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Abstract— Distributed learning is crucial for many applications
such as localization and tracking, autonomy, and crowd sens-
ing. This paper investigates communication-efficient distributed
learning of time-varying states over networks. Specifically, the
paper considers a network of nodes that infer their current
states in a decentralized manner using observations obtained
via local sensing and messages obtained via noisy inter-node
communications. The paper derives a necessary condition in
terms of the sensing and communication capabilities of the
network for the boundedness of the learning error over time.
The necessary condition is compared with the sufficient condition
established in a companion paper and the gap between the two
conditions is discussed. The paper provides guidelines for efficient
management of the sensing and communication resources for
distributed learning in complex networked systems.

Index Terms— Distributed learning, decentralized network
inference, noisy inference, multi-agent networks.

I. INTRODUCTION

DISTRIBUTED learning aims to estimate states of a
networked system by exploiting the sensing, communi-

cation, and computing capabilities of nodes in the network
[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. Distributed learning
is essential for many emerging applications such as local-
ization and tracking [11], [12], [13], [14], [15], [16], auton-
omy [17], [18], [19], Internet-of-Things (IoT) [20], [21], [22],
and environmental monitoring [23], [24], [25], [26]. This
paper investigates communication-efficient distributed learning
of time-varying states in complex networked systems, where
each node aims to learn a state using its own sensing data and
the information exchanged with its neighbors, i.e., other nodes
within its communication range. Such a collaborative learning
task is referred to as distributed inference in this paper.
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An application of distributed inference is localization and
navigation, where nodes track their positions in real time by
sensing the environment and communicating with each other
[27], [28], [29], [30], [31]. An important difference between
distributed inference and federated learning [8], [9], [10],
an emerging paradigm for multi-agent learning, is that the
former task does not require any central processor for coordi-
nating the nodes in the network.

Distributed inference is challenging due to the limitations
on the sensing and communication capabilities of nodes in
the network. In particular, a node typically obtains partial
and noisy observations of its unknown state, which can be
insufficient for achieving desirable accuracy. Moreover, a node
can transmit only a limited number of messages to other
nodes at each time and these messages can be corrupted or
dropped during transmission. Consequently, communication-
efficient strategies for generating the transmitted messages
are required so that these messages contain the most useful
information for the destination nodes and are robust to cor-
ruptions and communication failures. Another challenge to
communication-efficient distributed inference over networks
is that the latency incurred by message generation and state
estimation can reduce the learning accuracy significantly as
the state is rapidly time-varying.

A variety of distributed techniques have been proposed for
learning [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], optimiza-
tion [32], [33], [34], and inference [35], [36], [37], [38], [39].
In particular, many of the existing distributed methods require
iterative communications among the nodes in the network,
such as consensus [40], [41], [42], diffusion [43], [44], [45],
and loopy belief propagation [46], [47], [48]. Moreover, dif-
ferent methods have been proposed for improving the com-
munication efficiency in distributed learning, inference, and
control for systems with resource constraints. These methods
include employing event-triggered communications [49], [50],
[51], optimal resource allocation schemes [52], [53], [54],
and efficient message quantization and encoding strategies
[55], [56], [57]. In particular, real-time encoding techniques
are important for the learning and control of dynamic systems
under communication constraints due to the negative effect of
latency on the performance [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67].

In the existing works on distributed learning and infer-
ence, many papers do not consider the channel noise or
communication failure, or they make strong assumptions such
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as the noise follows Gaussian distributions or has bounded
supports. Moreover, the iterative mechanisms for distributed
learning and inference can incur significant communication
overhead and result in intolerable latency. These limitations
call for further investigation of distributed inference over
networks under a general system model with communication
efficiency demand.

An important question for distributed learning is what
are the requirements on the sensing and communication
capabilities of the network for obtaining desirable inference
accuracy? A related question is how to identify the bottle-
neck of the network and manage the limited sensing and
communication resources efficiently? A deep understanding
of these questions can benefit the design and operation of
networked systems for learning and inference applications.
The paper aims to establish a theoretical foundation for
communication-efficient distributed learning of time-varying
states over networks. The key contributions of this paper are as
follows:

• we formulate a communication-efficient distributed
inference problem over networks by considering general
models for state disturbance, observation noise, and com-
munication channels;

• we derive a necessary condition in terms of the network’s
sensing and communication capabilities under which the
distributed inference error of the network is bounded over
time; and

• we compare the derived necessary condition with a suf-
ficient condition established in a companion paper and
present a favorable property of the gap between regions
of channel capacities for the two conditions.

The remaining sections are organized as follows: Section II
presents the problem formulation. Section III describes
preliminaries on invariant subspaces and real generalized
eigenspaces. Section IV presents a necessary condition under
which the distributed inference error is bounded over time.
Section V compares the necessary condition with the suffi-
cient condition derived in a companion paper [68]. Finally,
Section VI concludes the paper.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a random variable and its
realization are denoted by x and x; a random vector and
its realization are denoted by x and x, respectively. The
expectation and covariance matrix of x are denoted by E{x}
and V{x}, respectively, whereas the conditional expectation
of x given a random vector y is denoted by E{x | y}. The
differential entropy of x and conditional differential entropy
of x given y are denoted by h(x) and h(x | y), respectively.
The mutual information between x and y is denoted by
I(x; y), whereas I(x; y | z) represents the conditional mutual
information between x and y given z. Given a discrete-time
stochastic process {xt}t⩾0, the notation xs : t represents the
vertical concatenation of xs, xs+1, . . . , xt for integers 0 ⩽ s ⩽
t. The sets of real numbers and complex numbers are denoted
by R and C, respectively. Logarithms of a positive number x

Fig. 1. Distributed inference via sensing and communication in a network.

with base 2 is denoted by log x. The cardinality of a set X is
denoted by |X |. The dimensionality of a linear subspace S is
denoted by dim(S). The sum and direct sum of two subspaces
S1 and S2 are denoted by S1 + S2 and S1 ⊕S2, respectively.
The precedence of sum and direct sum is lower than that of the
operator ∩ in all expressions. For example, S1+S2∩S3 = S1+
(S2 ∩ S3) for subspaces S1, S2, and S3. The Euclidean norm
and the ith entry of a vector x are denoted by ∥x∥ and [x]i,
respectively. The transpose, column space, and spectral norm
(i.e., the largest singular value) of matrix A are denoted by
AT, C(A), and ∥A∥, respectively. Notation diag{·} represents
a block diagonal matrix with the arguments being its diagonal
blocks. For example, diag{A, B} :=

[
A 0
0 B

]
. The horizontal

concatenation of matrices A and B (resp. row vectors aT

and bT) with the same number of rows is denoted by [A B]
(resp.

[
aT bT

]
). The Kronecker product of matrices A and

B is denoted by A ⊗ B. The m-by-n matrix of zeros is
denoted by 0m×n; when n = 1, the m-dimensional vector of
zeros is simply denoted by 0m; the m-by-m identity matrix
is denoted by Im: the subscript is omitted when the size of
the matrix is clear from the context. Notations and definitions
for important quantities used in the paper are summarized
in Table I.

II. PROBLEM FORMULATION

Consider a network represented by an undirected graph
Gu = {V, Eu}, where V represents the vertex set consisting
of all the nodes in the network and Eu represents the edge set.
In particular, there is an edge between nodes i and j, namely
(i, j) ∈ Eu, if the two nodes are within the communication
range of each other, as shown in Fig. 1. In this case, node i
is referred to as a neighbor of node j and vice versa. The set
of all the neighbors of node j is denoted by N (j)

u .
Each node in the network is associated with a time vary-

ing state. In particular, the state x
(j)
t ∈ Rd of node j at
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TABLE I
NOTATIONS AND DEFINITIONS OF IMPORTANT QUANTITIES

time t satisfies

x
(j)
t = A(j)x

(j)
t−1 + ζ(j)t for t = 1, 2, . . . (1)

where A(j) is a deterministic matrix called dynamic matrix of
node j; ζ(j)t represents the disturbance to x

(j)
t and is modeled

as a zero-mean random vector. Each node is equipped with
a sensor for observing its own state and the states of its
neighbors, as shown in Fig. 2. In particular, a node j can obtain
an intra-node observation z

(jj)
t and an inter-node observation

z
(ji)
t with each neighbor at every time t. These observations

satisfy

z
(jj)
t = Γ (jj)x

(j)
t + n

(jj)
t (2a)

z
(ji)
t = Γ

(ji)
1 x

(j)
t + Γ

(ji)
2 x

(i)
t + n

(ji)
t (2b)

for t = 0, 1, . . .

where Γ (jj), Γ
(ji)
1 , and Γ

(ji)
2 are deterministic matrices.

In particular, Γ (jj) is the sensor gain matrix for intra-node
observations obtained by node j, whereas Γ

(ji)
1 and Γ

(ji)
2

are sensor gain matrices for inter-node observations obtained
by node j with node i. Moreover, n

(jj)
t and n

(ji)
t in (2) are

zero-mean random vectors representing observation noise. The
observations z̊

(j)
t obtained by node j at time t consist of z

(jj)
t

and
{
z
(ji)
t : i ∈ N (j)

u

}
, i.e.,

z̊
(j)
t :=

[(
z
(jj)
t

)T (
z
(j i1)
t

)T (
z
(j i2)
t

)T · · ·
(
z
(j i

N(j) )

t

)T
]T

.

(3)

where i1, i2, . . . , iN(j) are all the elements of N (j)
u and

N (j) :=
∣∣N (j)

u

∣∣.

Sensing capabilities of different nodes in a networked
system can vary significantly due to device heterogeneity.
In particular, the sensing capability of node j is characterized
by sensor gain matrices Γ (jj), Γ

(ji)
1 , and Γ

(ji)
2 . For example,

if Γ
(ji)
1 = Γ

(ji)
2 = 0 for a particular j, then z

(ji)
t = n

(ji)
t , i.e.,

z
(ji)
t contains only noise. This corresponds to the case where

node j’s sensor does not have enough capability for sensing
the state of its neighbor i.

Nodes in the network infer their states collaboratively by
transmitting encoded messages to each other. At every time
step, each node generates an encoded message in real time
for each of its neighbors based on the local observations
and received messages obtained by the node. Specifically, let
m

(ji)
t represent the encoded message transmitted by node j

to its neighbor node i at time t, and let r
(ji)
t represent the

corresponding message received by node i. The transmitted
message m

(ji)
t can be written as

m
(ji)
t = µ

(ji)
t

(̊
z
(j)
0:t , r̊

(j)
0:t−1

)
(4)

where r̊
(j)
t represents the messages received by node j from

all its neighbors at time t = 0, 1, . . . , i.e.,

r̊
(j)
t :=

[(
r
(i1 j)
t

)T (
r
(i2 j)
t

)T · · ·
(
r
(i

N(j) j)

t

)T
]T

(5)

and µ
(ji)
t is a deterministic function referred to as the encoding

function of node j for node i at time t. The sequence
µ

(ji)
0 , µ

(ji)
1 , . . . is called the encoding strategy of node j for

node i. Note that the received message r
(ji)
t can be different

from the transmitted message m
(ji)
t due to channel noise or

communication failure.
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Fig. 2. Block diagram of node j: the sensor observes z
(jj)
t , z

(ji)
t , and z

(jk)
t at time t. The observations and received messages are used by the encoder for

generating transmitted messages m
(ji)
t as well as m

(jk)
t and by the estimator for computing x̂

(j)
opt,t.

A set Va ⊆ V of nodes named agents aim to learn their
states in real time. Indeed, Va is an arbitrary non-empty
subset of V . For example, Va can contain a single node or
it can contain all the nodes in the network. An agent node j

computes an estimator of x
(j)
t at each time t using the local

observations z̊
(j)
0:t and received messages r̊

(j)
0:t obtained up to

time t. This paper adopts the mean-square error (MSE) as the
metric for the learning performance of each agent. Given z̊

(j)
0:t

and r̊
(j)
0:t , the optimal distributed estimator at agent j with the

minimum MSE is the minimum-mean-square-error (MMSE)
estimator x̂

(j)
opt,t given by x̂

(j)
opt,t := E

{
x
(j)
t

∣∣ z̊(j)
0:t , r̊

(j)
0:t

}
. See

Fig. 2 for a block diagram of the sensing, encoding, and
inference performed by node j.

Encoding strategies are critical for the accuracy of dis-
tributed estimators as they determine whether the received
messages provide useful information for inferring the states
and whether they are robust to channel noise and commu-
nication failure. To maximize the distributed learning perfor-
mance, non-linear schemes need to be considered for encoding
functions µ

(ji)
t . Consequently, the distributed learning problem

described above is non-linear and is challenging to solve.
Furthermore, the distributed learning problem is different from
the problem of inferring a global unknown state by a multi-
node network, which has been investigated in the literature.
In particular, many existing works employ a consensus mech-
anism, which involves the exchange of information about
the global state among nodes, in order to achieve consistent
estimation results across the network. Different from those
works, this paper does not consider consensus mechanisms as
each node aims to infer its own state.

We focus on a connected graph Gu, namely there exists a
path between an arbitrary pair of vertices in the graph. The
generalization to cases where Gu is not connected is straight-
forward: each connected component of the graph is treated as
a separate network and the results presented in this paper are
applied for each network. The following assumptions are made
on the initial state x

(j)
0 , state disturbance ζ(j)t , observation

noise n
(jj)
t and n

(ji)
t , and communication channels.

A1. Vectors x
(j)
0 , ζ(j)t , n

(jj)
t , and n

(ji)
t have probability den-

sities for all j ∈ V , i ∈ N (j)
u , and t ⩾ 0.

A2. Vectors ζ(j)t are independent over time t. Similarly, n
(jj)
t

and n
(ji)
t are independent over t for all j ∈ V and

i ∈ N (j)
u . Moreover, x

(j)
0 ,

{
ζ
(j)
t

}
t⩾0

,
{
n

(jj)
t

}
t⩾0

, and{
n

(ji)
t

}
t⩾0

are independent over all j ∈ V and i ∈ N (j)
u .

A3. For any real matrix B consisting of d rows and vector
b ∈ Rd such that b ̸∈ C(B), there exists a number
h(j)(b, B) > −∞ such that h

(
bT
ζ
(j)
t

∣∣ BT
ζ
(j)
t

)
⩾

h(j)(b, B) for all t ⩾ 0.
A4. Given the transmitted message m

(ji)
t , the received mes-

sage r
(ji)
t is conditionally independent of x

(j)
0 ,

{
ζ
(i)
t

}
t⩾0

,{
n

(jj)
t

}
t⩾0

, and
{
n

(ji)
t

}
t⩾0

.
A5. The channel between each pair of nodes is memoryless.

Assumption A3 states that if b ̸∈ C(B), then there is uncer-
tainty in bT

ζ
(j)
t even though the linear combinations BT

ζ
(j)
t

of ζ(j)t are known. This is a mild assumption. As an example,
this assumption holds if entries of ζ(j)t are independent and
have Gaussian or uniform distributions with variances bounded
from below by a positive constant for all t ⩾ 0.

In the considered distributed learning problem, both the
transmitter and the receiver know the channel state informa-
tion. However, the channel is not assumed to be reciprocal,
namely the condition of the channel from node i to its
neighbor node j can be different than that from node j to
node i. Furthermore, the paper considers the scenario where
the communication in the network is coordinated via a multiple
access scheme to avoid interference.

Note that the models of the disturbance, noise, and channels
used by the paper are general. For the ease of presentation,
the paper considers scenarios where the magnitudes of all the
eigenvalues of A(j) are no smaller than one for all j ∈ V .
Results in this paper can be extended to scenarios without any
assumption on the eigenvalues of A(j).

The learning objective function Ft for the network at time t
is the total distributed inference MSE of all the agents.
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In particular, Ft is defined as

Ft :=
∑
j∈Va

ε
(j)
t (6)

where ε
(j)
t is the individual distributed inference MSE of agent

j at time t defined as

ε
(j)
t := E

{∥∥x̂
(j)
opt,t − x

(j)
t

∥∥2
}

.

Here, x̂
(j)
opt,t represents the distributed estimator of x

(j)
t at

node j with minimum MSE and is given by the conditional
expectation x̂

(j)
opt,t := E

{
x
(j)
t

∣∣ z̊(j)
0:t , r̊

(j)
0:t

}
. The error ε

(j)
t is

affected by the quality of z̊
(j)
0:t and r̊

(j)
0:t . In particular, r̊

(j)
0:t is

determined by the encoding strategies employed by nodes in
the network.

This paper investigates fundamental limits of distributed
inference when the optimal encoding strategies are employed.
Specifically, the paper establishes a necessary condition under
which the sequence

{
Ft

}
t⩾0

is bounded over time, i.e.,

sup
t⩾0

Ft < ∞ . (7)

This is equivalent to

sup
t⩾0

ε
(j)
t < ∞ ∀j ∈ Va . (8)

Boundedness of inference error is an important property, which
has been studied in the literature [23], [69], [70].

In the distributed learning problem investigated by this
paper, communication efficiency is accounted for as in the
following. First, the communication channel between each pair
of nodes is used at most only once. This is more efficient
compared to many existing works on distributed learning that
require multiple iterations of communication among nodes at
each time step. Second, the limitation on the communication
capability over each channel is taken into account in our
distributed learning problem. In fact, the derived necessary
condition contains a subcondition on the Shannon capacities
of communication channels in the network. By contrast, many
existing works do not consider limitations on the capacities of
channels and assume that real vectors or matrices can be trans-
mitted among nodes with no loss. Even if such transmission
can be achieved approximately, its communication overhead
and resource consumption can be significantly high.

III. PRELIMINARIES

First, the definition of invariant subspaces is presented.
Consider a subspace Y ⊆ Rn and a linear mapping f : Rn 7→
Rn defined as f(u) = Fu for all u ∈ Rn, where F is an
n-by-n real matrix. A subspace Y is said to be F -invariant if
and only if Fu ∈ Y for all u ∈ Y . Define subspace IF (Y)
as

IF (Y) := C
([

Y FY · · · F n−1Y
])

(9)

where Y is a matrix whose columns form a basis of Y .
Subspace IF (Y) is called the minimum F -invariant subspace
over Y [71, Chapter 2], since IF (Y) is F -invariant, contains
Y , and is not a proper subset of any F -invariant subspace

containing Y . Invariant subspaces are used in Section IV and
Appendix B for establishing a necessary condition for the total
distributed inference MSE to be bounded by performing linear
transformations of the unknown states.

Next, the notion of real generalized eigenspace is presented.
Let Λ(F ) represent the set of all the distinct eigenvalues of
F ∈ Rn×n that are either real or have positive imaginary parts.
Mathematically,

Λ(F ) :=
{
λ : Im(λ) ⩾ 0; ∃u ∈ Cn, u ̸= 0 s.t. Fu = λu

}
(10)

where Im(λ) represents the imaginary part of λ. A real
generalized eigenspace Mλ(F ) associated with an arbitrary
element λ of Λ(F ) is defined as

Mλ(F ) :=

{
MC

λ (F ) ∩ Rn if λ ∈ R(
MC

λ (F ) +MC
λ∗(F )

)
∩ Rn otherwise

(11)

where

MC
λ (F ) :=

{
u ∈ Cn :

(
F − λI

)n
u = 0

}
(12)

represents the generalized eigenspace of F associated with
λ over C. The set Mλ(F ) is a subspace of Rn and is
F -invariant. Set Mλ(F ) is referred to as the real generalized
eigenspace of F associated with λ. The next proposition shows
a decomposition of invariant subspaces using real generalized
eigenspaces.

Proposition 1: For any real square matrix F , an arbitrary
F -invariant subspace Y can be decomposed as

Y =
⊕

λ∈Λ(F )

(
Y ∩Mλ(F )

)
.

In Proposition 1, ⊕ represents the direct sum of subspaces
[72, Chapter 4]. This proposition is adapted from the decom-
position theorem in [72, Chapter 4.3].

Using real generalized eigenspaces of a real square matrix
helps to convert the matrix to its real Jordan canonical form
via a similarity transformation. Such a transformation is useful
for analyzing dynamic systems and is also used in this paper.

IV. NECESSARY CONDITION FOR THE BOUNDEDNESS OF
TOTAL DISTRIBUTED INFERENCE MSE

In this section, we consider the scenario where there is no
cycle in Gu. Moreover, we omit the subscript u in N (j)

u and
write it as N (j) in the rest of the paper. Some definitions are
given below for simplicity of the presentation. Specifically,
define

xt :=
[(

x
(1)
t

)T (
x
(2)
t

)T · · ·
(
x
(v)
t

)T
]T

(13a)

ζt :=
[(
ζ
(1)
t

)T (
ζ
(2)
t

)T · · ·
(
ζ
(v)
t

)T
]T

(13b)

A := diag
{
A(1), A(2), . . . ,A(v)

}
. (13c)

where v := |V| is the number of nodes in the network.
Combining (1) and (13) gives

xt = Axt−1 + ζt (14)

x
(j)
t = (ej,v ⊗ Id)Txt (15)

Authorized licensed use limited to: MIT Libraries. Downloaded on March 19,2023 at 16:00:50 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: COMMUNICATION-EFFICIENT DISTRIBUTED LEARNING OVER NETWORKS—II 1107

where for a given integer m > 0, ek,m represents a unit vector
of m entries with its kth entry being one and other entries
being zero for 1 ⩽ k ⩽ m. Define a subspace X (j) ⊆ Rdv as

X (j) := C(ej,v ⊗ Id) . (16)

Recall that node j aims to infer x
(j)
t , which is equivalent to

estimating the projection of the concatenated state xt onto
X (j). Therefore, X (j) is a subspace that corresponds to x

(j)
t ,

and we refer to X (j) as node j’s state subspace. Note that
the problem formulation is not affected by the introduction of
xt and the distributed inference problem without any central
processor is not changed.

Observations z
(jj)
t and z

(ji)
t can be written as

z
(jj)
t = Γ̊ (jj)xt + n

(jj)
t (17a)

z
(ji)
t = Γ̊ (ji)xt + n

(ji)
t (17b)

where Γ̊ (jj) and Γ̊ (ji) are defined as

Γ̊ (jj) := eT
j,v ⊗ Γ (jj) (18a)

Γ̊ (ji) := eT
j,v ⊗ Γ

(ji)
1 + eT

i,v ⊗ Γ
(ji)
2 . (18b)

Combining (3) and (17b), z̊
(j)
t can be written as

z̊
(j)
t = Γ̊ (j)xt + n̊

(j)
t (19)

where

Γ̊ (j) :=
[(

Γ̊ (jj)
)T (

Γ̊ (j i1)
)T (

Γ̊ (j i2)
)T · · ·

(
Γ̊ (j i

N(j) )
)T

]T

(20)

n̊
(j)
t :=

[(
n

(jj)
t

)T (
n

(j i1)
t

)T (
n

(j i2)
t

)T · · ·
(
n

(j i
N(j) )

t

)T
]T

.

(21)

Here, indices i1, i2, . . . , iN(j) are all the elements of N (j).
Entries of z̊

(j)
t can be viewed as observations of xt. Accord-

ing to (19), the observability matrix corresponding to obser-
vations obtained by node j is O

(
Γ̊ (j), A

)
, where O(G, F ) is

defined as [73], [74], and [75]

O(G, F ) :=
[
GT F TGT · · · (F k−1)TGT

]T
(22)

for general matrices F ∈ Rk×k and G with k columns. Define
the observable subspace S(V0) corresponding to observations
obtained by nodes in V0 as

S(V0) := C
(
O

([
Γ̊ (j)

]
j∈V0

, A
)T

)
(23)

where
[
Γ̊ (j)

]
j∈V0

represents the vertical concatenation of
Γ̊ (j) for all j ∈ V0. The next lemma shows that using
observations obtained by nodes in V0, we can compute an
estimator of HTxt with bounded MSE over time for any H
whose columns belong to S(V0). This is why we call S(V0)
an observable subspace.

Lemma 1: For any real matrix H whose columns belong
to S(V0), an estimator β̂t of HTxt can be constructed at each
time t ⩾ 0 using observations

{̊
z
(j)
0:t : j ∈ V0

}
obtained by

nodes in V0 so that the MSE of β̂t is bounded over time, i.e.,

sup
t⩾0

E
{∥∥β̂t −HTxt

∥∥2
}

< ∞ . (24)

Fig. 3. Set Vj

(
N (j)

s

)
in part of the network. In particular, N (j)

s consists
of the nodes inside the dashed green ellipse, whereas Vj

(
N (j)

s

)
consists of

the nodes to the right of the dash-dotted purple curve. Messages received by
node j from all the nodes in N (j)

s are represented by red arrows.

Proof: See Appendix A.
The observable subspace S(V0) is AT-invariant, namely

IAT

(
S(V0)

)
= S(V0) . (25)

For the special case where V0 = {j}, the observable subspace
S({j}) is given by S({j}) = C

(
O

(
Γ̊ (j), A

)T)
.

Finally, for any j ∈ V and subset N (j)
s of N (j), define

Vj

(
N (j)

s

)
⊆ V as a subset consisting of node j and nodes

that are connected to j if edges (j, l) are removed from the
graph for all l ∈ N (j)

s . Mathematically,

Vj

(
N (j)

s

)
:= {j} ∪

{
k ∈ V : k ↔ j in graph{
V, Eu \ {(j, l) : l ∈ N (j)

s }
}}

(26)

where k ↔ j represents that there is a path between nodes k

and j. The definition of Vj

(
N (j)

s

)
is illustrated in Fig. 3.

For the case where there is no cycle in Gu, a necessary
condition for

{
Ft

}
t⩾0

to be bounded, i.e., supt⩾0 Ft < ∞,
is given below.

Theorem 1: Consider the distributed learning problem pre-
sented in Section II. If there is no cycle in the graph Gu, then
a necessary condition for achieving supt⩾0 Ft < ∞ is that
both of the following two subconditions hold.

(i) For every j ∈ Va, the following relationship holds

X (j) ⊆ S(V) . (27)

(ii) For any j ∈ Va and non-empty subset N (j)
s of N (j) such

that X (j) ̸⊆ S
(
Vj

(
N (j)

s

))
, the Shannon capacity C(ij)

for the channel from node i ∈ N (j)
s to node j satisfies∑

i∈N (j)
s

C(ij) >
∑

λ∈Λ(A(j))

r
(j)
λ

(
N (j)

s

)
log |λ| (28)

where r
(j)
λ

(
N (j)

s

)
is defined as

r
(j)
λ

(
N (j)

s

)
:= dim

(
X (j) ∩Mλ(AT)

)
− dim

(
S

(
Vj

(
N (j)

s

))
∩ X (j) ∩Mλ(AT)

)
. (29)
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Proof: An outline for the proof of Subcondition (ii) is
provided here, and Subcondition (i) can be proved similarly.
A detailed proof for the theorem is presented in Appendix B.

Consider an auxiliary processor that can obtain two collec-
tions of data from two disjoint subsets of nodes in the network.
The first collection of data is from N (j)

s and consists of
messages received by agent j from nodes in N (j)

s . The second
collection of data is from subset Vj

(
N (j)

s

)
and consists of all

the observations obtained by nodes in Vj

(
N (j)

s

)
as well as

all the messages received via edges that connect these nodes.
Note that this processor has access to more data than agent
j does. In the proof, we construct a random vector θt, which
is a linear function of xt, such that the auxiliary processor
can compute an estimator of θt whose MSE is bounded over
time. In particular, the auxiliary processor needs to extract
information of θt contained in messages received by agent
j from nodes in N (j)

s . To obtain enough information, the
channels from nodes in N (j)

s to agent j need to be sufficiently
reliable, which leads to the requirement (28) on the total
capacities of these channels.

Next, the data available to the auxiliary processor as well
as the construction of θt are presented, and the proof of (28)
is briefly described. Without loss of generality, let elements of
N (j)

s and Vj

(
N (j)

s

)
be (see Fig. 3)

N (j)
s = {i, i1, i2, . . . , il}

Vj

(
N (j)

s

)
= {j, k1, k2, . . . , kn} . (30)

Let r̊
(j)
t

(
N (j)

s

)
represent all the messages received by node j

from nodes in set N (j)
s at time t, i.e.,

r̊
(j)
t

(
N (j)

s

)
:=

[(
r
(i j)
t

)T (
r
(i1 j)
t

)T (
r
(i2 j)
t

)T · · ·
(
r
(il j)
t

)T
]T

.

(31)

Received messages r̊
(j)
t

(
N (j)

s

)
are represented by red arrows

in Fig. 3. The collection of data obtained by the auxiliary
processor from N (j)

s up to time t is r̊
(j)
0:t

(
N (j)

s

)
, which is

defined as

r̊
(j)
0:t

(
N (j)

s

)
:=

[(̊
r
(j)
0

(
N (j)

s

))T (̊
r
(j)
1

(
N (j)

s

))T

· · ·
(̊
r
(j)
t

(
N (j)

s

))T]T

.

Moreover, define the set Ej

(
N (j)

s

)
of edges that connect nodes

in Vj

(
N (j)

s

)
as

Ej

(
N (j)

s

)
:=

{
(k, l) : k ∈ Vj

(
N (j)

s

)
, l ∈ Vj

(
N (j)

s

)
,

(k, l) ∈ Eu

}
(32)

where we recall that Eu represents the edge set of Gu. Edges in
Ej

(
N (j)

s

)
are represented by solid blue lines to the right of the

dash-dotted purple curve in Fig. 3. At time t, the observations
z̆t obtained by nodes in Vj

(
N (j)

s

)
as well as the messages r̆t

received via edges in Ej

(
N (j)

s

)
are then given by

z̆t :=
[(̊

z
(j)
t

)T (̊
z
(k1)
t

)T (̊
z
(k2)
t

)T · · ·
(̊
z
(kn)
t

)T
]T

(33)

r̆t :=
[
r
(kl)
t

]
(k,l)∈Ej(N (j)

s )
(34)

where z̊
(j)
t is defined in (3), and

[
r
(kl)
t

]
(k,l)∈Ej(N (j)

s )
represents

the vertical concatenation of all the r
(kl)
t and r

(lk)
t with (k, l) ∈

Ej(N (j)
s ). Consequently, the collection of data obtained by the

auxiliary processor from Vj

(
N (j)

s

)
up to time t consists of

z̆0:t and r̆0:t. In summary, the data obtained by the auxiliary
processor up to time t consist of r̊

(j)
0:t

(
N (j)

s

)
as well as z̆0:t

and r̆0:t.
Random vector θt is defined as θt := T T

θ xt, where Tθ

is a matrix with orthonormal columns such that C(Tθ) is
the orthogonal complement of S

(
Vj

(
N (j)

s

))
with respect to

X (j) + S
(
Vj

(
N (j)

s

))
. In other words, T T

θ u = 0 for any
u ∈ S

(
Vj

(
N (j)

s

))
and C(Tθ) ⊆ X (j) + S

(
Vj

(
N (j)

s

))
. The

intuition for constructing θt in such a manner is given below.
First, if supt⩾0 ε

(j)
t < ∞, then the auxiliary processor can

compute an MMSE estimator of θt whose MSE is bounded
over time, i.e.,

sup
t⩾0

E
{∥∥θt − E

{
θt

∣∣ z̆0:t, r̆0:t, r̊
(j)
0:t

(
N (j)

s

)}∥∥2
}

< ∞ . (35)

Second, the auxiliary processor needs to rely on messages
r̊
(j)
0:t

(
N (j)

s

)
received from N (j)

s for achieving (35), as the data
z̆0:t and r̆0:t obtained from Vj

(
N (j)

s

)
are less informative

for inferring T T
θ xt. This is because C(Tθ) is orthogonal to

S
(
Vj

(
N (j)

s

))
, which is the observable subspace corresponding

to observations obtained by nodes in Vj

(
N (j)

s

)
.

Inequality (28) is proved using the maximum differential
entropy lemma [76, Chapter 2], which establishes an inequality
between MSE and conditional entropy power. Specifically, the
conditional entropy power N(x | y) of a general random vector
x ∈ Rn given a general random vector y is defined as

N(x | y) := exp
{
2h(x | y)/n

}
. (36)

The maximum differential entropy lemma gives

E
{∥∥θt − E

{
θt

∣∣ z̆0:t, r̆0:t, r̊
(j)
0:t

(
N (j)

s

)}∥∥2
}

⩾
1

2πe
N

(
θt

∣∣ z̆0:t, r̆0:t, r̊
(j)
0:t

(
N (j)

s

))
⩾

1
2πe

N
(
θt

∣∣ψt

)
(37)

where ψt is defined in (74) and contains all the entries of z̆0:t,
r̆0:t, and r̊

(j)
0:t (N

(j)
s ). The second inequality in (37) is because

conditioning reduces differential entropy. Combining (37)
with (35) gives supt⩾0 N

(
θt

∣∣ψt

)
< ∞. In Appendix B,

a recursive expression for
{
N

(
θt

∣∣ψt

)}
t⩾0

is derived based

on the fact that both X (j) and S
(
Vj

(
N (j)

s

))
are AT-

invariant. Using the recursive expression, it is shown there
that supt⩾0 N

(
θt

∣∣ψt

)
< ∞ only if∑

i∈N (j)
s

C(ij) > log
∣∣det

(
T T

θ ATTθ

)∣∣ . (38)

It is also shown in Appendix B that

log
∣∣det

(
T T

θ ATTθ

)∣∣ =
∑

λ∈Λ(A(j))

r
(j)
λ

(
N (j)

s

)
log |λ| . (39)

Combining (38) with (39) gives the desired result (28).
Subcondition (i) in Theorem 1 is on the sensing capability

of the network. The sensing subcondition can be interpreted
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by considering a centralized MMSE estimator of x
(j)
t based

on observations obtained by all the nodes in the network
up to time t. This is equivalent to the scenario where the
communications among nodes are ideal so that each node can
transmit infinite amount of information to its neighbors with no
loss. As a result, each node can disseminate all its observations
via such communications to the entire network. Consequently,
each agent can estimate its state using observations obtained
by all the nodes in the network. Note that the MSE of the
centralized MMSE estimator for x

(j)
t is no larger than the

individual distributed inference MSE ε
(j)
t as the centralized

MMSE estimator uses more observations than the distributed
MMSE estimator. Consequently, if ε

(j)
t is bounded over time,

namely (8) holds, then the MSE of this centralized MMSE
estimator is also bounded over time. This requires that rela-
tionship (27) hold, namely the subspace X (j) corresponding to
the unknown state x

(j)
t be contained in the observable subspace

S(V) corresponding to observations obtained by all the nodes.
Note that S(V) is determined only by the sensor gain matrices
and the matrix A affecting the evolution of each node’s state.

Subcondition (ii) of Theorem 1 is on the communication
capability of the network. In particular, the communication
subcondition requires that the total Shannon capacity of the
channels from nodes in N (j)

s to node j be above a threshold
specified by the right-hand side of (28). This threshold is
determined by two factors: each eigenvalue λ of dynamic
matrix A(j) and the value of r

(j)
λ

(
N (j)

s

)
. In particular, λ

determines the dynamics of node j’s state. As λ increases, the
variation of node j’s state between two time steps becomes
more significant, and thus node j needs more information to
keep track of such variation. Consequently, the threshold on
the total Shannon capacity becomes larger.

The quantity r
(j)
λ

(
N (j)

s

)
affecting the threshold in Subcon-

dition (ii) is interpreted as follows. Consider the inference of
x
(j)
t by the auxiliary processor described in the proof outline

for Theorem 1. Note that this processor has access to more
data than node j and thus can construct an estimator of x

(j)
t

with smaller error compared to the distributed estimator at
node j. Recall that inferring x

(j)
t is equivalent to estimating

the projection of xt onto node j’s state subspace X (j), which
is AT-invariant. Applying Proposition 1 as well as using the
relationship between Λ(AT) and Λ(A(j)), subspace X (j) can
be decomposed as

X (j) =
⊕

λ∈Λ(A(j))

(
X (j) ∩Mλ(AT)

)
.

In other words, X (j) is decomposed into its intersection with
each real generalized eigenspace of AT. In order to estimate
x
(j)
t , the processor needs to learn the projection of xt onto the

intersection X (j) ∩Mλ(AT) for each λ ∈ Λ(A(j)). Recall
that the auxiliary processor can learn such projection from
two disjoint sets of nodes: N (j)

s and Vj

(
N (j)

s

)
. In particular,

from the second set Vj

(
N (j)

s

)
, the processor can learn the

projection of xt onto S
(
Vj

(
N (j)

s

))
∩X (j)∩Mλ(AT), namely

the intersection of the observable subspace corresponding to
observations obtained by nodes in Vj

(
N (j)

s

)
, node j’s state

subspace, and the real generalized eigenspace corresponding

to eigenvalue λ. However, in order to learn the projection of
xt onto the complementary subspace of S

(
Vj

(
N (j)

s

))
∩X (j)∩

Mλ(AT) with respect to X (j) ∩ Mλ(AT), the processor
has to employ data from the first set of nodes N (j)

s . The
dimension of this complementary subspace is r

(j)
λ

(
N (j)

s

)
.

Consequently, the processor needs more data from N (j)
s if

r
(j)
λ

(
N (j)

s

)
increases. The data from N (j)

s consist of messages
received by node j from nodes in N (j)

s . Consequently, the
capacities of the channels from nodes in N (j)

s to node j are
required to be larger if r

(j)
λ

(
N (j)

s

)
increases. This explains the

effect of r
(j)
λ

(
N (j)

s

)
on the threshold for the total Shannon

capacity in Subcondition (ii).
The quantity r

(j)
λ

(
N (j)

s

)
is determined by the sensing capa-

bilities of nodes in Vj

(
N (j)

s

)
: this value is smaller if the

sensing capabilities of these nodes are improved. Specifically,
it can be seen from (29) that r

(j)
λ

(
N (j)

s

)
is non-increasing as

the observable subspace S
(
Vj

(
N (j)

s

))
becomes larger, i.e., the

sensing capabilities of nodes in Vj

(
N (j)

s

)
are improved. Recall

that the auxiliary processor relies on two information sources:
observations obtained by nodes in Vj

(
N (j)

s

)
and messages

received from nodes in N (j)
s . As the sensing capabilities of

nodes in Vj

(
N (j)

s

)
improve, the observations obtained by

these nodes become more informative, and thus the auxiliary
processor relies less on messages received from nodes in N (j)

s .
As a result, the requirement on the quality of channels from
nodes in N (j)

s to node j is less stringent, which allows the total
Shannon capacity of channels from nodes in N (j)

s to node j
to be smaller.

Remark 1: Theorem 1 provides insights for the design
of communication-efficient distributed learning in complex
networked systems. Specifically, if (27) or (28) does not hold,
then the total distributed inference MSE will be unbounded
over time irrespective of the encoding strategies employed by
the network. To avoid this, more resources need to be provided
to the network to improve its sensing and communication
capabilities. For example, if (28) does not hold for a particular
j and N (j)

s , then either additional sensing resources should be
allocated to nodes in Vj

(
N (j)

s

)
, or additional communication

resources should be provided to nodes in N (j)
s . Specifically,

additional sensing resources allocated to nodes in Vj

(
N (j)

s

)
increase the information in observations made by these nodes,
whereas additional communication resources for nodes in
N (j)

s increase the information in messages transmitted by
these nodes. Theorem 1 helps with the identification of the
network’s bottleneck as well as the allocation of sensing and
communication resources.

In addition to the boundedness of MSE in the distributed
learning problem, another important aspect is to compute
the MSE or derive a tight bound for it. This is more chal-
lenging compared to studying the inference error for cen-
tralized learning. In order to derive a tight error bound for
distributed learning, we not only need to account for the
system disturbance and observation uncertainty, but also need
to investigate the optimal real-time encoding strategy for each
node in the network. Such strategies are typically difficult
to find, especially for a network with multiple nodes and a

Authorized licensed use limited to: MIT Libraries. Downloaded on March 19,2023 at 16:00:50 UTC from IEEE Xplore.  Restrictions apply. 



1110 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 41, NO. 4, APRIL 2023

general topology. On the other hand, intuition on reducing
the MSE for distributed estimators can be obtained from the
derived necessary condition. One example is the allocation of
sensing and communication resources for nodes in Vj

(
N (j)

s

)
and N (j)

s , as described in the previous paragraph.

V. COMPARISON OF NECESSARY AND
SUFFICIENT CONDITIONS

This section compares the necessary condition for dis-
tributed inference established in this paper with the sufficient
condition presented in a companion paper [68] and provides
a case study for demonstrating these conditions.

A. Comparison Between the Necessary Condition and the
Sufficient Condition

The sufficient condition for Ft to be bounded over time
established in [68, Theorem 1] is presented here for self
containment. The sufficient condition requires the notion of
ordered trees based on graph Gu. Specifically, an ordered tree
T is constructed by first finding a spanning tree of Gu, then
assigning a node as the root of the spanning tree, and finally
specifying an order for all the children of each node. Let N (j)

represent the set of neighbors for node j in T and define
N (j) :=

∣∣N (j)
∣∣.1 Moreover, let č

(j)
n represent the nth child of

node j for n = 1, 2, . . . , N (j) − 1. If node j is the root of T ,
then č

(j)

N(j) represents the N (j)th child of node j. Otherwise
č
(j)

N(j) represents the parent of node j. The sufficient condition
is presented in the next theorem.

Theorem 2: Consider the distributed learning problem pre-
sented in Section II. If Assumptions A1-A5 in [68] hold,2 then
a sufficient condition for supt⩾0 Ft < ∞ is given as follows:
there exists an ordered tree T based on Gu such that both of
the following two subconditions hold:

(i) Relationship (27) holds for every j ∈ Va.
(ii) The α(j)-anytime capacity C̆(ij)

(
α(j)

)
of the channel

from node i to node j satisfies

C̆(ij)
(
α(j)

)
>

∑
λ∈Λ(A(j))

dim
(
IAT

(
G(ij)

λ

))
log |λ| =: γ

(ij)
T

∀j ∈ V, i ∈ N (j) (40)

for α(j) given by

α(j) := 2D+3 max
λ∈Λ(A(j))

log |λ|

1If there is no cycle in Gu, then a spanning tree of Gu is Gu itself, and
N (j) = N (j)

u .
2Assumptions A1, A2, and A4 in [68] are the same as those in this paper,

whereas Assumptions A3 and A5 are different.

where D is the diameter of T .3 Here, G(ij)
λ is a subspace

of Rdv whose definition is given in [68]. In particular,
G(ij)

λ satisfies∑
i∈N (j)

n

dim
(
G(ij)

λ

)
= r

(j)
λ

(
N (j)

n

)
∀j ∈ Va, n ∈

{
1, 2, . . . , N (j)

}
(41)

where N (j)
n ⊆ N (j) and is defined as N (j)

n :={
č
(j)
n , č

(j)
n+1, . . . , č

(j)

N(j)

}
, and r

(j)
λ

(
·
)

is defined as (29).
The operator I in (40) is defined in (9).

Both the necessary condition and sufficient condition consist
of two parts. The first part is on the sensing capability of
the network and it is the same for both the necessary con-
dition and the sufficient condition. The second part is on the
communication capability of the network, where the necessary
condition and the sufficient condition differ. Specifically, for
each agent node j, the necessary condition specifies a region
for the Shannon capacities of channels from all its neighbors,
whereas the sufficient condition specifies a region for the
anytime capacities of these channels. The gap between these
two regions satisfies a favorable property in certain scenarios,
which is shown next.

Consider the vector C(j) ∈ RN(j)
that represents the

Shannon capacities of the channels to agent node j from all
its neighbors. Mathematically,

C(j) :=
[
C(i1 j) C(i2 j) · · · C(i

N(j) j)
]T

where i1, i2, . . . , iN(j) are all the neighbors of node j, i.e.,
N (j) =

{
i1, i2, . . . , iN(j)

}
.4 Then (28) in Theorem 1, together

with the constraint that C(ij) ⩾ 0, specifies a region R(j) ⊆
RN(j)

where C(j) must belong to if the total distributed
inference MSE is bounded over time. Specifically, R(j) is
given by (42), as shown at the bottom of the page.

Analogously, consider the vector C̆(j)
(
α(j)

)
that represents

the α(j)-anytime capacities of the channels to node j from all
its neighbors, i.e.,

C̆(j)
(
α(j)

)
:=

[
C̆(i1 j)

(
α(j)

)
C̆(i2 j)

(
α(j)

)
· · · C̆(i

N(j) j)
(
α(j)

)]T

.

Then (40) specifies a region for C̆(j)
(
α(j)

)
that ensures

bounded total distributed inference MSE. Specifically, for any

3The diameter of a tree is defined as the largest of shortest-path distances
between all pairs of nodes in the tree [77, Chapter 22].

4Note that č
(j)
1 , č

(j)
2 , . . . , č

(j)

N(j) is a permutation of i1, i2, . . . , iN(j) ,
where the permutation is determined by the specification of the ordered tree T .

R(j) :=
{

c =
[
c(i1 j) c(i2 j) · · · c(i

N(j) j)
]T : c(ij) ⩾ 0 ∀i ∈ N (j), and∑

i∈N (j)
s

c(ij) >
∑

λ∈Λ(A(j))

r
(j)
λ

(
N (j)

s

)
log |λ| ∀N (j)

s ⊆ N (j) s.t. X (j) ̸⊆ S
(
Vj

(
N (j)

s

))}
(42)
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ordered tree T based on Gu, define

R̆(j)
T :=

{
c =

[
c(i1 j) c(i2 j) · · · c(i

N(j) j)
]T

:

c(ij) > γ
(ij)
T ∀i ∈ N (j)

}
(43)

where γ
(ij)
T is defined in (40). If C̆(j)

(
α(j)

)
is within region

R̆(j)
T and Subcondition (i) of Theorem 2 holds, then encoding

strategies can be designed for each node in the network so
that the total distributed inference MSE of agents is bounded
over time.

In general, there is a gap between the capacity region R(j)

for the necessary condition and region R̆(j)
T for the sufficient

condition. To characterize such a gap, some definitions are
introduced here. Define matrix Ǎ(ij) ∈ R(dv)×(dv) as

Ǎ(ij) := (ei,veT
i,v)⊗A(i) + (ej,veT

j,v)⊗A(j). (44)

In other words, Ǎ(ij) is a block-diagonal matrix with the
ith and jth block on its main diagonal being A(i) and
A(j), respectively, and other blocks being zero matrices.
In addition, let R̄(j) represent the closure of R(j). Such a
closure is a polyhedron since all constraints in (42) are linear
[78, Chapter 2]. Moreover, let

γ
(j)
T :=

[
γ

(i1 j)
T γ

(i2 j)
T · · · γ

(i
N(j) j)

T

]T

(45)

represent the vector that determines R̆(j)
T . The next proposition

presents scenarios in which γ
(j)
T is an extreme point of R̄(j).

Proposition 2: Consider the scenario where there is no
cycle in the graph Gu. For any ordered tree T based on Gu,
if the equality I(Ǎ(ij))T

(
G(ij)

λ

)
= G(ij)

λ holds for all i ∈ N (j)

and λ ∈ Λ(A(j)), then γ
(j)
T is an extreme point of R̄(j).

Proof: See Appendix C.
The equality I(Ǎ(ij))T

(
G(ij)

λ

)
= G(ij)

λ in Proposition 2 holds
if, for example, both A(i) and A(j) are diagonalizable and
only have real eigenvalues.

Remark 2: It is a favorable property that γ
(j)
T is an extreme

point of R̄(j). To see this, consider the scenario where the
vector C(j) of Shannon capacities and vector C̆(j)

(
α(j)

)
of

anytime capacities coincide. This is the case, for example,
if node j receives messages from its neighbors via noiseless
digital channels. Moreover, consider the case where C(j)

equals the vector γ
(j)
T . According to the sufficient condition

shown in Theorem 2, if Subcondition (i) is satisfied, then node
j can design a distributed estimator whose MSE is bounded
over time. However, such an estimator would be impossible
to design if any entry of C(j) is reduced by a positive amount
and the other entries do not change. In other words, we cannot
reduce the capacity of the channel to node j from one of
its neighbors without increasing the capacities of channels
from its other neighbors. This is because the capacity vector
obtained by reducing one of the entries in C(j) no longer
belongs to the region R(j), since C(j) = γ

(j)
T is an extreme

point for the closure R̄(j) of R(j). Consequently, the necessary
condition is not satisfied, and it is impossible to design a
distributed estimator whose MSE is bounded over time.

An example comparing the capacity regions for the neces-
sary condition and for the sufficient condition is presented in
Section V-B.

B. Case Study

Consider a network of three nodes 1, 2, and 3, where node
1 is within the communication ranges of the other two nodes.
Consequently, the vertex set and edge set corresponding to this
network are given by V = {1, 2, 3} and Eu = {(1, 2), (1, 3)},
respectively. The dimensionality of each node’s unknown state
is d = 3. Consequently, the concatenated state xt ∈ R9.
Moreover, node 1 is the only agent and its state subspace is
X (1) = C([e1,9 e2,9 e3,9]). Matrix A(j) in (1) is set to

A(j) = diag{2, 2, 3} for j ∈ {1, 2, 3} . (46)

The sensor gain matrices of node 1 are given by Γ (11) = 0 and
Γ

(1i)
1 = Γ

(1i)
2 = 0 for i ∈ {2, 3}. In this case, the observations

of agent 1 contain only noise and this agent must rely on
messages received from nodes 2 and 3 for leaning its state.
The sensor gain matrices of nodes 2 and 3 are given by

Γ (22) = I, Γ
(21)
1 =

[
1 0 0
0 1 0

]
, Γ

(21)
2 =

[
−1 0 0

0 −1 0

]
(47a)

Γ (33) = I, Γ
(31)
1 =

[
1 0 0
0 0 1

]
, Γ

(31)
2 =

[
−1 0 0

0 0 −1

]
.

(47b)

First, the necessary condition given by Theorem 1 is pre-
sented. Combining (20), (23), (46), and (47) gives S(V) = R9.
Therefore, X (1) ⊆ S(V), showing that Subcondition (i) in
Theorem 1 holds for j = 1. Subcondition (ii) in Theo-
rem 1 indicates that the vector of Shannon capacity C(1) =[
C(21) C(31)

]T
must belong to the region R(1) given by

(42). Choose N (1)
s as N (1)

s = {2}, and thus V1

(
N (1)

s

)
=

{1, 3}. Combining (46) and (47) gives

S({1, 3}) = S({3}) = C([e1,9 e3,9 e7,9 e8,9 e9,9]) (48)

and thus X (1) ̸⊆ S({1, 3}). Moreover, (46) shows that

X (1) ∩M2(AT) = C([e1,9 e2,9])

X (1) ∩M3(AT) = C(e3,9).

Therefore,

S({1, 3}) ∩ X (1) ∩M2(AT) = C(e1,9) (49a)

S({1, 3}) ∩ X (1) ∩M3(AT) = C(e3,9) . (49b)

Substituting (49a), V1

(
N (1)

s

)
= {1, 3}, and dim

(
X (1) ∩

M2(AT)
)

= 2 into (29) gives r
(j)
2 ({2}) = 1. Similar

calculation gives r
(j)
3 ({2}) = 0. Therefore, the constraint in

(42) for N (1)
s = {2} becomes c(21) > log 2 = 1. In other

words, the Shannon capacity of the channel from node 2 to
node 1 is required to be larger than 1 bit per channel use.
This is because node 1 relies on messages received from
node 2 for inferring the second entry

[
x
(1)
t

]
2

of its unknown
state x

(1)
t . To see this, note from (48) that S({1, 3}) ∩

X (1) = C([e1,9 e3,9]). This shows that all the observations
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Fig. 4. Regions of channel capacities for the necessary and sufficient
conditions: the region R(1) for the necessary condition is the area to the
upper-right of the line segments, whereas the region R̆(1) for the sufficient
condition is the shaded area. Vectors γ

(1)
T1

and γ
(1)
T2

determining R̆(1) are
extreme points of the closure of R(1).

obtained by nodes 1 and 3 provide information only of
[e1,9 e3,9]Txt =

[[
x
(1)
t

]
1

[
x
(1)
t

]
3

]T
, namely the first and

third entries of node 1’s state. Consequently, node 1 relies on
messages received from node 2 for inferring

[
x
(1)
t

]
2
, which

leads to the requirement on the capacity for the channel
from node 2 to node 1. Similarly, setting N (1)

s = {3} gives
c(31) > log 3, as node 1 relies on messages received from
node 3 for inferring

[
x
(1)
t

]
3
. This can be seen by noting

S({1, 2}) ∩ X (1) = C([e1,9 e2,9]). Finally, setting N (1)
s =

{2, 3} gives c(21) +c(31) > 2+log 3. Therefore, R(1) is given
by

R(1) :=
{[

c(21) c(31)
]T : c(21) > 1, c(31) > log 3,

c(21) + c(31) > 2 + log 3
}

. (50)

Region R(1) is the area to the upper-right of the line segments
in Fig. 4. The closure R̄(1) of R(1) is obtained by substituting
each greater-than sign in (50) with a greater-than-or-equal-to
sign and R̄(1) is a polygon.

For the sufficient condition given by Theorem 2, it was
shown in [68] that if the vector of anytime capacity
C̆(1)

(
α(1)

)
:=

[
C̆(21)

(
α(1)

)
C̆(31)

(
α(1)

)]T
belongs to

R̆(1) := R̆(1)
T1
∪ R̆(1)

T2
for α(1) = 32 log 3, then the network

has sufficient communication capabilities to ensure that the
distributed MSE of agent 1 is bounded over time. Specifically,
R̆(1)
Tl

is given by

R̆(1)
Tl

:=
{[

c(21) c(31)
]T : c(21) > γ

(21)
Tl

, c(31) > γ
(31)
Tl

}
for l ∈ {1, 2}

where γ
(21)
T1

= 2, γ
(31)
T1

= log 3, γ
(21)
T2

= 1, and γ
(31)
T2

=
1 + log 3. Vectors γ

(1)
T1

:=
[
γ

(21)
T1

γ
(31)
T1

]T
and γ

(1)
T2

:=[
γ

(21)
T2

γ
(31)
T2

]T
are also shown in the figure and they are

extreme points of R̄(1). The gap between R(1) and R̆(1) is
the white triangle in Fig. 4 whose vertices are γ

(1)
T1

, γ
(1)
T2

, and[
2 1+log 3

]T
. Note that the gap would be larger if γ

(1)
T1

and
γ

(1)
T2

are not extreme points of R̄(1).

We comment on the resemblance of the region (50) to the
rate region for a distributed source coding problem described
as follows. Consider two correlated data sources 1 and 2.
In particular, source 1 generates a sequence s

(1)
1:n consisting of

n independent, identically distributed (IID) random variables
s
(1)
1 , s

(1)
2 , . . . , s

(1)
n . A source encoder at source 1 generates a

codeword according to s
(1)
1:n at rate r(1), namely the codeword

is represented by nr(1) bits in total. Analogously, source
2 generates a sequence s

(2)
1:n consisting of IID random variables

s
(2)
1 , s

(2)
2 , . . . , s

(2)
n , and another source encoder generates a

codeword at rate r(2) according to s
(2)
1:n. A decoder estimates

both sequences s
(1)
1:n and s

(2)
1:n using the codewords generated

by both source encoders. If at least one of the two estimated
sequences does not equal its actual value, then the decoder
is said to have made an error. An important question is
under what conditions the error probability vanishes as n
approaches infinity. This problem has been solved in the
literature. In particular, a necessary condition is that the rate[
r(1) r(2)

]T
satisfies the following constraints [79], [80]

r(1) ⩾ H
(
s
(1)
1

∣∣ s
(2)
1

)
, r(2) ⩾ H

(
s
(2)
1

∣∣ s
(1)
1

)
(51a)

r(1) + r(2) ⩾ H
(
s
(1)
1 , s

(2)
1

)
(51b)

where H(x | y) represents the conditional entropy of x given y
for two general discrete random variables x and y, whereas
H(x, y) represents the entropy of x and y. Note that the
above constraints resemble the constraints that determine the
region R(1) in (50) and its closure R̄(1) for the distributed
learning problem, with r(1) and r(2) corresponding to c(21)

and c(31), respectively. Furthermore, the constraints (51) were
shown by Slepian and Wolf to be not only necessary but
also sufficient [80]. Therefore, there is no gap between the
rate regions for the necessary condition and for the sufficient
condition in the distributed source coding problem. Of course,
the distributed source coding problem is significantly different
from the distributed learning problem in this paper, which
involves real-time sensing, communication, and inference in
a network with multiple nodes.

VI. CONCLUSION

The paper derived a necessary condition under which the
total distributed inference MSE of all the agents is bounded
over time. The necessary condition consists of two subcon-
ditions: one is on the sensing capabilities and the other
is on the communication capabilities of the network. The
paper compares the established necessary condition with the
sufficient condition presented in a companion paper, which
also consists of a subcondition on sensing capabilities and
a subcondition on communication capabilities. In particular,
the subcondition on the sensing capabilities is the same for
the necessary condition and the sufficient condition. For the
subcondition on the communication capabilities, the vectors
determining the capacity region for the sufficient condition
are extreme points of the capacity region for the necessary
condition in certain scenarios. The paper provides insights for
the design of accurate and communication-efficient distributed
learning in multi-agent networks.
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APPENDIX A
LEMMAS USED FOR THE PROOF OF THEOREM 1

This appendix proves Lemma 1 and presents a few lemmas
used for proving Theorem 1. First, Lemma 1 is proved.
Proof: Extending Lemma 1 of [68], we can show that there
is an estimator ξ̂t of O

([
Γ̊ (j)

]
j∈V0

, A
)
xt satisfying

sup
t⩾0

E
{∥∥ξ̂t −O

([
Γ̊ (j)

]
j∈V0

, A
)
xt

∥∥2
}

< ∞ . (52)

Since C(H) ⊆ S(V0) = C
(
O

([
Γ̊ (j)

]
j∈V0

, A
)T)

, there exists

a matrix Φ such that H = O
([

Γ̊ (j)
]
j∈V0

, A
)T

Φ. Define

estimator β̂t := ΦT
ξ̂t, and its MSE satisfies

E
{∥∥ΦT

ξ̂t −HTxt

∥∥2
}

⩽
∥∥ΦT

∥∥2 E
{∥∥ξ̂t −O

([
Γ̊ (j)

]
j∈V0

, A
)
xt

∥∥2
}

.

Combining this with (52) gives the desired result (24).
Next, two lemmas used for the Proof of Theorem 1 are

presented. The first lemma shows a property of direct sum.
Lemma 2 [68]: For subspaces S1,S2, . . . ,Sm and

U1,U2, . . . ,Um such that Si ⊆ Ui for all i ∈ {1, 2, . . . ,m}
and

∑m
i=1 Ui = ⊕m

i=1Ui, it holds that
(∑m

i=1 Si

)
∩ Uj = Sj

for all j ∈ {1, 2, . . . ,m}.
Corollary 1: For any real square matrix F as well as

subspaces Vi such that Vi = ⊕µ∈Λ(F )

(
Vi ∩ Mµ(F )

)
for

i = 1, 2, the following holds for all λ ∈ Λ(F )(
V1 + V2

)
∩Mλ(F ) =

(
V1 ∩Mλ(F )

)
+

(
V2 ∩Mλ(F )

)
.

(53)
Proof: Without loss of generality, suppose Λ(F ) =

{λ1, λ2, . . . , λm}, and λ = λj for some 1 ⩽ j ⩽ m.
By assumption,

V1 + V2 =
( m∑

i=1

V1 ∩Mλi
(F )

)
+

( m∑
i=1

V2 ∩Mλi
(F )

)
=

m∑
i=1

(
V1 ∩Mλi

(F )
)

+
(
V2 ∩Mλi

(F )
)
.

Applying Lemma 2 with Si =
(
V1 ∩ Mλi

(F )
)

+
(
V2 ∩

Mλi(F )
)

and Ui = Mλi(F ) for all i ∈ {1, 2, . . . ,m} gives
the desired result.

The second lemma is on the determinant of the product of
matrices that satisfy certain conditions.

Lemma 3: Let F = diag{F1, F2} represent an invertible
real matrix with F1 ∈ Rn1×n1 and let Y be an F -invariant
subspace. Let T be a matrix whose columns form an orthonor-
mal basis for the orthogonal complement of Y with respect to
Y + C

(
[In1 0]T

)
. Then∣∣det(T TFT )

∣∣ =
∏

λ∈Λ(F1)

|λ|r(λ)

where

r(λ) := dim
(
Mλ(F1))

−dim
(
Y ∩ C

(
[In1 0]T

)
∩Mλ(F )

)
. (54)

Proof: Define E := C
(
[In1 0]T

)
and let Y represent

a matrix whose columns form an orthonormal basis for Y .

Then Y0 := [Y T ] is a matrix whose columns form an
orthonormal basis for Y + E . Since T TY = 0 and Y is F -
invariant, it holds that T TFY = 0. Therefore, Y T

0 FY0 can
be partitioned as

Y T
0 FY0 =

[
Y TFY Y TFT

0 T TFT

]
. (55)

Recall that Y is F -invariant. Moreover, E can be shown to be
F -invariant as F is block-diagonal. Consequently, C(Y0) =
Y + E is also F -invariant. Applying Lemma 5 in [68] gives∣∣det(Y T

0 FY0)
∣∣ =

∏
λ∈Λ(F ) |λ|y0(λ) and

∣∣det(Y TFY )
∣∣ =∏

λ∈Λ(F ) |λ|y(λ), where

y0(λ) := dim
(
(Y + E) ∩Mλ(F )

)
y(λ) := dim

(
Y ∩Mλ(F )

)
.

Combining this with (55) gives∣∣det(T TFT )
∣∣ =

|det(Y T
0 FY0)|

|det(Y TFY )|
=

∏
λ∈Λ(F )

|λ|y0(λ)−y(λ).

(56)

Since both Y and E are F -invariant, applying Proposition 1
and Corollary 1 gives (Y + E)∩Mλ(F ) =

(
Y ∩Mλ(F )

)
+(

E∩Mλ(F )
)
. Combining this with the property that dim(Y1+

Y2) = dim(Y1) + dim(Y2) − dim(Y1 ∩ Y2) for two general
subspaces Y1 and Y2 gives

y0(λ)− y(λ) = dim
(
E ∩Mλ(F )

)
− dim

(
Y ∩ E ∩Mλ(F )

)
. (57)

Since F is block diagonal, it holds Λ(F ) = Λ(F1) ∪ Λ(F2).
Moreover, for any λ ∈ Λ(F ) \ Λ(F1), it can be shown that
E ∩Mλ(F ) = {0}. Combining this with (54) and (57) gives

y0(λ)− y(λ) =

{
r(λ) if λ ∈ Λ(F1)
0 otherwise.

Substituting this into (56) gives the desired result.

APPENDIX B
PROOF OF THEOREM 1

Proof: To facilitate the presentation of the proof, the
following notation is introduced: let ϵ(θ;φ) represent the
MMSE for estimating θ using φ, i.e.,

ϵ(θ;φ) := E
{∥∥θ− E{θ |φ}

∥∥2
}

(58)

where θ and φ are two general random vectors. A property of
ϵ(·; ·) is that ϵ(θ;φ1) ⩽ ϵ(θ;φ2) if φ1 contains all the entries
of φ2.

Consider the estimation of x
(j)
t using r̊

(j)
0:t

(
N (j)

s

)
, z̆0:t, and

r̆0:t, where r̊
(j)
t

(
N (j)

s

)
, z̆t, and r̆t are defined in (31), (33), and

(34), respectively. The MMSE ϵ
(
x
(j)
t ; z̆0:t, r̆0:t, r̊

(j)
0:t

(
N (j)

s

))
satisfies

ϵ
(
x
(j)
t ; z̆0:t, r̆0:t, r̊

(j)
0:t

(
N (j)

s

))
⩽ ϵ

(
x
(j)
t ; z

(j)
0:t , r̊

(j)
0:t

(
N (j)

))
= ε

(j)
t . (59)

To see the inequality in (59), note that j ∈ Vj

(
N (j)

s

)
always holds, and thus z̆0:t contains all the entries of z̊

(j)
0:t .
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In addition, r̊
(j)
0:t

(
N (j)

)
= r̊

(j)
0:t

(
N (j)

s

)
+ r̊

(j)
0:t

(
N (j) \N (j)

s

)
, and

r̆0:t contains all the entries of r̊
(j)
0:t

(
N (j) \ N (j)

s

)
. Therefore,[

r̆T0:t r̊
(j)
0:t

(
N (j)

s

)T]T
contains all the entries of r̊

(j)
0:t

(
N (j)

)
.

Using the property of ϵ(·; ·), the inequality in (59) can be
seen to hold. The equality in (59) is due to the definition of
ε
(j)
t . According to (59), if (8) holds, then

sup
t⩾0

ϵ
(
x
(j)
t ; z̆0:t, r̆0:t, r̊

(j)
0:t

(
N (j)

s

))
< ∞ . (60)

The theorem is proved by showing that if (60) holds,
then both subconditions need to be satisfied. We begin with
the proof for Subcondition (ii). To prove this subcondition,
we show that if (60) holds and X (j) ̸⊆ S

(
Vj

(
N (j)

s

))
, then

(28) must be satisfied. Specifically, this inequality is shown
via a similarity transformation of the state. To this end, let T
be an orthonormal matrix and partition it as

T =
[
T0 Tθ Tφ

]
(61)

where Tφ satisfies

C(Tφ) = S
(
Vj

(
N (j)

s

))
and C(Tθ) is the orthogonal complement of S

(
Vj

(
N (j)

s

))
with

respect to X (j)+S
(
Vj

(
N (j)

s

))
. Recall from (25) that C(Tφ) =

S
(
Vj

(
N (j)

s

))
is AT-invariant. Combining this with T T

θ Tφ =
T T

0 Tφ = 0 gives

T T
φ ATθ =

(
T T

θ ATTφ

)T = 0 (62a)

T T
φ AT0 =

(
T T

0 ATTφ

)T = 0 . (62b)

Moreover, C
(
[Tθ Tφ]

)
= X (j) + S

(
Vj

(
N (j)

s

))
is also AT-

invariant, as both X (j) and S
(
Vj

(
N (j)

s

))
are AT-invariant.

Combining this with T T
0 [Tθ Tφ] = 0 gives

T T
θ AT0 =

(
T T

0 ATTθ

)T = 0 . (63)

Left multiplying T T to (14) and applying (62) as well as (63)
gives [

θt

φt

]
=

[
Aθ Aθφ

0 Aφ

] [
θt−1

φt−1

]
+

[
T T

θ

T T
φ

]
ζt (64)

where

θt := T T
θ xt, φt := T T

φ xt (65a)

Aθ := T T
θ ATθ, Aθφ := T T

θ ATφ (65b)
Aφ := T T

φ ATφ. (65c)

We show

sup
t⩾0

ϵ
(
θt; z̆0:t, r̆0:t, r̊

(j)
0:t

(
N (j)

s

))
< ∞ (66)

by considering the MMSE estimator θ̂t of θt using z̆0:t, r̆0:t,
and r̊

(j)
0:t

(
N (j)

s

)
, i.e.,

θ̂t := E
{
θt

∣∣ z̆0:t, r̆0:t, r̊
(j)
0:t

(
N (j)

s

)}
.

Specifically, recall that C(Tθ) ⊆ X (j) + S
(
Vj

(
N (j)

s

))
and

C(ej,v ⊗ Id) = X (j). Define Γ̊
(
Vj

(
N (j)

s

))
as the vertical

concatenation of Γ̊ (k) for all k ∈ Vj

(
N (j)

s

)
, i.e.,

Γ̊
(
Vj

(
N (j)

s

))
:=

[(
Γ̊ (j)

)T (
Γ̊ (k1)

)T (
Γ̊ (k2)

)T

· · ·
(
Γ̊ (kn)

)T
]T

(67)

where the elements of Vj

(
N (j)

s

)
are given by (30). Com-

bining definitions (67) and (23) gives S
(
Vj

(
N (j)

s

))
=

C
(
O

(
Γ̊

(
Vj

(
N (j)

s

))
, A

)T)
. Consequently, there exist two real

matrices G1 and G2 such that

Tθ = (ej,v ⊗ Id) G1 + O
(
Γ̊

(
Vj

(
N (j)

s

))
, A

)T

G2 . (68)

Taking transpose of (68), right multiplying it by xt, and
using (15), we obtain

θt = GT
1 x

(j)
t + GT

2 O
(
Γ̊

(
Vj

(
N (j)

s

))
, A

)
xt . (69)

Let ât and b̂t represent MMSE estimators of x
(j)
t and

O
(
Γ̊

(
Vj

(
N (j)

s

))
, A

)
xt, respectively, using z̆0:t, r̆0:t, and

r̊
(j)
0:t (N

(j)
s ). By definition,

E
{∥∥ât − x

(j)
t

∥∥2
}

= ϵ
(
x
(j)
t ; z̆0:t, r̆0:t, r̊

(j)
0:t

(
N (j)

s

))
. (70)

Moreover, according to the linearity of conditional expectation,
θ̂t = GT

1 ât + GT
2 b̂t. Combining this with (69) and applying

Cauchy–Schwarz inequality and the definition of a matrix’s
spectral norm, we obtain

ϵ
(
θt; z̆0:t, r̆0:t, r̊

(j)
0:t

(
N (j)

s

))
= E

{∥∥θt − θ̂t

∥∥2
}

⩽ 2
∥∥GT

1

∥∥2 E
{∥∥ât − x

(j)
t

∥∥2
}

+ 2
∥∥GT

2

∥∥2 E
{∥∥∥b̂t −O

(
Γ̊

(
Vj

(
N (j)

s

))
, A

)
xt

∥∥∥2}
. (71)

Combining (70) with (60) gives

sup
t⩾0

E
{∥∥ât − x

(j)
t

∥∥2
}

< ∞ . (72)

Moreover, applying Lemma 1 with V0 = Vj

(
N (j)

s

)
, we con-

clude that an estimator β̂t of O
(
Γ̊

(
Vj

(
N (j)

s

))
, A

)
xt can be

constructed at each time t using z̆0:t so that the MSE of β̂t

is bounded over time. Combining this with the fact that the
MSE of b̂t is smaller than that of β̂t since b̂t is the MMSE
estimator using z̆0:t, r̆0:t, and r̊

(j)
0:t (N

(j)
s ), we obtain

sup
t⩾0

E
{∥∥∥b̂t −O

(
Γ̊

(
Vj

(
N (j)

s

))
, A

)
xt

∥∥∥2}
< ∞ . (73)

Combining (71)–(73) gives (66).
Next, an inequality between the MSE for estimating θt and

the conditional entropy power of θt is established. To this end,
define ψt as

ψt :=
[
φ

T
0

(
T T

φ ζ1

)T (
T T

φ ζ2

)T · · ·
(
T T

φ ζt

)T

z̆T
0:t r̆T0:t r̊

(j)
0:t

(
N (j)

s

)T
]T

. (74)
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Recall from (36) that N
(
θt

∣∣ψt

)
represents the conditional

entropy power of θt given ψt. Applying maximum differential
entropy lemma gives

1
2πe

N
(
θt

∣∣ψt

)
⩽

∣∣∣det
(
V

{
E{θtt |ψt} − θt

})∣∣∣1/dθ

⩽ tr
{

V
{
E{θtt |ψt} − θt

}}
= ϵ

(
θt;ψt

)
⩽ ϵ

(
θt; z̆0:t, r̆0:t, r̊

(j)
0:t (N (j)

s )
)
(75)

where dθ represents the number of entries in θt. The second
inequality in (75) is obtained by applying the relationship
between the geometric and arithmetic means of all the eigen-
values of V

{
E{θtt |ψt}−θt

}
. The equality in (75) is obtained

using the definition (58). The last inequality in (75) is obtained
by using the property of ϵ(·; ·) and by noticing that ψt defined
in (74) contains all the entries of z̆0:t, r̆0:t, and r̊

(j)
0:t (N

(j)
s ).

Combining (75) with (66) shows that supt⩾0 N
(
θt

∣∣ψt

)
< ∞.

Next, it is shown that supt⩾0 N
(
θt

∣∣ψt

)
< ∞ requires (28)

to hold. To this end, define a random vector θ̌t as

θ̌t = Aθθ̌t−1 + T T
θ ζt, θ̌0 = θ0 . (76)

Comparing this with (64) gives

θt = θ̌t +
t−1∑
τ=0

At−1−τ
θ Aθφφτ . (77)

According to (64), random vector φt is a function
of φ

T
0 , T T

φ ζ1, T
T
φ ζ2, . . . ,T

T
φ ζt. Therefore, the term∑t−1

τ=0 At−1−τ
θ Aθφφτ in (77) is a function of ψt. As a

result,

N
(
θt

∣∣ψt

)
= N

(
θ̌t

∣∣ψt

)
= N

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t, r̆t, r̊

(j)
t

(
N (j)

s

))
. (78)

Let m̆t be a vector consisting of all the transmitted messages
along edges in Ej

(
N (j)

s

)
(see (32)) at time t, i.e., m̆t :=[

m
(il)
t

]
(i,l)∈Ej(N (j)

s )
. Using the second equality in (78) and the

fact that conditioning reduces differential entropy, we obtain

N
(
θ̌t

∣∣ψt

)
⩾ N

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t, r̆t, r̊

(j)
t

(
N (j)

s

)
, m̆t

)
= N

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t, r̊

(j)
t

(
N (j)

s

)
, m̆t

)
= N

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t, r̊

(j)
t

(
N (j)

s

))
. (79)

The first equality in (79) is due to the conditional independence

r̆t ⊥⊥ θ̌t,ψt−1, T
T
φ ζt, z̆t, r̊

(j)
t

(
N (j)

s

) ∣∣ m̆t

indicated by Assumption A4 of Section II. The second equality
in (79) is because m̆t is a function of z̆0:t, r̆0:t−1, and
r̊
(j)
0:t−1

(
N (j)

s

)
based on the model of transmitted messages

presented in Section II, whereas z̆0:t, r̆0:t−1, and r̊
(j)
0:t−1

(
N (j)

s

)
are functions of ψt−1 and z̆t as shown by (74). Applying
properties of conditional differential entropy and mutual infor-
mation gives

h
(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t, r̊

(j)
t

(
N (j)

s

))
= h

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t

)
−I

(
θ̌t; r̊

(j)
t

(
N (j)

s

)
|ψt−1, T

T
φ ζt, z̆t

)
⩾ h

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t

)
− I

(
θ̌t,ψt−1, T

T
φ ζt, z̆t ; r̊

(j)
t

(
N (j)

s

))
. (80)

According to Assumption A4 in Section II,

r̊
(j)
t

(
N (j)

s

)
⊥⊥ θ̌t,ψt−1, T

T
φ ζt, z̆t

∣∣ m̊(j)
t

(
N (j)

s

)
where m̊

(j)
t

(
N (j)

s

)
represents the transmitted messages from

all the nodes in N (j)
s to node j, i.e., m̊

(j)
t

(
N (j)

s

)
is obtained

by replacing r in (31) with m. Applying data processing
inequality for mutual information [79, Chapter 2],

I
(
θ̌t,ψt−1, T

T
φ ζt, z̆t ; r̊

(j)
t

(
N (j)

s

))
⩽ I

(
m̊

(j)
t

(
N (j)

s

)
; r̊

(j)
t

(
N (j)

s

))
=

∑
i∈N (j)

s

I
(
m

(ij)
t ; r

(ij)
t

)
⩽

∑
i∈N (j)

s

C(ij)
n (81)

where C
(ij)
n represents the Shannon capacity of the channel

from node i to node j in the unit of nats. Combining (79)–(81)
and using the definition (36) gives

N
(
θ̌t

∣∣ψt

)
⩾ N

(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t

)
exp

{
− 2

dθ

∑
i∈N (j)

s

C(ij)
n

}
(82)

where we recall that dθ represents the number of
entries in θ̌t. Define n̆t as the vertical concatenation of
n̊

(j)
t , n̊

(k1)
t , n̊

(k2)
t , . . . , n̊

(kn)
t , where n̊

(j)
t is defined in (21) for

any j ∈ V . Then z̆t can be written as

z̆t = Γ̊
(
Vj

(
N (j)

s

))
xt + n̆t . (83)

Since

C
(
Γ̊

(
Vj

(
N (j)

s

))T
)
⊆ C

(
O

(
Γ̊

(
Vj

(
N (j)

s

))
, A

)T)
= S

(
Vj

(
N (j)

s

))
= C(Tφ)

and T partitioned as (61) is orthonormal, it holds that
Γ̊

(
Vj

(
N (j)

s

))
T0 = Γ̊

(
Vj

(
N (j)

s

))
Tθ = 0. Substituting this

into (83) and using (65a) gives

z̆t = Γ̊
(
Vj

(
N (j)

s

))
Tφφt + n̆t . (84)

Applying (64) recursively, and substituting the result into (84),

z̆t = Γ̊
(
Vj

(
N (j)

s

))
Tφ

[
At

φφ0 +
(t−1∑

τ=1

At−τ
φ T T

φ ζτ

)
+ T T

φ ζt

]
+n̆t.

Combining this with (74) shows that z̆t is a function of
ψt−1, T T

φ ζt, and n̆t . According to Assumption A2, n̆t ⊥⊥
ψt−1, T

T
φ ζt, θ̌t. Therefore, z̆t ⊥⊥ θ̌t

∣∣ψt−1, T
T
φ ζt. As a result,

N
(
θ̌t

∣∣ψt−1, T
T
φ ζt, z̆t

)
= N

(
θ̌t

∣∣ψt−1, T
T
φ ζt

)
. (85)

According to Assumption A2 in Section II,

ζt ⊥⊥ θ̌t−1,ψt−1 . (86)

Therefore, Aθθ̌t−1 ⊥⊥ T T
θ ζt

∣∣ψt−1, T
T
φ ζt. Using (76)

and applying conditional entropy power inequality (EPI)
[76, Chapter 2] gives

N
(
θ̌t

∣∣ψt−1, T
T
φ ζt

)
⩾ N

(
Aθθ̌t−1

∣∣ψt−1, T
T
φ ζt

)
+ N

(
T T

θ ζt

∣∣ψt−1, T
T
φ ζt

)
=

∣∣det(Aθ)
∣∣2/dθN

(
θ̌t−1

∣∣ψt−1

)
+N

(
T T

θ ζt

∣∣ψt−1, T
T
φ ζt

)
=

∣∣det(Aθ)
∣∣2/dθN

(
θ̌t−1

∣∣ψt−1

)
+ N

(
T T

θ ζt

∣∣ T T
φ ζt

)
(87)
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where the first equality is due to a property of differential
entropy, and the second equality is obtained using (86). Based
on Assumption A3 in Section II, it can be shown that there
exists a number h(Tθ, Tφ) > −∞ such that

h
(
T T

θ ζt

∣∣ T T
φ ζt

)
⩾ h(Tθ, Tφ) ∀t ⩾ 0 . (88)

Combining (78) and (82)–(88) gives

N
(
θt

∣∣ψt

)
⩾

( |det(Aθ)|
exp

{∑
i∈N (j)

s
C

(ij)
n

})2/dθ

N
(
θt−1

∣∣ψt−1

)
+ exp

{ 2
dθ

(
h(Tθ, Tφ)−

∑
i∈N (j)

s

C(ij)
n

)}
. (89)

According to (89), supt⩾0 N
(
θt

∣∣ψt

)
< ∞ holds only if∑

i∈N (j)
s

C(ij)
n > ln

∣∣det(Aθ)
∣∣ = ln

∣∣det
(
T T

θ ATθ

)∣∣
= ln

∣∣det
(
T T

θ ATTθ

)∣∣
which translates to (38) in the unit of bits. Recall that C(Tθ)
is an orthogonal complement of S

(
Vj

(
N (j)

s

))
with respect

to X (j) + S
(
Vj

(
N (j)

s

))
. Since both S

(
Vj

(
N (j)

s

))
and X (j)

are AT-invariant, applying Lemma 3 by setting F = AT and
Y = S

(
Vj

(
N (j)

s

))
gives∣∣det

(
T T

θ ATTθ

)∣∣ =
∑

λ∈Λ((A(j))T)

|λ|ř(λ) (90)

where

ř(λ) := dim
(
Mλ

(
(A(j))T

))
−dim

(
S

(
Vj

(
N (j)

s

))
∩ X (j) ∩Mλ(AT)

)
.

Since A is block-diagonal, it can be shown that
dim

(
Mλ

(
(A(j))T

))
= dim

(
X (j) ∩ Mλ(AT)

)
, and

thus ř(λ) = r
(j)
λ

(
N (j)

s

)
according to (29). Substituting

this and Λ
(
(A(j))T

)
= Λ

(
A(j)

)
into (90) gives (39). This

shows that supt⩾0 N
(
θt

∣∣ψt

)
< ∞ only if (28) holds, thus

completing the proof for Subcondition (ii).
Next, Subcondition (i) is proved by identifying a contradic-

tion if (8) holds but (27) does not hold. In fact, this contra-
diction can be shown by replacing N (j)

s and Vj

(
N (j)

s

)
in the

proof for Subcondition (ii) with ∅ and V , respectively. Specifi-
cally, let z̆t represent the observations obtained by all the nodes
in V at time t, and let r̆t represent the messages received via
all the edges Eu in the network at time t. If X (j) ̸⊆ S(V),
then there exists a matrix Tθ whose columns are orthonormal
and form an orthogonal complement of S

(
V

)
with respect

to X (j) + S
(
V

)
. Define θt := T T

θ xt. If supt⩾0 ε
(j)
t < ∞,

then supt⩾0 ϵ
(
θt; z̆0:t, r̆0:t

)
< ∞ can be shown to hold.

Moreover, define ψt as the right-hand side of (74) with
r̊
(j)
0:t

(
N (j)

s

)
removed, where Tφ is a matrix with orthonormal

columns such that C(Tφ) = S(V). It can be shown using
maximum differential entropy lemma that N

(
θt

∣∣ψt

)
/(2πe) ⩽

ϵ
(
θt; z̆0:t, r̆0:t

)
, and thus supt⩾0 N

(
θt

∣∣ψt

)
< ∞. However,

by deriving a recursive expression of
{
N

(
θt

∣∣ψt

)}
t⩾0

, we can
show that N

(
θt

∣∣ψt

)
approaches infinity as t → ∞, which

is a contradiction. This shows that supt⩾0 ε
(j)
t < ∞ only if

X (j) ⊆ S(V), and thus Subcondition (i) is proved.

APPENDIX C
PROOF OF PROPOSITION 2

Proof: First, the expression of R̄(j), the closure of R(j),
is derived. Specifically, R̄(j) is obtained by replacing the
grater-than signs in (42) with greater-than-or-equal-to signs.
As a result, R̄(j) can be shown to be the set of vectors
c =

[
c(i1 j) c(i2 j) · · · c(i

N(j) j)
]T

that satisfy

∑
i∈N (j)

s

c(ij) ⩾


∑

λ∈Λ(A(j))
r
(j)
λ

(
N (j)

s

)
log |λ|

if X (j) ̸⊆ S
(
Vj

(
N (j)

s

))
0 otherwise

(91)

for all non-emptyN (j)
s ⊆ N (j). Expression (91) is rewritten as

follows. For anyN (j)
s ⊆ N (j) such that X (j) ⊆ S

(
Vj

(
N (j)

s

))
,

it can be seen from (29) that r
(j)
λ

(
N (j)

s

)
= 0. Consequently,∑

λ∈Λ(A(j)) r
(j)
λ

(
N (j)

s

)
log |λ| = 0. This shows that the two

cases in (91) can be combined to obtain the following equiv-
alent expression∑

i∈N (j)
s

c(ij) ⩾
∑

λ∈Λ(A(j))

r
(j)
λ

(
N (j)

s

)
log |λ| ∀N (j)

s ⊆ N (j).

Consequently, R̄(j) consists of all the solutions to the follow-
ing feasibility problem

find c =
[
c(i1 j) c(i2 j) . . . c(i

N(j) j)
]T

(92a)

subject to
∑

i∈N (j)
s

c(ij) ⩾
∑

λ∈Λ(A(j))

r
(j)
λ

(
N (j)

s

)
log |λ|

∀N (j)
s ⊆ N (j) . (92b)

Note that (92b) specifies 2N(j) − 1 constraints as N (j)
s can

be an arbitrary non-empty subset of N (j). Since all these
constraints are linear, region R̄(j) is a polyhedron.

We next show that γ
(j)
T is an extreme point of R̄(j) if

I(Ǎ(ij))T

(
G(ij)

λ

)
= G(ij)

λ . Indeed, it is shown in [68] that
G(ij)

λ ⊆ X (i) + X (j). Combining this with (44) gives

IAT

(
G(ij)

λ

)
= I(Ǎ(ij))T

(
G(ij)

λ

)
= G(ij)

λ .

Combining this with (40) gives

γ
(ij)
T =

∑
λ∈Λ(A(j))

dim
(
G(ij)

λ

)
log |λ| . (93)

Recall that č
(j)
n represents the nth child of node j for n ∈{

1, 2, . . . , N (j) − 1
}

in the ordered tree T . Moreover, recall
that č

(j)

N(j) represents the N (j)th child or the parent of node j,
depending on whether j is the root of T or not. Combining
(93) with (41) gives∑

i∈N (j)
n

γ
(ij)
T =

∑
λ∈Λ(A(j))

r
(j)
λ

(
N (j)

n

)
log |λ|

∀n ∈
{
1, 2, . . . , N (j)

}
.

This shows that the vector γ
(j)
T defined in (45) achieves

equality in linear constraint (92b) with N (j)
s = N (j)

n ,
i.e., the constraint is active at γ

(j)
T . Indeed, by setting
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n = 1, 2, . . . , N (j), there are N (j) inequality constraints
that are active at γ

(j)
T , and these constraints are linearly

independent. This shows that γ
(j)
T is a basic solution

[78, Chapter 2] for the linear program given by (92). Since a
basic feasible solution is an extreme point for linear programs
[78, Theorem 2.3], we only need to show that γ

(j)
T is a feasible

solution to (92), i.e., γ
(j)
T satisfies (92b) for all N (j)

s ⊆ N (j).
Next, it is proved that γ

(j)
T is a feasible solution to

(92). For any N (j)
s ⊆ N (j), it can be shown that (see

[81, Appendix B.3])

X (j) ⊆ Ȟ+ S
(
Vj

(
N (j)

s

))
(94)

where

Ȟ :=
⊕

λ∈Λ(AT)

∑
i∈N (j)

s

G(ij)
λ . (95)

According to the definition of G(ij)
λ given in [68],∑

i∈N (j)
s
G(ij)

λ ⊆ Mλ(AT) for all λ ∈ Λ(AT). Applying

Lemma 2 gives Ȟ ∩Mλ(AT) =
∑

i∈N (j)
s
G(ij)

λ . Combining
this with (95) gives

Ȟ =
⊕

λ∈Λ(AT)

(
Ȟ ∩Mλ(AT)

)
.

Moreover, since S
(
Vj

(
N (j)

s

))
is AT-invariant, applying

Proposition 1 gives

S
(
Vj

(
N (j)

s

))
=

⊕
λ∈Λ(AT)

(
S

(
Vj

(
N (j)

s

))
∩Mλ(AT)

)
.

Applying Corollary 1 with V1 = Ȟ and V2 = S
(
Vj

(
N (j)

s

))
gives(

Ȟ+ S
(
Vj

(
N (j)

s

)))
∩Mλ(AT)

=
( ∑

i∈N (j)
s

G(ij)
λ

)
+

(
S

(
Vj

(
N (j)

s

))
∩Mλ(AT)

)
.

Combining this with (94) gives

X (j) ∩Mλ(AT)

⊆
[( ∑

i∈N (j)
s

G(ij)
λ

)
+

(
S

(
Vj

(
N (j)

s

))
∩Mλ(AT)

)]
∩X (j) ∩Mλ(AT) . (96)

Noting that the left-hand side of (96) contains its right-hand
side, we replace the subset sign in this equation by an equal
sign. Applying Lemma 2 in [68] with Y = X (j) ∩Mλ(AT),
U = S

(
Vj

(
N (j)

s

))
∩Mλ(AT), W = X (j) ∩Mλ(AT), and

Ỹ =
∑

i∈N (j)
s
G(ij)

λ gives

dim
( ∑

i∈N (j)
s

G(ij)
λ

)
⩾ dim

(
X (j) ∩Mλ(AT)

)
− dim

(
S

(
Vj

(
N (j)

s

))
∩ X (j) ∩Mλ(AT)

)
= r

(j)
λ

(
N (j)

s

)
(97)

where the last equality is due to (29). According to (93),∑
i∈N (j)

s

γ
(ij)
T =

∑
λ∈Λ(A(j))

( ∑
i∈N (j)

s

dim
(
G(ij)

λ

))
log |λ|

⩾
∑

λ∈Λ(A(j))

dim
( ∑

i∈N (j)
s

G(ij)
λ

)
log |λ|

⩾
∑

λ∈Λ(A(j))

r
(j)
λ

(
N (j)

s

)
log |λ|

where (97) is used to obtain the last inequality. This shows that
γ

(j)
T satisfies (92b) for an arbitrary N (j)

s ⊆ N (j). Therefore,

γ
(j)
T is a basic feasible solution to (92), and is thus an extreme

point of R̄(j).
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[34] X. Cao and T. Başar, “Decentralized online convex optimization
with feedback delays,” IEEE Trans. Autom. Control, vol. 67, no. 6,
pp. 2889–2904, Jun. 2022.

[35] S. Marano, V. Matta, and P. Willett, “Distributed estimation in large
wireless sensor networks via a locally optimum approach,” IEEE Trans.
Signal Process., vol. 56, no. 2, pp. 748–756, Feb. 2008.

[36] S. Marano, V. Matta, L. Tong, and P. Willett, “A likelihood-based
multiple access for estimation in sensor networks,” IEEE Trans. Signal
Process., vol. 55, no. 11, pp. 5155–5166, Nov. 2007.

[37] P. Sharma, A.-A. Saucan, D. J. Bucci, and P. K. Varshney, “Decentral-
ized Gaussian filters for cooperative self-localization and multi-target
tracking,” IEEE Trans. Signal Process., vol. 67, no. 22, pp. 5896–5911,
Nov. 2019.

[38] B. Teague, Z. Liu, F. Meyer, A. Conti, and M. Z. Win, “Network local-
ization and navigation with scalable inference and efficient operation,”
IEEE Trans. Mobile Comput., vol. 21, no. 6, pp. 2072–2087, Jun. 2022.

[39] Z. Liu, W. Dai, and M. Z. Win, “Mercury: An infrastructure-free system
for network localization and navigation,” IEEE Trans. Mobile Comput.,
vol. 17, no. 5, pp. 1119–1133, May 2018.

[40] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[41] S. Kar, J. M. F. Moura, and K. Ramanan, “Distributed parameter esti-
mation in sensor networks: Nonlinear observation models and imperfect
communication,” IEEE Trans. Inf. Theory, vol. 58, no. 6, pp. 3575–3605,
Jun. 2012.

[42] S. Kar, J. M. F. Moura, and H. V. Poor, “Distributed linear parameter
estimation: Asymptotically efficient adaptive strategies,” SIAM J. Con-
trol Optim., vol. 51, no. 3, pp. 2200–2229, 2013.

[43] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for
distributed estimation,” IEEE Trans. Signal Process., vol. 58, no. 3,
pp. 1035–1048, Mar. 2010.

[44] F. S. Cattivelli and A. H. Sayed, “Diffusion strategies for distributed
Kalman filtering and smoothing,” IEEE Trans. Autom. Control, vol. 55,
no. 9, pp. 2069–2084, Sep. 2010.

[45] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: Formulation and performance analysis,” IEEE Trans.
Signal Process., vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

[46] J. Du, S. D. Ma, Y. C. Wu, S. Kar, and J. M. F. Moura, “Convergence
analysis of distributed inference with vector-valued Gaussian belief prop-
agation,” J. Mach. Learn. Res., vol. 18, no. 172, pp. 1–38, Apr. 2018.

[47] M. Cetin et al., “Distributed fusion in sensor networks,” IEEE Signal
Process. Mag., vol. 23, no. 4, pp. 42–55, Jul. 2006.

[48] A. T. Ihler, J. W. Fisher, R. L. Moses, and A. S. Willsky, “Nonparametric
belief propagation for self-localization of sensor networks,” IEEE J. Sel.
Areas Commun., vol. 23, no. 4, pp. 809–819, Apr. 2005.
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