2 than
at t1.

The system described above is called rate r sequential com-
munication system. This system achieves α-anytime reliability

if there exists a constant K such that

P
{
ŝ0:t′(r0:t) ̸= s0:t′

}
⩽ K2−α(t−t′)

∀ t ⩾ 0, 0 ⩽ t′ ⩽ t (12)

where ŝ0:t′(r0:t) represents the concatenation of ŝ0(r0:t),
ŝ1(r0:t), . . . , ŝt′(r0:t). Anytime reliability is interpreted as fol-
lows. The left-hand side of (12) represents the probability of
decoding error for the transmitted symbols s0:t′ at time t,
i.e., the probability of error if a decoding delay of t − t′

time steps is allowed for estimating s0:t′ . Anytime reliability
requires that such probability should decrease at least expo-
nentially fast with respect to the delay t − t′ at rate α. Note
that t is an arbitrary integer that is no smaller than t′, which
indicates that s0:t′ is required to be estimated for any delay.
This is the reason for the qualifier “anytime”.

The α-anytime capacity C̆(α) of a channel is defined as
the smallest upper bound of r such that a rate r sequential
communication system that achieves α-anytime reliability
exists. The anytime capacity C̆(α) is a monotonically non-
increasing function of the parameter α. For a memoryless
channel, it holds that C̆(α) ⩽ C for any α ⩾ 0, where C
represents the Shannon capacity of the channel. Similar to
Shannon capacity, the anytime capacity of a channel is affected
by the communication resource available to the transmitter
(e.g., power and bandwidth) and the signal degradation intro-
duced by the channel (e.g., fading and noise). More properties
of anytime capacity can be found in [55], [63], [64].

IV. NOTIONS FOR ESTABLISHING SUFFICIENT CONDITION

This section presents important notions for establishing the
sufficient condition on the boundedness of the total distributed
inference MSE over time. First, this section introduces a
concatenated state and describes ordered trees based on the
graph corresponding to the network. Then, it introduces the
observable subspace. Finally, this section presents invariant
encoding subspaces (IESs), which are used for the design of
encoders and distributed estimators detailed in Section V.

A. Concatenated State

Define the concatenated state xt, noise ζt, and matrix A
as

xt :=
[(

x
(1)
t

)T (
x
(2)
t

)T · · ·
(
x
(v)
t

)T
]T

(13a)

ζt :=
[(
ζ
(1)
t

)T (
ζ
(2)
t

)T · · ·
(
ζ
(v)
t

)T
]T

(13b)

A := diag
{
A(1), A(2), . . . ,A(v)

}
. (13c)

where v := |V| is the number of nodes in the network.
According to (1) and (13),

xt = Axt−1 + ζt (14)

x
(j)
t = (ej,v ⊗ Id)Txt (15)

where for a given positive integer m, ek,m represents a unit
vector of m entries with its kth entry being one and other
entries being zero for 1 ⩽ k ⩽ m. An agent j aims to infer
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(ej,v⊗Id)Txt according to (15). Denote the column space of
ej,v ⊗ Id by X (j), i.e.,

X (j) := C(ej,v ⊗ Id) ⊆ Rdv. (16)

Subspace X (j) can be viewed as a subspace that corresponds
to x

(j)
t and is thus referred to as node j’s state subspace.

Observations z
(jj)
t and z

(ji)
t can be expressed in terms of

the concatenated state xt. To this end, define Γ̊ (jj) and Γ̊ (ji)

as

Γ̊ (jj) := eT
j,v ⊗ Γ (jj) (17a)

Γ̊ (ji) := eT
j,v ⊗ Γ

(ji)
1 + eT

i,v ⊗ Γ
(ji)
2 . (17b)

Then z
(jj)
t and z

(ji)
t can be written as

z
(jj)
t = Γ̊ (jj)xt + n

(jj)
t (18a)

z
(ji)
t = Γ̊ (ji)xt + n

(ji)
t . (18b)

The introduction of xt as well as the view of z
(jj)
t and z

(ji)
t

as observations of xt only serve to facilitate the development
and presentation of the results. They do not change either
the system model or the decentralized nature of the inference
problem being studied. In particular, (14) is equivalent to (1),
whereas (18) is equivalent to (2) and (3). Moreover, each node
performs inference based only on its local observations and
messages received from its neighbors.

B. Ordered Tree Based on the Graph

Recall that Gu is an undirected graph constructed based on
whether nodes in the network are within the communication
range of each other, as described in Section II. Here, we intro-
duce a tree referred to as an ordered tree based on Gu. First,
construct an arbitrary spanning tree of Gu by removing edges
from it. Then, assign a node in V as the root node of the tree,
based on which a neighbor of each node is classified as either
the parent or a child of that node. Finally, an order of all the
children of each node is specified. The tree T constructed in
this manner is referred to as an ordered tree based on Gu.
Define E as the set of edges in T , and let N (j) represent the
set of neighbors of node j in T , i.e.,

N (j) := {i : (i, j) ∈ E}.

Note that E and N (j) are subsets of Eu and N (j)
u presented

in Section II, respectively. In addition, define N (j) := |N (j)|
as the number of neighbors for node j in T . If node j is
the root of T , then all its neighbors are its children with the
nth child denoted by č

(j)
n for n ∈ {1, 2, . . . , N (j)}. Otherwise

node j has N (j)− 1 children and one parent. In this case, the
nth child is denoted by č

(j)
n for n ∈ {1, 2, . . . , N (j) − 1} and

the parent is denoted by č
(j)

N(j) .
Given an ordered tree T , define z̊

(j)
t as the concatenation

of node j’s intra-node observation as well as the inter-node
observations obtained by node j with all its neighbors in N (j)

at time t. Mathematically,

z̊
(j)
t :=

[(
z
(jj)
t

)T (
z
(j i1)
t

)T (
z
(j i2)
t

)T · · ·
(
z
(j in)
t

)T
]T

.

(19)

Fig. 3. Set Vj

(
N (j)

s

)
in an arbitrary ordered tree based on the graph: N (j)

s

consists of the three nodes inside dashed green circles, whereas Vj

(
N (j)

s

)
consists of nodes to the upper-right of the dashed blue line.

where indices i1, i2, . . . , in are all the elements of N (j).
Moreover, define r̊

(j)
t as the messages received by node j from

its neighbors in N (j) at time t, i.e.,

r̊
(j)
t :=

[(
r
(i1 j)
t

)T (
r
(i2 j)
t

)T · · ·
(
r
(in j)
t

)T
]T

. (20)

Finally, a useful subset of nodes is defined given an arbitrary
ordered tree T based on Gu. For any j ∈ V and subset N (j)

s

of its neighbor set N (j), define Vj

(
N (j)

s

)
⊆ V as a subset

consisting of node j and nodes that are connected to j if edges
(j, l) are removed from T for all l ∈ N (j)

s . Mathematically,

Vj

(
N (j)

s

)
:= {j} ∪

{
k ∈ V : k ↔ j in graph{
V, E \ {(j, l) : l ∈ N (j)

s }
}}

(21)

where k ↔ j represents that there is a path between nodes k
and j. This definition is illustrated in Fig. 3.

C. Observable Subspace

The observations z̊
(j)
t can be expressed as a function of

the concatenated state xt. To this end, define the sensor gain
matrix Γ̊ (j) and concatenated observation noise n̊

(j)
t as

Γ̊ (j) :=
[(

Γ̊ (jj)
)
T

(
Γ̊ (j i1)

)T (
Γ̊ (j i2)

)T · · ·
(
Γ̊ (j in)

)T
]T

n̊
(j)
t :=

[(
n

(jj)
t

)T (
n

(j i1)
t

)T (
n

(j i2)
t

)T · · ·
(
n

(j in)
t

)T
]T

where indices i1, i2, . . . , in are all the elements of N (j).
Combining these definitions with (18) and (19), z̊

(j)
t can be

written as

z̊
(j)
t = Γ̊ (j)xt + n̊

(j)
t . (22)

Viewing z̊
(j)
t as observations of xt, the observability

matrix corresponding to observations obtained by node j is
O

(
Γ̊ (j), A

)
, where O(G, F ) is defined as [65], [66], [67]

O(G, F ) :=
[
GT F TGT · · · (F k−1)TGT

]T

(23)
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for general matrices F ∈ Rk×k and G with k columns. Define
S({j}) as the column space of O

(
Γ̊ (j), A

)T
, i.e.,

S({j}) := C
(
O

(
Γ̊ (j), A

)T
)

∀j ∈ V (24)

and we call it the observable subspace corresponding to
observations obtained by node j.

Next, we present a lemma on constructing a local estimator
of a linear transformation of the concatenated state. This
lemma provides insight on the observable subspace S({j})
and is used for designing distributed encoders and estimators.

Lemma 1: Any node j in the network can construct a local
estimator ξ̂

(j)

t of O
(
Γ̊ (j), A

)
xt at each time t ⩾ 0 using its

local observations z̊
(j)
0:t such that the following inequality holds

for any a ⩾ 2

sup
t⩾0

E
{∥∥ξ̂(j)t −O

(
Γ̊ (j), A

)
xt

∥∥a
}

< ∞ . (25)

Proof: See Appendix A.
Lemma 1 indicates that node j can construct an estimator of

O
(
Γ̊ (j), A

)
xt with bounded error using only its observations.

This is why the column space S({j}) of O
(
Γ̊ (j), A

)T
is

referred to as an observable subspace in this paper.
Remark 1: The relationship between X (j) and S({j})

determines whether node j is able to compute an estimator of
x
(j)
t with bounded MSE using only its local observations z̊

(j)
0:t .

Specifically, if X (j) ⊆ S({j}), then ej,v⊗Id can be written as
ej,v ⊗ Id = O

(
Γ̊ (j), A

)T
Φ(jj) for some deterministic matrix

Φ(jj). Then, node j can employ
(
Φ(jj)

)T
ξ̂
(j)

t as an estimator
of x

(j)
t = (ej,v ⊗ Id)Txt, and it can be shown using (25)

that supt⩾0 E
{∥∥(

Φ(jj)
)T
ξ̂
(j)

t −x
(j)
t

∥∥2}
< ∞. In other words,

node j can construct an estimator of x
(j)
t whose MSE is

bounded over time using only its local observations and not its
received messages. Of course, the relationship X (j) ⊆ S({j})
does not hold in general. Consequently, node j requires not
only its local observations but also its received messages in
order to construct a distributed estimator of x

(j)
t whose MSE

is bounded over time. This will be explained in Section IV-D.
The definition of S({j}) can be generalized to cases where

the argument of S(·) is an arbitrary non-empty subset V0 ⊆ V .
Specifically, define S(V0) as

S(V0) := C
(
O

([
Γ̊ (j)

]
j∈V0

, A
)T

)
(26)

where
[
Γ̊ (j)

]
j∈V0

represents the vertical concatenation of Γ̊ (j)

for all j ∈ V0. Subspace S(V0) is referred to as the observable
subspace corresponding to observations obtained by nodes in
V0. Definition (24) is a special case of (26) with V0 = {j}.
Subspace S(V0) can be interpreted in a similar manner as
S({j}). In particular, if X (j) ⊆ S(V0), then an estimator of
x
(j)
t whose MSE is bounded over time can be constructed

based on observations
{̊
z
(j)
0:t : j ∈ V0

}
. Subspace S(V0) has

the following properties: for any subsets V0 ⊆ V and V ′0 ⊆ V ,
it holds that

S(V0) = IAT

(
S(V0)

)
S(V0 ∪ V ′0) = S(V0) + S(V ′0) . (27)

In particular, the first equality shows that S(V0) is
AT-invariant.

D. Invariant Encoding Subspace (IES)

This subsection presents the notion of IES, which is used for
constructing encoders and estimators in distributed learning.
Given an ordered tree T based on Gu, a subspace H(ij)

named IES can be constructed for each j ∈ V and i ∈ N (j).
Specifically, an IES is a subspace that satisfies the properties
described in the following proposition, where we recall that
Va is the set consisting of all the agents in the network.

Proposition 2: Consider an arbitrary ordered tree T based
on Gu. If the state subspace of every agent is contained in the
observable subspace corresponding to observations obtained
by all the nodes in the network, namely

X (j) ⊆ S(V) (28)

for all j ∈ Va, then there exists an AT-invariant subspace
H(ij) ⊆ Rdv for every j ∈ V and i ∈ N (j) with the following
properties

X (j) ⊆ S({j}) +
∑

i∈N (j)

H(ij) ∀j ∈ Va (29a)

H(ij) ⊆ S({i}) +
∑

k∈N (i)\{j}

H(ki) ∀j ∈ V, i ∈ N (j) (29b)

H(ij) ⊆ X (i) + X (j) ∀j ∈ V, i ∈ N (j). (29c)

Furthermore, there exists a subspace G(ij)
λ ⊆ Mλ(AT) for

each j ∈ V , i ∈ N (j), and λ ∈ Λ
(
A(j)

)
such that

H(ij) =
∑

λ∈Λ(A(j))

IAT

(
G(ij)

λ

)
(30)

and the dimension of G(ij)
λ is given by (59) in Appendix B.

Proof: See Appendix B. In particular, G(ij)
λ is given in (63)

if node i is a child of node j and is given in (64) if node i is
the parent of node j.

Define H(ij) as a matrix whose columns form an orthonor-
mal basis of H(ij), i.e.,

C
(
H(ij)

)
= H(ij),

(
H(ij)

)T
H(ij) = I

∀j ∈ V, i ∈ N (j). (31)

The IES H(ij) is employed by the designed encoder for
generating the transmitted messages from node i to node j.
In particular, the properties of IES given in (29) are important
for the design of distributed encoder and estimator as well
as for proving the sufficient condition. Here, the design of
distributed estimator at agent j using (29a) is explained as an
example. As described in Section IV-C, if X (j) ̸⊆ S({j}),
then node j needs to use both its local observations and
its received messages for computing a distributed estimator
of x

(j)
t = (ej,v ⊗ Id)Txt with bounded MSE. Specifically,

if (28) holds, and thus (29a) holds according to Proposition 2,
then ej,v ⊗ Id can be written as a linear combination of
O

(
Γ̊ (j), A

)T
and

{
H(ij) : i ∈ N (j)

}
, i.e.,

ej,v ⊗ Id = O
(
Γ̊ (j), A

)T
Φ(jj) +

∑
i∈N (j)

H(ij)Φ(ij) (32)
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for some matrices Φ(jj) and {Φ(ij) : i ∈ N (j)}. Here,
we recall that the column spaces of ej,v⊗Id and O

(
Γ̊ (j), A

)T

are X (j) and S({j}) according to (16) and (24), respectively.
Taking transpose of (32) and right-multiplying it with xt gives

x
(j)
t =

(
Φ(jj)

)T
O

(
Γ̊ (j), A

)
xt +

∑
i∈N (j)

(
Φ(ij)

)T(
H(ij)

)T
xt .

(33)

At time t, agent j computes an estimator of O
(
Γ̊ (j), A

)
xt

using its local observations z̊
(j)
0:t and computes an estimator of(

H(ij)
)T

xt using messages r
(ij)
0:t received from node i for each

i ∈ N (j). Then, agent j linearly combines these estimators
using coefficient matrices Φ(jj) and

{
Φ(ij) : i ∈ N (j)

}
to obtain a distributed estimator of x

(j)
t . Details of such a

distributed estimator is presented in Section V-C.
Similar to (29a), relationship (29b) is used for designing the

encoder as detailed in Section V-B. Furthermore, (29c) shows
that dim(H(ij)) ⩽ dim(X (i)) + dim(X (j)) = 2d. In other
words, the dimension of H(ij) is at most twice the number of
entries in x

(j)
t , which is not affected by the size of the network.

Finally, (30) shows how H(ij) is constructed.

V. SUFFICIENT CONDITION FOR THE BOUNDEDNESS OF
TOTAL DISTRIBUTED INFERENCE MSE

This section first states the established sufficient condition
for the boundedness of the total distributed inference MSE
over time. Then, the designed distributed encoder and estima-
tor are presented, and the accuracy of the designed estimator is
analyzed. Finally, the tightness of the established condition as
well as the communication efficiency of the designed encoder
and estimator are discussed.

A. Statement of the Sufficient Condition

The next theorem presents a sufficient condition for the
existence of encoding strategies that ensure the learning objec-
tive function, namely the total distributed inference MSE,
is bounded over time.

Theorem 1: Consider the distributed learning problem pre-
sented in Section II. For this problem, a sufficient condition
for achieving supt⩾0 Ft < ∞ is given as follows: there exists
an ordered tree T based on Gu such that both of the following
two subconditions hold:

(i) Relationship (28) holds for every j ∈ Va.
(ii) The α(j)-anytime capacity C̆(ij)

(
α(j)

)
of the channel

from node i to node j satisfies

C̆(ij)
(
α(j)

)
>

∑
λ∈Λ(A(j))

dim
(
IAT

(
G(ij)

λ

))
log |λ|=:γ(ij)

T

∀j ∈ V, i ∈ N (j) (34)

for α(j) given by

α(j) := 2D+3 max
λ∈Λ(A(j))

log |λ| (35)

where D is the diameter of T .2 Here, G(ij)
λ is a subspace

specified in Proposition 2, and operator I is defined in (7).

Proof: The theorem is proved by designing a real-time
encoder for every node to each of its neighbors and by
designing a distributed estimator at each agent. In particular,
the MSE of the distributed estimator at every agent is shown to
be bounded over time if the sufficient condition in Theorem 1
holds. This indicates that (6) holds, as the MSE of the
distributed MMSE estimator is no greater than that of the
designed distributed estimator. Since (6) is equivalent to (5),
the desired result is proved. Details of the proof are presented
in the following sections: Sections V-B and V-C present the
designed encoder and estimator, respectively. Section V-D
analyzes the MSE of the designed distributed estimator. Some
details of the proof are presented in Appendices C and D.

We clarify the statement of Theorem 1 with respect to
the ordered tree T . Given the graph Gu, an ordered tree T
based on this graph can be constructed in different manners
(e.g., different assignments of roots and specifications of
the order for each node’s children). The construction of T
affects the definition of subspace G(ij)

λ and thus affects the
threshold γ

(ij)
T for the anytime capacity. Theorem 1 states that

if Subcondition (i) holds and if Subcondition (ii) holds for
any ordered tree, then encoding strategies can be designed to
ensure that the total distributed inference MSE is bounded over
time. A case study of distributed learning in a network with
three nodes is presented in Section VI-A to explain Theorem 1.

Theorem 1 is interpreted as follows. Subcondition (i) of
Theorem 1 describes a sensing capability of the network for
ensuring that the total distributed inference MSE is bounded
over time. In particular, X (j) in (28) is the subspace corre-
sponding to the state x

(j)
t of node j, whereas S(V) repre-

sents the observable subspace corresponding to observations
obtained by all the nodes in the network. Subcondition (i) indi-
cates that the network has sufficient sensing capability such
that the state of every agent is observable given observations
obtained by the entire network.

To better understand Subcondition (i), consider the scenario
where there is no communication constraint in the network
so that every node can transmit infinite amount of data to
each of its neighbors without any loss. In this scenario, the
anytime capacity of each link becomes infinity, and Subcon-
dition (ii) holds automatically. Consequently, Theorem 1 states
that if Subcondition (i) holds, then a distributed estimator
can be designed for each agent such that the total distributed
inference MSE is bounded over time. In fact, each agent
can collect the observations of all the nodes in the network
in this scenario since there is no communication constraint.
As a result, the observable subspace corresponding to these
observations becomes S(V). As discussed in Section IV-A,
if such an observable subspace satisfies (28) for all j ∈ Va,
then each agent can construct an estimator of its state using

2The diameter of a tree is defined as the largest of shortest-path distances
between all pairs of nodes in the tree, where the shortest-path distance between
a pair of nodes is the smallest number of edges on any path connecting the
two nodes [68].
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the observations of all the nodes such that the MSE of this
estimator is bounded over time.

In addition to sensing capability, the network also needs to
have enough communication capability so that each agent can
obtain useful information from received messages. In particu-
lar, Subcondition (ii) of Theorem 1 describes a communication
capability of the network for ensuring that the total distributed
inference MSE is bounded. This subcondition states that if the
anytime capacity of the channel from node i to node j is above
a threshold for all j ∈ V and i ∈ N (j), then there exists an
encoding strategy for each node in the network to each of
its neighbors such that the total distributed inference MSE is
bounded over time.

Remark 2: The threshold γ
(ij)
T for the anytime capacity

C̆(ij)
(
α(j)

)
in (34) increases with the magnitudes of eigenval-

ues of dynamic matrix A(j) and the dimensions of subspaces
IAT

(
G(ij)

λ

)
. This is explained as follows. First, as the mag-

nitudes of eigenvalues of A(j) become larger, the unknown
disturbances to agent j’s state in the past will have more
significant effect on its current state (see (1)). Consequently,
agent j needs to extract more information from its received
messages in order to achieve desirable distributed inference
accuracy. This demands stronger communication capabilities
between agent j and its neighbors and thus γ

(ij)
T becomes

larger. Second, as will be shown in Section V-B, node i

transmits to node j the information of an estimator y
(ij)
t for(

H(ij)
)T

xt at each time t. Here, we recall that the columns of
H(ij) form an orthonormal basis of H(ij). According to (30),
if the dimension of IAT

(
G(ij)

λ

)
increases, then the dimension

of H(ij) also increases. Consequently, y
(ij)
t becomes a vector

with a larger dimension, and thus node i needs to transmit
more information to agent j at each time step. This requires a
better communication channel from node i to node j and thus
γ

(ij)
T increases.
A favorable property of the threshold γ

(ij)
T is that it is not

affected by the number of nodes in the network irrespec-
tive of the specification of the ordered tree T . In particu-
lar, combining (58c) and the definition (7), and noting that
AT is block-diagonal according to (13c), we can show that
IAT

(
G(ij)

λ

)
⊆ X (i) +X (j), and thus dim

(
IAT

(
G(ij)

λ

))
⩽ 2d.

Consequently, the threshold on the anytime capacity γ
(ij)
T does

not depend on the number of nodes in the network. This shows
desirable scalability of the designed encoder and estimator.
In particular, scalability is important for modern networks,
which can consist of a massive number of nodes thanks to
the proliferation of mobile devices and Internet-of-Things.

B. Design of Encoders for Distributed Learning

If the sufficient condition given in Theorem 1 holds, then
there exists an ordered tree T such that (34) is satisfied. The
designed encoder and estimator based on T are presented in
this section and in Section V-C, respectively.

Consider the encoding procedure performed by node i for
generating messages to its neighbor j. At time t, node i com-
putes an estimator y

(ij)
t of

(
H(ij)

)T
xt using its observations

z̊
(i)
0:t and received messages r̊

(i)
0:t−1, where the definitions of

z̊
(j)
t and r̊

(j)
t for a general j ∈ V and t ⩾ 0 are given

in (19) and (20), respectively. To construct y
(ij)
t at node i,

the property (29b) of an IES is employed. Specifically, if (28)
holds, and thus (29b) holds according to Proposition 2, then
H(ij) can be written as a linear combination of O

(
Γ̊ (i), A

)T

and
{
H(ki) : k ∈ N (i) \ {j}}, i.e.,

H(ij) = O
(
Γ̊ (i), A

)T
Ψ

(ij)
i +

∑
k∈N (i)\{j}

H(ki)Ψ
(ij)
k (36)

for some matrices Ψ
(ij)
i and

{
Ψ

(ij)
k : k ∈ N (i) \ {j}}.

Here, we recall that the column space of matrix H(ij), matrix
O

(
Γ̊ (i), A

)T
, and matrix H(ki) are H(ij), S({i}), and H(ki),

respectively, according to (31) and (24). Taking transpose
of (36) and right-multiplying it with xt gives(
H(ij)

)T
xt =

(
Ψ

(ij)
i

)T
O

(
Γ̊ (i), A

)
xt

+
∑

k∈N (i)\{j}

(
Ψ

(ij)
k

)T(
H(ki)

)T
xt . (37)

Node i first computes a local estimator ξ̂
(i)

t of O
(
Γ̊ (i), A

)
xt

using its local observations z̊
(i)
0:t, as described in

Lemma 1. Moreover, node i computes an estimator(
H(ki)

)T
AH(ki)ŷ

(ki)
t−1 of

(
H(ki)

)T
xt−1 using messages

r
(ki)
0:t−1 received from node k for each k ∈ N (i) \ {j}. Vector

ŷ
(ki)
t−1 is described in the next paragraph. Node i then linearly

combines ξ̂
(i)

t and
{(

H(ki)
)T

AH(ki)ŷ
(ki)
t−1 : k ∈ N (i) \ {j}}

to generate the estimator y
(ij)
t of

(
H(ij)

)T
xt as follows

y
(ij)
t :=

(
Ψ

(ij)
i

)T
ξ̂
(i)

t

+
∑

k∈N (i)\{j}

(
Ψ

(ij)
k

)T(
H(ki)

)T
AH(ki)ŷ

(ki)
t−1 . (38)

Finally, node i generates an encoded message m
(ij)
t based on

y
(ij)
0:t and transmits this message to agent j. The generation

of m
(ij)
t is presented in Section V-D. A block diagram for

the encoding procedure performed by node i for generating
messages to node j is shown in Fig. 4.

Random vector ŷ
(ki)
t−1 is explained as follows. Analogous

to the computation of y
(ij)
t by node i described above,

node k computes y
(ki)
t−1 as an estimator of

(
H(ki)

)T
xt−1 at

time t − 1. Based on y
(ki)
0:t−1, node k generates an encoded

message m
(ki)
t−1 and transmits it to node i. According to r

(ki)
0:t−1,

node i computes an estimator ŷ
(ki)
t−1 of y

(ki)
t−1 at time t−1. Recall

that y
(ki)
t−1 is an estimator of

(
H(ki)

)T
xt−1. Therefore, writing

ŷ
(ki)
t−1 = y

(ki)
t−1 +

(
ŷ
(ki)
t−1 − y

(ki)
t−1

)
, we can view ŷ

(ki)
t−1 also as an

estimator of
(
H(ki)

)T
xt−1 with additional error ŷ

(ki)
t−1 − y

(ki)
t−1

compared to y
(ki)
t−1.

The employment of
(
H(ki)

)T
AH(ki)ŷ

(ki)
t−1 by node i

as an estimator for
(
H(ki)

)T
xt is explained as follows.

Left multiplying (14) by
(
H(ki)

)T
, using the equality(

H(ki)
)T

H(ki) = I and that H(ki) is AT-invariant (see
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Fig. 4. Block diagram of the encoding procedure performed by
node i for generating messages to node j, where the neighbor set
of node i in T is N (i) =

{
j, k1, k2, . . . , kñ

}
. In the figure,

Ξ(kℓ) :=
(
Ψ

(ij)
kℓ

)T(
H(kℓi)

)T
AH(kℓi) for ℓ ∈ {1, 2, . . . , ñ},

and a block with a cross inside represents the multiplication of
a matrix with a vector. Moreover, Estimator kℓi and Encoder ij

represent Est
(
y
(kℓi)
t ,

(
H(kℓi)

)T
AH(kℓi), akℓi, akℓi/2

)
and

Enc
(
y
(ij)
t ,

(
H(ij)

)T
AH(ij), aij , aij/2

)
, respectively (see Proposition 3).

Proposition 2), we can show(
H(ki)

)T
AH(ki)

(
H(ki)

)T
xt−1

=
(
H(ki)

)T
xt −

(
H(ki)

)T
ζt . (39)

Therefore, if node i knows
(
H(ki)

)T
xt−1, then(

H(ki)
)T

AH(ki)
(
H(ki)

)T
xt−1 can be used as an

estimator of
(
H(ki)

)T
xt with error −

(
H(ki)

)T
ζt. However,(

H(ki)
)T

xt−1 is unknown to node i and thus cannot be used
as an estimator. On the other hand, node i can construct
ŷ
(ki)
t−1, which is an estimator of

(
H(ki)

)T
xt−1 as described in

the previous paragraph. Substituting
(
H(ki)

)T
xt−1 by ŷ

(ki)
t−1,

node i employs
(
H(ki)

)T
AH(ki)ŷ

(ki)
t−1 as an estimator of(

H(ki)
)T

xt at time t.

C. Design of Estimators for Distributed Learning

Consider the distributed inference performed by agent j.
As described in Section IV-D, at time t, agent j computes a
local estimator ξ̂

(j)

t of O
(
Γ̊ (j), A

)
xt using its local observa-

tions z̊
(j)
0:t and computes an estimator ŷ

(ij)
t of

(
H(ij)

)T
xt using

received messages r
(ij)
0:t for each i ∈ N (j). These estimators

are linearly combined at node j to generate an estimator x̂
(j)
t

of x
(j)
t as follows

x̂
(j)
t :=

(
Φ(jj))Tξ̂

(j)

t +
∑

i∈N (j)

(
Φ(ij)

)T
ŷ
(ij)
t (40)

where Φ(jj) and
{
Φ(ij) : i ∈ N (j)

}
are matrices that

satisfy (33). A block diagram for the distributed estimator x̂
(j)
t

of agent j is shown in Fig. 5.

Fig. 5. Block diagram of the distributed estimator at agent j, where the neigh-
bor set of agent j in T isN (j) =

{
i1, i2, . . . , in

}
. In the figure, a block with

a cross inside represents the multiplication of a matrix with a vector, and Esti-
mator iℓj represents Est

(
y
(iℓj)
t ,

(
H(iℓj)

)T
AH(iℓj), aiℓj , aiℓj/2

)
(see

Proposition 3), for ℓ ∈ {1, 2, . . . , n}.

Analogous to ŷ
(ki)
t−1 described in Section V-B, ŷ

(ij)
t is an

estimator of y
(ij)
t computed by node j at time t using messages

r
(ij)
0:t received from node i. Since y

(ij)
t is an estimator of(

H(ij)
)T

xt, random vector ŷ
(ij)
t is also an estimator of(

H(ij)
)T

xt with additional error ŷ
(ij)
t − y

(ij)
t .

D. Analysis of the Accuracy of the Distributed Estimator

In this subsection, the accuracy of the distributed estimator
x̂
(j)
t in (40) is analyzed and the desired result (5) is proved

when the sufficient condition in Theorem 1 holds. According
to (40), the accuracy of x̂

(j)
t is affected by that of the local

estimator ξ̂
(j)

t and of
{
ŷ
(ij)
t : i ∈ N (j)

}
. In this subsection,

the accuracy of ξ̂
(j)

t and ŷ
(ij)
t is analyzed to prove (5).

First, ξ̂
(j)

t has been shown to satisfy (25). Second, node j

can construct an estimator ŷ
(ij)
t of y

(ij)
t such that the estima-

tion error ŷ
(ij)
t − y

(ij)
t satisfies

sup
t⩾0

E
{∥∥ŷ

(ij)
t − y

(ij)
t

∥∥aij/2
}

< ∞ (41)

where aij ⩾ 4 is a scalar whose definition can be found in (67)
of Appendix D. To show (41), the following inequality proved
in Appendix D via induction is employed:

sup
t⩾0

E
{∥∥y

(kl)
t −

(
H(kl)

)T
xt

∥∥akl
}

< ∞

∀l ∈ V, k ∈ N (l). (42)

Inequality (42) shows that the aklth moment of the Euclidean
norm of y

(kl)
t −

(
H(kl)

)T
xt, which is the error of y

(kl)
t as an

estimator of
(
H(kl)

)T
xt, is bounded over time. Define

ω
(kl)
t := y

(kl)
t −

(
H(kl)

)T
AH(kl)y

(kl)
t−1

∀l ∈ V, k ∈ N (l). (43)

It is shown in Appendix D using (42) and Assumption A3 that

sup
t⩾0

E
{∥∥ω(kl)

t

∥∥akl
}

< ∞ ∀l ∈ V, k ∈ N (l). (44)
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Substituting k and l in (43) by i and j, respectively, gives

y
(ij)
t =

(
H(ij)

)T
AH(ij)y

(ij)
t−1 + ω(ij)

t .

This shows that the process
{
y
(ij)
t

}
t⩾0

can be viewed as a

linear system affected by disturbance
{
ω

(ij)
t

}
t⩾0

that satis-
fies (44). We aim to design an encoder at node i for generating
transmitted messages based on this linear system as well as
an estimator at node j for inferring this linear system using
received messages such that (41) holds. This problem has been
studied in our previous work [69] and Proposition 1 in that
work is used for the design of encoder and estimator at nodes
i and j, respectively. The proposition in [69] is summarized
in the next paragraph.

Consider a linear system {θt}t⩾0 that satisfies

θt = Fθt−1 + ηt (45)

with the disturbance {ηt}t⩾0 satisfying supt⩾0 E
{
∥ηt∥a} <

∞ for some a > 2. Moreover, suppose the magnitudes of
all the eigenvalues of real matrix F is no smaller than 1.
Consider a transmitter that computes a message mt via real-
time encoding based on θ0:t and transmits this message over
a memoryless channel to a receiver at each time t. Let rt rep-
resent the received message at time t. The receiver computes
an estimator θ̂t of θt based on messages r0:t received up to
time t. The following proposition shows a sufficient condition
under which there exist an encoder and estimator at the
transmitter and receiver, respectively, such that the bth moment
of the estimation error’s Euclidean norm is bounded for any
2 ⩽ b < a.

Proposition 3 ( [69]): Consider the system given by (45).
For any 2 ⩽ b < a, if there is an α such that α >
ab

a−b maxλ∈Λ(F ) log
∣∣λ| and the α-anytime capacity C̆(α) of

the channel satisfies C̆(α) > log
(
|det(F )|

)
, then there exist

an encoder that generates a transmitted message mt based on
θ0:t at each time t and an estimator θ̂t of θt based on received
messages r0:t such that

sup
t⩾0

E
{∥∥θ̂t − θt

∥∥b
}

< ∞ . (46)

This encoder and estimator are denoted by Enc(θt, F , a, b)
and Est(θt, F , a, b), respectively.

Proof: The encoder and estimator that achieve (46) employ
adaptive quantization [51] as well as anytime encoding and
decoding [55] techniques. See [69] for the proof of this
proposition as well as the design of Enc(θt, F , a, b) and
Est(θt, F , a, b).

Inequality (41) can then be proved by applying Proposi-
tion 3. Specifically, set θt = y

(ij)
t , F =

(
H(ij)

)T
AH(ij),

ηt = ω(ij)
t , a = aij , b = aij/2, α = α(j), and C̆(α) =

C̆(ij)(α(j)). Moreover, it is shown in Appendix D that (34)
and (35) imply the following

α(j) > aij max
λ∈Λ((H(ij))TAH(ij))

log |λ| (47a)

C̆(ij)(α(j)) > log
(∣∣∣det

((
H(ij)

)T
AH(ij)

)∣∣∣) (47b)

which is the condition required for applying Proposi-
tion 3. According to this proposition, there exist an encoder

Enc
(
y
(ij)
t ,

(
H(ij)

)T
AH(ij), aij , aij/2

)
at node i and an

estimator Est
(
y
(ij)
t ,

(
H(ij)

)T
AH(ij), aij , aij/2

)
at node j,

respectively, such that (41) holds. In particular, the encoder
generates m

(ij)
t at time t using y

(ij)
0:t , whereas the estimator

generates ŷ
(ij)
t at time t using received messages r

(ij)
0:t .

Finally, the desired result (5) is shown. Combin-
ing (33), (40), (25), (41), and (42), we show in Appendix D
that

sup
t⩾0

E
{∥∥x̂

(j)
t − x

(j)
t

∥∥2
}

< ∞ . (48)

Note that ε
(j)
t ⩽ E

{∥∥x̂
(j)
t −x

(j)
t

∥∥2}
since ε

(j)
t is the minimum

MSE over all distributed estimators for x
(j)
t . Therefore, (6)

holds, which is equivalent to (5).

E. Discussion

The tightness of the established sufficient condition can be
seen by comparing it with a necessary condition established in
a companion paper [56]. Specifically, the necessary condition
consists of a subcondition on the sensing capability and a
subcondition on the communication capability of the network.
The sensing subcondition of the sufficient condition is the
same as that of the necessary condition. Moreover, there is
a gap in general between the communication subcondition of
the sufficient condition and that of the necessary condition.
In [56], a favorable property of such a gap in certain scenarios
is shown: the thresholds determining the capacity region in
the communication subcondition of the sufficient condition
are extreme points of the capacity region in the necessary
condition.

The designed distributed encoder and estimator are commu-
nication efficient from the following aspects. First, different
from many existing methods for distributed learning and
inference where nodes perform multiple rounds of commu-
nications at each time step, the designed encoding strategy
does not require that each pair of nodes perform more than
one round of communication at each time step, and thus
the communication overhead is significantly reduced. Second,
different from existing works that assume real vectors and
matrices can be transmitted among nodes without any loss, this
paper takes into account the constraint of each communication
channel and designs encoding strategies for the transmission of
informative messages via these channels. Third, the established
sufficient condition can be used for the efficient allocation of
communication resources in the network, which is important
for the design of multiple access schemes. Specifically, given
a network such that Subcondition (i) in Theorem 1 holds,
we determine the amount of resource allocated to each com-
munication channel so that (34) holds. Then Theorem 1 shows
that distributed encoders and estimators can be designed to
ensure that the total distributed inference MSE is bounded
over time.

This paper addressed the boundedness of MMSE over time
in distributed learning over networks. On the other hand,
computing the MMSE or deriving a tight bound for it is
a challenging problem. This is because the uncertainty in
both sensing and communication needs to be considered and
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the optimal real-time encoding and estimation need to be
designed. Moreover, the derivation of error bound typically
requires more assumptions on the probability distributions
for system disturbance, observation noise, and communication
channels than those adopted in this paper. Even though a
tight error bound is difficult to obtain, some insights on the
reduction of such error can be obtained from this paper. For
example, Subcondition (ii) of Theorem 1 provides guidelines
for efficient allocation of communication resources in the
network, which is important for reducing the inference error.
In particular, this subcondition shows that more resources are
required for the message transmission to agents whose states
are more sensitive to disturbance as well as to agents with
less sensing capability and thus are more reliant on received
messages for estimating their states.

VI. CASE STUDIES

This section first explains the derived sufficient condition
in an example network with three nodes. Then, the section
presents numerical results when the designed distributed
encoders and estimators are applied to NLN.

A. Sufficient Condition in a Network With Three Nodes

Consider a network of three nodes 1, 2, and 3, where
node 1 is within the communication ranges of both nodes
2 and 3, as shown in Fig. 6. In other words, V = {1, 2, 3}
and Eu = {(1, 2), (1, 3)}. Consider the case where node 1 is
the only agent, i.e., Va = {1}. The unknown state of each
node is a real vector with three entries, i.e., x

(j)
t ∈ R3 for

j ∈ {1, 2, 3}. Consequently, the concatenated state xt =[(
x
(1)
t

)T (
x
(2)
t

)T (
x
(3)
t

)T]T
is a 9-dimensional vector, and

the subspace X (1) corresponding to agent 1’s unknown state
is X (1) = C([e1,9 e2,9 e3,9]). Matrices that determine the
evolution of unknown states are given by A(j) = diag{2, 2, 3}
for j ∈ {1, 2, 3}.

The sensor gain matrices for the three nodes are given by

Γ (11) = 0, Γ
(12)
1 = Γ

(12)
2 = 0, Γ

(13)
1 = Γ

(13)
2 = 0

(49a)

Γ (22) = I, Γ
(21)
1 =

[
1 0 0
0 1 0

]
, Γ

(21)
2 =

[
−1 0 0

0 −1 0

]
(49b)

Γ (33) = I, Γ
(31)
1 =

[
1 0 0
0 0 1

]
, Γ

(31)
2 =

[
−1 0 0

0 0 −1

]
.

(49c)

Equation (49a) shows that both intra- and inter-node obser-
vations of node 1 contain only noise and do not provide
useful information. As a result, node 1 must rely on messages
received from nodes 2 and 3 for learning its state. In particular,
these messages contain useful information extracted from
observations obtained by nodes 2 and 3.

For this network, Subcondition (i) in Theorem 1 can be seen
to hold. To check Subcondition (ii), consider an ordered tree
T1 in which node 1 is the root, whereas nodes 2 and 3 are
the first and second child of node 1, respectively. In other
words, č

(1)
1 = 2 and č

(1)
2 = 3, where we recall that č

(1)
n

Fig. 6. Distributed encoding and estimation in a network of three nodes.
(a): encoding and estimation based on T1. (b): encoding and estimation based
on T2. Each line connecting a pair of nodes represents a communication
channel to node 1 and its width indicates the threshold for the anytime capacity
of this channel. The blue, orange, and green rectangles correspond to the first,
second, and third entry of agent 1’s state, respectively.

represents the nth child of node 1 for n = 1, 2. Applying (63a)
with i = 2 and j = 1 as well as noting that V2({1}) =
{2} and S({1}) = {0} gives G(21)

2 = C([e1,9 e2,9]) and
G(21)

3 = {0}. Substituting these into (34) and noting that
IAT

(
G(21)

2

)
= G(21)

2 , IAT

(
G(21)

3

)
= G(21)

3 gives γ
(21)
T1

= 2.
Similarly, applying (63b) with i = 3 gives G(31)

2 = {0} and
G(31)

3 = C(e3,9), and thus γ
(31)
T1

= log 3. Consequently, (34)
becomes C̆(21)(α(1)) > 2 and C̆(31)(α(1)) > log 3 with
α(1) = 32 log 3.

The designed distributed encoders and estimators based
on T1 are explained in the following. Substituting G(21)

2 =
C([e1,9 e2,9]) and G(21)

3 = {0} into (30) gives H(21) =
C([e1,9 e2,9]). According to the encoding strategy pre-
sented in Section V-B, node 2 computes an estimator of
[e1,9 e2,9]Txt =

[[
x
(1)
t

]
1

[
x
(1)
t

]
2

]T
at each time t.

Node 2 then generates encoded messages according to such
an estimator, and transmits these messages to agent 1. Using
the messages received from node 2, agent 1 estimates the
first two entries

[[
x
(1)
t

]
1

[
x
(1)
t

]
2

]T
of its unknown state.

If the anytime capacity of the channel from node 2 to agent 1
satisfies C̆(21)(α(1)) > 2, then the error of the estimator
obtained by agent 1 for these two entries is bounded over
time. Analogously, H(31) = C(e3,9), and agent 1 estimates
eT

3,9xt =
[
x
(1)
t

]
3
, namely the third entry of its unknown state

using messages received from node 3. If C̆(31)(α(1)) > log 3,
then the error of this estimator is also bounded over time.
Finally, agent 1 linearly combines the estimators of the three
entries of its unknown state to obtain a distributed estimator
x̂
(1)
t of x

(1)
t . This is illustrated in Fig. (6a).

Consider another ordered tree T2 based on Gu in which
node 1 is the root, whereas nodes 3 and 2 are the first and
second child of node 1, respectively. In other words, č

(1)
1 =

3 and č
(1)
2 = 2. Applying (63) gives G(31)

2 = C(e1,9), G(31)
3 =

C(e3,9), G(21)
2 = C(e2,9), and G(21)

3 = {0}. Substituting
these into (34) and (30) gives γ

(21)
T2

= 1, γ
(31)
T2

= 1 + log 3,
H(21) = C(e2,9), and H(31) = C([e1,9 e3,9]). If the designed
encoders and estimators based on T2 are employed, then
node 2 computes an estimator of eT

2,9xt =
[
x
(1)
t

]
2

at each
time t, generates encoded messages according to such an
estimator, and transmits these messages to agent 1. Using the
messages received from node 2, agent 1 estimates the second
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entry
[
x
(1)
t

]
2

of its unknown state. Analogously, agent 1
estimates [e1,9 e3,9]Txt =

[[
x
(1)
t

]
1

[
x
(1)
t

]
3

]T
, namely the

first and third entries of its unknown state using messages
received from node 3. If the anytime capacities of the channels
from node 2 and node 3 to agent 1 satisfy C̆(21)(α(1)) > 1 and
C̆(31)(α(1)) > 1 + log 3, respectively, then the errors of the
estimators obtained by agent 1 for these three entries are all
bounded over time. Finally, agent 1 linearly combines these
estimators to obtain a distributed estimator x̂

(1)
t of x

(1)
t . This

is illustrated in Fig. (6b).
Note that the thresholds for the anytime capacities of the two

channels to agent 1 based on T2 are different from that based
on T1. Specifically, the threshold γ

(21)
T2

for the channel from
node 2 to agent 1 based on T2 is smaller than the threshold
γ

(21)
T1

based on T1. To see this, note that the dimension ofH(21)

based on T2 and T1 are 1 and 2, respectively. If T2 is employed
for designing the distributed encoders and estimators, then
node 2 transmits to agent 1 the information of an estimator
for eT

2,9xt, which is a vector with only one entry. By contrast,
if T1 is employed, then node 2 needs to transmit to agent 1
the information of an estimator for [e1,9 e2,9]Txt, which
is a vector with two entries. Consequently, node 2 needs to
transmit less information to agent 1 if T2 is employed, and
thus the threshold for the anytime capacity of the channel
from node 2 to agent 1 is smaller. Similar arguments can be
used for comparing thresholds γ

(31)
T2

and γ
(31)
T1

.
In addition to T1 and T2, there are two other ordered trees T3

and T4 based on Gu, where the roots are node 2 and node 3,
respectively. Similar calculations show that inequalities (34)
based on T3 and T4 are the same as those based on T2 and T1,
respectively. Combining the thresholds for anytime capacities
corresponding to all the four ordered trees, Subcondition (ii) of
Theorem 1 can be expressed as follows: the vector of anytime
capacity

[
C̆(21)

(
α(1)

)
C̆(31)

(
α(1)

)]T
belongs to the region

R̆(1)
T1
∪ R̆(1)

T2
, where

R̆(1)
T1

:=
{[

c(21) c(31)
]T : c(21) > 2, c(31) > log 3

}
R̆(1)
T2

:=
{[

c(21) c(31)
]T : c(21) > 1, c(31) > 1 + log 3

}
.

Consequently, Theorem 1 states that if
[
C̆(21)

(
α(1)

)
C̆(31)

(
α(1)

)]T ∈ R̆(1)
T1
∪ R̆(1)

T2
, then every node can construct

an encoder for generating messages to each neighbor such that
supt⩾0 Ft < ∞.

B. Results for Network Localization and Navigation

This section evaluates via simulation the performance of
the distributed encoder and estimator designed in Section V
for NLN, an example application of distributed learning. The
nodes in NLN are categorized as either anchors or agents,
where anchors are static nodes and agents are mobile nodes.
The aim of NLN is to infer in real time the positions of agents
via sensing and communication.

In NLN, the state of a node consists of its position
and other position-related quantities. Specifically, x

(j)
t :=[(

p
(j)
t

)T (
v
(j)
t

)T]T
, where p

(j)
t ∈ R3 and v

(j)
t ∈ R3 rep-

resent the 3-D position and velocity, respectively, of node j

at time t. The evolution of x
(j)
t follows (1) with A(j) given

by A(j) =
[

I3 ∆I3
0 I3

]
, where ∆ is the duration of a time step

and is set to 0.2 second. Moreover, the disturbance ζ(j)t is
given by ζ(j)t = Bζ̃

(j)

t , where B :=
[
1
2 (∆)2I3 ∆I3

]T
and

ζ̃
(j)

t ∈ R3 is white noise. This is the discrete white noise
acceleration model [70, Chapter 6.3.2] that has been widely
used. In this section, ζ̃

(j)

t = 0 if node j is an anchor so that
it remains static, otherwise ζ̃

(j)

t follows Gaussian distribution
with covariance matrix 0.04(m2/s4)× I3.

The considered intra- and inter-node observations are as
follows. An intra-node observation z

(jj)
t obtained by node j

is a measurement of its position at time t and is given by
z
(jj)
t = p

(j)
t + n

(jj)
t , where n

(jj)
t represents the observation

noise. Such an observation can be obtained by using a global
navigation satellite system receiver. An inter-node observation
z
(ji)
t is a measurement of the displacement of node j with

respect to node i at time t and is given by z
(ji)
t = p

(j)
t −

p
(i)
t +n

(ji)
t , where n

(jj)
t represents the observation noise. Such

an observation can be obtained by measuring the distance and
relative angle between node j and i. In this section, both n

(jj)
t

and n
(jj)
t follow Gaussian distribution with covariance matrix

0.04 m2 × I3.
The network considered in this section consists of four

anchors and multiple agents. The positions of the anchors are
[86.7 50 0]T m, [−86.7 50 0]T m, [0 −100 0]T m,
and [0 0 100]T m, respectively, and the velocity of all the
anchors are 0 m/s. The position of each agent at time 0 is
randomly sampled from [−75 m, 75 m]3, and the veloc-
ity of each agent at time 0 is randomly sampled from
[−0.5 m/s, 0.5 m/s]3.

Each anchor in the network is within the communication
range of three randomly chosen agents, and each agent is in the
communication range of three other randomly chosen agents.
Each anchor obtains an intra-node observation at every time
step. On the other hand, each agent does not obtain any intra-
node observation. Instead, it obtains an inter-node observation
with each neighbor at every time step. Furthermore, each
node is connected with every neighbor via a noiseless digital
channel, through which the node can transmit data under a rate
constraint. For this type of channel, the data rate constraint
coincides with both the Shannon capacity and the anytime
capacity of the channel.

This section evaluates the average position MSE over all the
agents using the designed distributed encoder and estimator.
Specifically, the vector p̂

(j)
t consisting of the first three entries

of the designed estimator x̂
(j)
t (see Section V) is employed as

the distributed estimator of p
(j)
t . The position MSE of node j’s

distributed estimator at time t is E
{∥∥p̂

(j)
t − p

(j)
t

∥∥2}
, and the

average position MSE ε̄t of distributed estimators over all the
agents at time step t is given by

ε̄t :=
1
|Va|

∑
j∈Va

E
{∥∥p̂

(j)
t − p

(j)
t

∥∥2
}

. (50)

The empirical value of the above average position MSE is
obtained via Monte Carlo simulations.
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Fig. 7. Square roots of the average position MSEs at each time step for the
distributed and centralized estimators.

Recall that an ordered tree T based on the graph corre-
sponding to the network is used for the design of distributed
encoder and estimator. To construct T in the simulation,
a random weight is first assigned to each edge of the graph and
a minimum spanning tree of the resulting weighted undirected
graph is constructed. In particular, the mean value of the
weight for an edge between an anchor and an agent is set
to be smaller than that for an edge between two agents. The
purpose of this is to maximize the number of edges between
anchors and agents in the spanning tree. Finally, an order of
each node’s children is specified to obtain the ordered tree T .

First, the accuracy of the designed distributed estimators at
each time step is evaluated and compared with two reference
estimators: the local estimator and the centralized estimator.
Specifically, the local estimator of agent j’s position p

(j)
t is

the MMSE estimator of p
(j)
t only using agent j’s observations

z̊
(j)
0:t . This corresponds to the case where no communication

among nodes is performed. The centralized estimator of p
(j)
t is

the MMSE estimator of p
(j)
t using observations

{̊
z
(k)
0:t : k ∈ V

}
obtained by all the nodes in the network. This corresponds to
the case that each node can transmit all its observations ideally
to a centralized processor so that this processor can estimate
the positions of all the agents using observations obtained
by the entire network. Both the local and the centralized
estimators are computed using the Kalman filtering technique
[71], [72], [73]. The average position MSEs of the local
estimator and the centralized estimator are evaluated in the
simulation, which are defined by substituting p̂

(j)
t in (50) with

the local and centralized estimator of p
(j)
t , respectively.

Figure 7 shows the square roots of average position MSEs
at each time step of the designed distributed estimator, local
estimator, and centralized estimator in the scenario where the
number of agents |Va| = 10 and the anytime capacity of each
channel is 8 bits per channel use. It can be observed that the
error of both the distributed and centralized estimators are
below one meter over the entire time horizon. In particular, the
centralized estimator achieves smaller average position MSE

Fig. 8. Square roots of the average position MSEs over all time steps for
the distributed estimators under different network parameters settings.

since it can access observations of the entire network via ideal
communication. On the other hand, the average position MSE
of the local estimator increases fast with time, showing that
each agent alone does not have enough sensing capability for
localizing itself. Specifically, it can be verified that X (j) ̸⊆
S({j}) for all j ∈ Va, namely the subspace corresponding to
x
(j)
t is not contained in the observable subspace S({j}). As a

result, agent j needs not only its local observations but also
the messages received from other nodes in order to achieve
bounded position MSE.

Next, the accuracy of the designed distributed estimators is
evaluated under different network parameter settings. Figure 8
shows the square roots of the average position MSEs for
different anytime capacities of each link and for different
numbers of agents in the network. It can be observed that the
average position MSE decreases with the anytime capacity of
each link. This is because each node can transmit more data
per channel use when the anytime capacity of the channel
becomes higher, and thus the receiver node can extract more
position information from its received messages.

Another observation from Fig. 8 is that the average position
MSE increases with the number of agents in the network. This
is because as the number of agents increases, more agents
will have larger shortest-path distances to anchors in graph
Gu, as each anchor is within the communication range of only
three agents in the simulation. Since the position MSE of an
agent increases with its shortest-path distance to an anchor, the
average position MSE increases with the number of agents in
the network. To see how the shortest-path distance to an anchor
affects the position MSE of an agent, we compare the position
estimation accuracy of an anchor with that of an agent being
a neighbor of the anchor. Specifically, the anchor can estimate
its position using its intra-node observations, which are mea-
surements of the anchor’s position. By contrast, the agent does
not obtain intra-node observations. As a result, it estimates its
position by combining the inter-node observations, which are
measurements of the agent’s displacement with respect to the
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anchor, with the messages received from the anchor, which
contains the anchor’s position information. Due to the data
rate constraint on the channel, the messages received by the
agent contain less information than that available to the anchor,
and thus the position MSE of the agent, whose shortest-path
distance to the anchor is one, is larger than that of the anchor.
Analogously, the position MSE of an agent with its shortest-
path distance to an anchor being two is larger than that of an
agent whose shortest-path distance to an anchor is one, and
so on.

VII. CONCLUSION

This paper established a theoretical framework for
communication-efficient distributed learning of time-varying
states in complex networked systems without the help of cen-
tral processors. The paper derived a sufficient condition under
which the total distributed inference MSE of all the agent
nodes are bounded over time. The sufficient condition consists
of a subcondition on the network’s sensing capabilities and
one on the network’s communication capabilities. In particular,
the subcondition on the communication capabilities states
that the anytime capacities of the communication channels
be above certain thresholds, which are determined by the
eigenvalues of the agents’ dynamic matrices and the sensing
capabilities of nodes in the network. The paper also developed
real-time encoding strategies to achieve bounded total dis-
tributed inference MSE when the derived sufficient condition
is satisfied. The paper provides guidelines for the design
of communication-efficient distributed learning algorithms in
complex networked systems. The results in this paper show the
connection among learning, information, and control theories.

APPENDIX A
PROOF OF LEMMA 1

Proof: Let T be a matrix such that its columns form an
orthonormal basis of C

(
O

(
Γ̊ (j), A

)T)
. Consequently, there is

a matrix H such that HTT T = O
(
Γ̊ (j), A

)
. Define θt :=

T Txt. Combining (14) and (22) with the fact that C(T ) is
AT-invariant, we obtain

θt = T TATθt−1 + T T
ζt

z̊
(j)
t = Γ̊ (j)Tθt + n̊

(j)
t .

Moreover, the pair
(
Γ̊ (j)T , T TAT

)
is observable, that is,

matrix M defined as

M := O
(
Γ̊ (j)T , T TAT

)T
O

(
Γ̊ (j)T , T TAT

)
is invertible. Define a linear estimator θ̂t of θt based on z̊

(j)
0:t

as

θ̂t :=
(
T TAT

)r−1
M−1

r∑
l=1

(
T TAT

)l(
Γ̊ (j)T

)T
z̊
(j)
t+l−r+1

where r represents the rank of O
(
Γ̊ (j)T , T TAT

)
. Moreover,

define ξ̂
(j)

t := HT
θ̂t. It can be verified that supt⩾0 E

{∥∥θ̂t −
θt

∥∥a}
< ∞. Combining this with

∥∥ξ̂(j)t −O
(
Γ̊ (j), A

)
xt

∥∥ =∥∥HT(θ̂t − θt)
∥∥ ⩽

∥∥HT
∥∥ ∥∥θ̂t − θt

∥∥, the desired result is
obtained.

APPENDIX B
PROOF OF PROPOSITION 2

First, a lemma to be used is stated.
Lemma 2: For any three subspaces Y , U , and W of a real

vector space, there exists a subspace denoted by P(Y,U ,W)
that satisfies the following relations.

(P(Y,U ,W) + U) ∩W = (Y + U) ∩W (51a)
dim(P(Y,U ,W)) = dim

(
(Y + U) ∩W

)
− dim(U ∩W) (51b)

P(Y,U ,W) ⊆ Y ∩ (U +W) . (51c)

Moreover, for any subspace Ỹ that satisfies (Ỹ + U) ∩W =
(Y + U) ∩W , it holds that

dim(Ỹ) ⩾ dim
(
(Y + U) ∩W

)
− dim(U ∩W) . (52)

Proof: Subspace P(Y,U ,W) is constructed as follows.
Let V be a subspace that satisfies

V + (U ∩W) = (Y + U) ∩W
dim(V) = dim

(
(Y + U) ∩W

)
− dim

(
U ∩W

)
. (53)

An example of V is the orthogonal complement of U ∩ W
with respect to (Y + U) ∩W . Since V ⊆ Y + U , there exist
subspaces Y0 and U0 such that

Y0 ⊆ Y, U0 ⊆ U , V = Y0 + U0 . (54)

Set subspace P(Y,U ,W) to P(Y,U ,W) = Y0 .
Equation (51) with P(Y,U ,W) replaced by Y0 is shown

next. First, (51a) is proved. On one hand, Y0 ⊆ Y gives (Y0 +
U) ∩W ⊆ (Y + U) ∩W . On the other hand, since U0 ⊆ U ,
we have Y0 +U = Y0 +U0 +U = V +U , where (54) is used
in the second equality. Therefore,

(Y0 + U) ∩W = (V + U) ∩W
⊇ (V ∩W) + (U ∩W)
= V + (U ∩W) = (Y + U) ∩W (55)

where the last but one equality is because V ⊆ W as indicated
by (53). Therefore, (51a) holds.

Next, (51b) is proved. On one hand, dim(Y0) ⩽ dim(V) =
dim

(
(Y + U) ∩W

)
− dim

(
U ∩W

)
since Y0 ⊆ V according

to (54). On the other hand, to show that

dim(Y0) ⩾ dim
(
(Y + U) ∩W

)
− dim

(
U ∩W

)
(56)

we only need to prove (52) for any Ỹ satisfying (Ỹ+U)∩W =
(Y + U) ∩ W . Applying the equality dim(S1) + dim(S2) =
dim(S1 + S2) + dim(S1 ∩ S2) for general subspaces S1 and
S2, we obtain

dim(Ỹ) + dim(U ∩W)
= dim(Ỹ + U +W) + dim

(
(Ỹ + U) ∩W

)
+ dim(Ỹ ∩ U)− dim(U +W)

⩾ dim
(
(Ỹ + U) ∩W

)
= dim

(
(Y + U) ∩W

)
. (57)

This shows (52). Moreover, Y0 satisfies (55), and thus (56)
holds. Therefore, (51b) is proved.

Finally, (51c) is proved. According to (54), Y0 ⊆ Y .
To show Y0 ⊆ U + W , recall that (51b) has been proved.
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In other words, equality is achieved in (57) if Ỹ is replaced
by Y0 therein. This is true only if dim(Y0 + U + W) =
dim(U +W), which indicates Y0 ⊆ U +W , and thus (51c)
is proved.

Subspace P(Y,U ,W) can be viewed as a generalization of
a complementary subspace. In particular, setting W = Rn,
then (51a) and (51b) become P(Y,U ,W) + U = Y + U and
dim(P(Y,U ,W)) = dim

(
Y+U

)
−dim(U), respectively. This

shows that P(Y,U ,W) and U are complementary if they are
both viewed as subspaces of Y + U .

Next, Proposition 2 is proved.
Proof: We construct G(ij)

λ ⊆ Mλ(AT) that satisfies the
following properties

X (j) ⊆ S({j}) +
∑

i∈N (j)

∑
λ∈Λ(A(j))

G(ij)
λ

∀j ∈ Va (58a)∑
λ∈Λ(A(j))

G(ij)
λ ⊆ S({i})+

∑
k∈N (i)\{j}

∑
λ∈Λ(A(i))

G(ki)
λ

∀j ∈ V, i ∈ N (j) (58b)∑
λ∈Λ(A(j))

G(ij)
λ ⊆ X (i) + X (j) ∀j ∈ V, i ∈ N (j). (58c)

Moreover, the dimensionality of G(ij)
λ satisfies∑

i∈N (j)
n

dim(G(ij)
λ ) = r

(j)
λ

(
N (j)

n

)
∀j ∈ Va, n ∈

{
1, 2, . . . , N (j)

}
. (59)

Here, N (j)
n is defined as

N (j)
n :=

{
č(j)
n , č

(j)
n+1, . . . , č

(j)

N(j)

}
(60)

where we recall č
(j)
n′ represents either a child or the parent

of node j in ordered tree T for n′ ∈
{
1, 2, . . . , N (j)

}
(see Section IV-B), and r

(j)
λ

(
·
)

in (59) is defined as

r
(j)
λ

(
N (j)

s

)
:= dim

(
X (j) ∩Mλ(AT)

)
−dim

(
S

(
Vj

(
N (j)

s

))
∩ X (j) ∩Mλ(AT)

)
.

(61)

Note that subspaces H(ij) defined as the right-hand side
of (30) will then satisfy (29) since (58) implies (29). Here,

we show how (58a) implies (29a). Applying IAT at both sides
of (58a) and using (8), we obtain

IAT

(
X (j)

)
⊆ IAT

(
S({j})

)
+

∑
i∈N (j)

∑
λ∈Λ(A(j))

IAT

(
G(ij)

λ

)
(62)

Since AT is block-diagonal as shown in (13c), it can be
verified that IAT

(
X (j)

)
= X (j). Moreover, IAT

(
S({j})

)
=

S({j}) as indicated by (27). Substituting these two equalities
and (30) into (62), we obtain (29a). Similarly, applying IAT

at both sides of (58b), we obtain (29b). Finally, if (58c) holds,
then

H(ij) = IAT

( ∑
λ∈Λ(A(j))

G(ij)
λ

)
⊆ IAT

(
X (i) + X (j)

)
= IAT

(
X (i)

)
+ IAT

(
X (j)

)
= X (i) + X (j).

The construction of G(ij)
λ is presented as follows. For the

case where node i is a child of node j, subspace G(ij)
λ is given

by as in (63), shown at the bottom of the page, where P(·)
represents a subspace introduced in Lemma 2.

For the case where node i is the parent of node j, subspace
G(ij)

λ is defined as in (64), shown at the bottom of the page.
Note that (64) is a recursive definition: for a node i that is
not the root of the ordered tree T , constructing G(ij)

λ requires

G
(č

(i)

N(i) i)

λ , where č
(i)

N(i) is the parent of node i (recall Section V)
and is an element of N (i) \ {j}. Therefore, G(ij)

λ should be
constructed first for the case where node i is the root of T ,
namely the depth of i is zero.3 Then G(ij)

λ are constructed for
nodes i with depth one in T . Such a procedure is repeated
until G(ij)

λ have been constructed for all nodes i that have at
least one child.

A proof that G(ij)
λ constructed in (63) and (64) satisfy (58)

and (59) can be found in [74, Appendix B.2.2], which is
omitted here due to limitation of space. Recall that (58)
implies (29), and thus Proposition 2 is proved.

3The depth of a node is the length of the simple path from the node to the
root of the tree [68, Appendix B].

G(ij)
λ := P

(
S

(
Vi({j})) ∩Mλ(AT), S({j}) ∩Mλ(AT), X (j) ∩Mλ(AT)

)
if i = č

(j)
1 and i is a child of j (63a)

G(ij)
λ := P

(
S

(
Vi({j})) ∩Mλ(AT), S({j}) ∩Mλ(AT) +

n−1∑
k=1

G(č
(j)
k j)

λ , X (j) ∩Mλ(AT)
)

if i = č(j)
n for n > 1 and i is a child of j . (63b)

G(ij)
λ := P

(
S({i}) ∩Mλ(AT) +

∑
k∈N (i)\{j}

G(ki)
λ , S({j}) ∩Mλ(AT) +

∑
k∈N (j)\{i}

G(kj)
λ , X (j) ∩Mλ(AT)

)
if i is the parent of j . (64)
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APPENDIX C
LEMMAS FOR PROVING THEOREM 1

A few lemmas to be used for proving Theorem 1 are
presented here. The first lemma shows a property of direct
sum.

Lemma 3: For subspaces S1,S2, . . . ,Sm and subspaces
U1,U2, . . . ,Um such that Si ⊆ Ui for all i ∈ {1, 2, . . . ,m}
and

∑m
i=1 Ui = ⊕m

i=1Ui, it holds that
(∑m

i=1 Si

)
∩ Uj = Sj

for all j ∈ {1, 2, . . . ,m}.
Proof: On one hand,

(∑m
i=1 Si

)
∩Uj ⊇

∑m
i=1

(
Si∩Uj

)
=

Sj . On the other hand, consider an arbitrary u ∈
(∑m

i=1 Si

)
∩

Uj , which can be written as u =
∑m

i=1 ui with ui ∈ Si ⊆ Ui.
It can be shown that u − uj ∈

(∑
i̸=j Ui

)
∩ Uj , and thus

u − uj = 0 by the property of direct sum. This shows that
u ∈ Sj , and thus

(∑m
i=1 Si

)
∩ Uj ⊆ Sj .

The next lemma shows the real Jordan canonical form of a
real matrix.

Lemma 4: [75] For any real square matrix F with Λ(F ) =
{λ1, λ2, . . . , λm}, there exists a real matrix M that transforms
F to its real Jordan canonical form J as

F = MJM−1 (65)

where J = diag{J1, J2, . . . ,Jm}. In particular, Jk is a real
square matrix with Mλk

(F ) columns. In particular, if λk ∈ R,
then all the eigenvalues of Jk are λk. Otherwise eigenvalues
of Jk are either λk or λ∗k. In addition, M can be partitioned
as M = [M1 M2 · · · Mm] such that Mk has full column
rank and forms a basis of Mλk

(F ) for k = 1, 2, . . . ,m.
The next lemma is on eigenvalues and determinants related

to invariant subspaces.
Lemma 5: Let F be a real square matrix and let Y be

an arbitrary F -invariant subspace. Moreover, let Y be a real
matrix whose columns form an orthonormal basis of Y . Then
the following equalities hold

max
λ∈Λ(Y TF Y )

|λ| = max
λ∈Λ(F )

|λ|1[1,∞)

(
y(λ)

)
(66a)∣∣det(Y TFY )

∣∣ =
∏

λ∈Λ(F )

|λ|y(λ) (66b)

where y(λ) is defined as

y(λ) := dim
(
Y ∩Mλ(F )

)
.

Moreover, 1[1,∞)

(
y(λ)

)
= 1 if y(λ) ⩾ 1 and 1[1,∞)

(
y(λ)

)
=

0 otherwise.
Proof: See the proof for Lemma 12 in

[74, Appendix B.1].

APPENDIX D
PROOF OF THEOREM 1

Proof: This appendix presents the expression of aij , shows
that Subcondition (ii) of Theorem 1 guarantees (47), and
proves (44), (48), as well as (42).

First, for any j ∈ V and i ∈ N (j), scalar aij is defined as

aij =

{
2D+2−h(i)

if j is the parent of i

2D+2−d̃
(ij)
T if j is a child of i .

(67)

Here, D represents the diameter of the ordered tree T . More-
over, h(i) represents the height of node i in T , i.e., the number
of edges on the longest downward path from node i to a leaf
node [68, Appendix B]. Variable d̃

(ij)
T represents the largest of

the shortest-path distance on T between node i and any other
node k ∈ Vi({j}), i.e., d̃

(ij)
T := maxk∈Vi({j}) dT (k, i), where

dT (k, i) represents the shortest-path distance between nodes k
and i in T , and Vi(·) is defined in (21). Equation (67) indicates
that 4 ⩽ aij ⩽ 2D+2, since 0 ⩽ h(i) ⩽ D and 0 ⩽ d̃

(ij)
T ⩽ D.

Next, it is shown that Subcondition (ii) of Theorem 1 guar-
antees (47). To this end, using the fact that taking transpose of
a matrix does not change its eigenvalues, and applying (66a)
in Lemma 5 with F = AT as well as Y = H(ij),

max
λ∈Λ((H(ij))TAH(ij))

|λ|

= max
λ∈Λ((H(ij))TATH(ij))

|λ|

= max
λ∈Λ(AT)

|λ|1[1,∞)

(
dim

(
H(ij) ∩Mλ(AT)

))
⩽ max

λ∈Λ(A(j))
|λ| (68)

where (68) is because the following equality

H(ij) ∩Mλ

(
AT

)
=

{
IAT

(
G(ij)

λ

)
if λ ∈ Λ(A(j))

{0} otherwise
(69)

which is obtained by applying Lemma 3. Combining (68) and
aij ⩽ 2D+2 < 2D+3 with (35) gives (47a).

Similarly, applying (66b) in Lemma 5 with F = AT as
well as Y = H(ij), and then taking the logarithm gives

log
(∣∣∣det

((
H(ij)

)T
ATH(ij)

)∣∣∣)
=

∑
λ∈Λ(AT)

dim
(
H(ij) ∩Mλ

(
AT

))
log |λ| . (70)

Combining (34), (69), as well as (70), and using the fact that
taking transpose of a matrix does not change its determinant,
we obtain (47b).

Next, (44) is proved. Replacing i in (39) by l and combining
the result with (43) gives

ω
(kl)
t = y

(kl)
t −

(
H(kl)

)T
xt +

(
H(kl)

)T
ζt

+
(
H(kl)

)T
AH(kl)

((
H(kl)

)T
xt−1 − y

(kl)
t−1

)
.

Taking the Euclidean norm of the above equality, raising the
result to the power of akl, and then applying triangle inequality
as well as the general inequality(∑L

l=1
yl

)x

⩽ Lx
∑L

l=1
yx

l (71)

for an arbitrary positive integer L as well as positive real
numbers yl and x, we obtain as in (72), shown at the top
of the next page. Taking expectation for both sides of (72)
and using (42) as well as Assumption A3 in Section II,
we obtain (44).

Next, (48) is proved. Subtracting (33) from (40), eval-
uating the squared Euclidean norm of the result, and
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∥∥ω(kl)
t

∥∥akl ⩽ 3akl

(∥∥y
(kl)
t −

(
H(kl)

)T
xt

∥∥akl +
∥∥(

H(kl)
)T∥∥akl

∥∥ζt∥∥akl +
∥∥(

H(kl)
)T

AH(kl)
∥∥akl

∥∥y
(kl)
t−1 −

(
H(kl)

)T
xt−1

∥∥akl
)

(72)

E
{∥∥x̂

(j)
t − x

(j)
t

∥∥2
}

⩽
(
2N (j) + 1

)2
[ ∥∥(

Φ(jj)
)T∥∥2 E

{∥∥ξ̂(j)t −O
(
Γ̊ (j), A

)
xt

∥∥2
}

+
∑

i∈N (j)

∥∥(
Φ(ij)

)T∥∥2
(
E

{∥∥ŷ
(ij)
t − y

(ij)
t

∥∥2
}

+ E
{∥∥y

(ij)
t −

(
H(ij)

)T
xt

∥∥2
})]

(73)

applying triangle inequality,∥∥x̂
(j)
t − x

(j)
t

∥∥2
⩽

[∥∥(
Φ(jj)

)T(
ξ̂
(j)

t −O
(
Γ̊ (j), A

)
xt

)∥∥
+

∑
i∈N (j)

(∥∥(
Φ(ij)

)T(
ŷ
(ij)
t − y

(ij)
t

)∥∥
+

∥∥(
Φ(ij)

)T(
y
(ij)
t −

(
H(ij)

)T
xt

)∥∥)]2

.

Applying Cauchy-Schwarz inequality and the definition of
spectral norm of a matrix, then taking expectation, we obtain
as in (73), shown at the top of the page. Since aij ⩾ 4,
applying Jensen’s inequality gives

E
{∥∥y

(ij)
t −

(
H(ij)

)T
xt

∥∥aij
}

⩾ E
{∥∥y

(ij)
t −

(
H(ij)

)T
xt

∥∥2
}aij/2

and thus (42) shows supt⩾0 E
{∥∥y

(ij)
t −

(
H(ij)

)T
xt

∥∥2}
< ∞ .

Similarly, (41) shows that supt⩾0 E
{∥∥ŷ

(ij)
t − y

(ij)
t

∥∥2}
< ∞ .

Combining these two inequalities and (25) with (73) gives the
desired result (48).

Finally, we prove (42), which is used for proving (44)
and (48). Specifically, we show the construction of y

(kl)
t

for the case where node l is the parent of node k in the
ordered tree T and prove (42) via induction. For the base
case of the induction, node k is a leaf in T , i.e., node k
has only one neighbor, which is its parent l. In this case,
define y

(kl)
t :=

(
Ψ

(kl)
k

)T
ξ̂
(k)

t , where Ψ
(kl)
k is a matrix such that

H(kl) = O
(
Γ̊ (k), A

)T
Ψ

(kl)
k . Note that this is consistent with

the general definition (38) since N (k) = {l}. Replacing j and
a in (25) by k and akl, respectively, and using the inequality∥∥y

(kl)
t −

(
H(kl)

)T
xt

∥∥ ⩽
∥∥(

Ψ
(kl)
k

)T∥∥ ∥∥ξ̂(k)

t −O
(
Γ̊ (k), A

)
xt

∥∥
due to the definition of matrix spectral norm, we obtain (42)
for the base case of induction.

For the induction step, assume that for each child k′ of
node k, random vector y

(k′k)
t has been constructed with

sup
t⩾0

E
{∥∥y

(k′k)
t −

(
H(k′k)

)T
xt

∥∥ak′k
}

< ∞ . (74)

Define ω(k′k)
t as (43). Using the induction hypothesis (74),

we can show that supt⩾0 E
{∥∥ω(k′k)

t

∥∥ak′k
}

< ∞. There-
fore, Proposition 3 can be applied to show that there exist
an encoder Enc

(
y
(k′k)
t ,

(
H(k′k)

)T
AH(k′k), ak′k, ak′k/2

)
at

node k′ and an estimator ŷ
(k′k)
t of y

(k′k)
t at node k, respec-

tively, such that supt⩾0 E
{∥∥ŷ

(k′k)
t − y

(k′k)
t

∥∥ak′k/2}
< ∞.

Define y
(kl)
t as (38). Applying triangle inequality and the

general inequality (71), we can show (42) (see [74, Appendix
B.2.3] for details), thus completing the induction. For the case
where node l is a child of node k in the ordered tree T , (42)
can be proved similarly. This completes the proof.
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