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Abstract—Location-awareness enables a variety of emerging applications on mobile devices. For indoor applications, a desirable way
of obtaining real-time locations is by combining different sources of positional information, such as the inertial measurements, ranging
measurements, and map information with an infrastructure-free system that does not rely on any customized hardware. These sources
of information can be incorporated into the paradigm of network localization and navigation (NLN). However, there still lacks an
infrastructure-free localization system that applies the insights of NLN to effectively fuse different types of information. In this paper, we
present the Mercury system, which realizes the key ideas of NLN, including the exploitation of spatiotemporal cooperation and the use
of environmental knowledge. We design a real-time belief propagation algorithm to fuse inertial measurements as well as range
measurements among different users with map information. We implement this algorithm in the Mercury system formed by a network of
smartphones, and evaluate its localization accuracy through experimentation. Results show that Mercury provides reliable location
information and that combining spatiotemporal cooperation with environmental knowledge remarkably reduces the location uncertainty
of users. Moreover, the performance of Mercury is more robust to imperfect initial positional knowledge compared with that of existing

systems.

Index Terms—Cooperative networks, localization, navigation, inertial tracking, belief propagation
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1 INTRODUCTION

LOCATION—AWARENESS enables a variety of emerging
applications such as pedestrian navigation, asset track-
ing, crowd sensing, and social networking [1], [2], [3], [4],
[5], [6], [7]. For outdoor applications, the location informa-
tion can be provided by the global navigation satellite sys-
tems (GNSSs). However, the performance of these systems is
degraded in the indoor environment due to the complicated
propagation conditions for radio frequency (RF) signals.
It remains a challenging problem how to provide accurate
and real-time location information for indoor applications.
Extensive research has been carried out on indoor locali-
zation [8], [9], [10], [11], [12]. Based on the hardware require-
ment, we classify existing indoor localization systems into
two categories, namely, infrastructure-based systems and
infrastructure-free systems. The former refers to systems
that include devices specially designed for localization (e.g.,
ultra-wide band (UWB) radios and ultrasound transceivers)
[13], [14], [15], [16], whereas the latter refers to systems that
consist of only commercial devices (e.g., smartphones and
tablets) and existing facilities (e.g., WiFi access points (APs)
and cellular base stations) [17], [18], [19], [20], [21], [22], [23],
[24], [25]. Between these two types of systems, the infrastruc-
ture-free ones are more amenable for wide-scale commercial
use. These systems use measurements obtained from only
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commercial devices and thus avoid additional hardware
cost. In infrastructure-free localization systems, the algo-
rithm used for measurement fusion is critical in determining
the overall system performance.

Network localization and navigation (NLN) is a recently
proposed paradigm that can incorporate different types of
positional information provided by sensors in commercial
devices. This paradigm exploits spatiotemporal cooperation
for position inference (see Fig. 1), and has been shown to
improve localization performance [1], [2], [3], [26], [27]. Each
user obtains its positional information by making intra-user
and inter-user measurements in the temporal and spatial
domain, respectively. Intra-user measurements include the
acceleration and angular velocity of a user, and inter-user
measurements include the ranges and angles among users.
Another important source that can be exploited to improve the
localization accuracy of NLN is the environmental knowledge,
e.g., map information. In particular, if a map of the indoor
environment is available, prior position information can be
extracted from the map and the uncertainty of the user’s posi-
tion can be significantly reduced (see Fig. 1) [28], [29], [30]. The
idea of exploiting spatiotemporal cooperation and environ-
mental knowledge has been demonstrated by existing
infrastructure-free systems to some extent [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41]. In these
systems, the intra-user measurements obtained from the
inertial measurement unit (IMU) and the inter-user meas-
urements obtained via acoustic signals are used to deter-
mine the position of the user. However, there still lacks a
unified and principled framework to fully exploit the spa-
tiotemporal cooperation and environmental knowledge.

In this paper, we present an infrastructure-free localiza-
tion system, Mercury, that incorporates the key ingredients
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Fig. 1. Network localization and navigation: Three mobile users (blue
dots) aim to localize themselves via temporal cooperation (green
arrows), spatial cooperation (red arrows), and environmental knowledge
(map information) in three different time instants ¢, (shaded), t,, and ¢;.

of NLN, including spatiotemporal cooperation and environ-
mental knowledge, in a principled manner. In particular,
we integrate the intra- and inter-user measurements as well
as the map information under the Bayesian framework,
design a belief propagation (BP) algorithm to infer the posi-
tions of users, and build a navigation system consisting of
only smartphones accordingly. The main contributions of
this paper are as follows.

e We propose a graphical model that represents the
position, phone heading error, and the gyroscope
bias of a user as a state vertex. Compared with mod-
els where the state vertex includes only the position,
the proposed model enables more effective mitiga-
tion of the accumulated errors brought by the IMU.

e We develop a BP algorithm that fuses the inertial
measurements obtained via the IMU in smartphones,
as well as the range measurements among different
users obtained via acoustic signals.

e We fuse the map knowledge with location informa-
tion from spatiotemporal cooperation by imposing
positional constraints in the dynamic model of the
BP algorithm.

e We implement a real-time navigation system on
smartphones, and demonstrate its performance
improvements compared to existing systems via
experimentation.

The remaining sections are organized as follows.
Section 2 presents the system model. Section 3 presents the
designed BP algorithm. Section 4 describes the implementa-
tion details of the infrastructure-free NLN system. Section 5
presents the experimental results. Section 6 describes the
related work. Section 7 concludes the paper.

Notation. Random variables are displayed in sans serif, upright
fonts; their realizations in serif, italic fonts. Vectors and matrices
are denoted by bold lowercase and uppercase letters, respectively.
For example, a vandom variable and its realization are denoted
by x and x, respectively; a random vector and its realization
are denoted by X and x, respectively. z* and ||z| denote the
transpose and the Euclidean norm of vector x, respectively;

Ty, represents vector [zl xl ., ...z} 1", where x; is a column
vector for i =k, k+1,...,n, f(x) denotes the probability
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density function (PDF) fx(x) of the random wvector X, and
f(x|y) denotes the conditional PDF fyy(x|y) of the random vec-
tor X conditioned on random vector y; X ~ N (u,2.) denotes that
random vector X follows the Gaussian distribution with mean p
and covariance matrix 3, and g(z; n,2) denotes its PDF; |S|
denotes the cardinality of set S.

2 SysTEm MODEL

In this section, we present the graphical model for NLN, and
describe details on the states and measurements in this model.
This model serves as a basis for the design of Mercury.

2.1 Graphical Model

Consider a network consisting of /N mobile users. Each user
applies a discrete-time model so that it takes one step dur-
ing each time interval. Note that at a certain time instant,
different users may have taken a different number of steps.
Suppose that the users in the network have taken &, ks, . . .,
ky steps, respectively, at some time instant. For a particular
user j, its positional 1nformat10n at the kth step is repre-
sented by a random vector xk ) for 0 < k < kj, and this vec-
tor is called the state of the user. The tra]ectory of user j is
then represented by the state sequence xf) ;.- Let X denote
the concatenation of the state sequences of all users. The fol-
lowing assumptions on X are made throughout this paper:

1)
2)

Based on these assumptions, the joint PDF f(x) of the states
can be written as

The state sequences of different users are independent.
The state sequence of each user is a Markov chain.

N kj
f(zf H F ).
=1

J k=1

A user makes an intra-user measurement whenever it
takes a new step, and it also makes inter-user measurements
intermittently when there are other users in its communi-
cation range with line-of-sight propagation conditions.
For a particular user j, the intra-user measurement obtained
at its kth step is represented by a random vector y,(j for
0 < k < kj. In addition, suppose that user j and user ¢ make
an inter-user measurement at their k;jth and k;th step,
respectively, and such measurement is denoted by y(”

Let y denote the concatenation of the intra- and 1nter-user
measurements made by all the users, and the following
assumptions on Yy are used throughout this paper:

1)  The intra-user measurement of a user depends only
on its states of the current step and the previous step.
The inter-user measurement between two users

depends only on the states of their current steps.

2)

Based on these assumptions, the conditional PDF f(y|z) can
k?
T[@a?

be written as
©)
“’k] 1))
=1
N ]‘l k]

H f yu v ul>7

=i+1 u=1v=1

Il

flylz) = (
=1k

I

i=11

(1
).

Note that f(y{")|z{),z{") in (1) is replaced with 1 if user i
and user [ do not make an inter-user measurement at their
uth and oth step, respectively. With the above assumptions
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Fig. 2. Undirected graph describing the model of the positional states
(white circles), intra-user measurements (green circles), and inter-user
measurements (red circles) in a network consisting of three users. Inter-user
measurements are available only when users perform spatial cooperation.
Temporal cooperation messages (green arrows) and spatial cooperation
messages (red arrows) are passed between connected states.

on the states and measurements, we can describe the system
model using an undirected graph (see Fig. 2). The vertices in
the graph represent states, intra-user measurements, or
inter-user measurements.

2.2 Models for States and Measurements

We next present more details on the model of states and
measurements. We omit the the index of the user in super-
scripts and subscripts for notational simplicity unless other-
wise noted.

The state x; := [p} v} | in the graphical model consists
of the user position p, € R?> and a random vector Vv, =
[wy, e ]" related to the errors introduced by the IMU. In par-
ticular, w; € R denotes the phone heading error. It repre-
sents the estimation error for the horizontal orientation,
referred to as heading, of the phone. Moreover, €; € R rep-
resents the gyroscope bias in the horizontal plane. The moti-
vation of incorporating w; and e; into the state is for
mitigating the effects of the errors brought by the IMU. Spe-
cifically, the intra-user measurements are obtained via proc-
essing the inertial measurements provided by the IMU,
including acceleration and angular velocity samples (the
processing procedures are described in Section 4.2). These
measurements are affected by the errors caused by the bias
and noise in the IMU. If such errors are not appropriately
handled, the estimated phone heading and the user’s trajec-
tory will deviate from the truth [30], [36]. To improve the
localization performance, we incorporate the phone head-
ing error and the gyroscope bias into the state vector, and
propose a BP method to compute its distribution. With such
a distribution, the impacts of the errors on the intra-user
measurements can be mitigated.

It is assumed that sequences p,.. and Vo, are indepen-
dent Markov chains,! and thus the dynamic model
f(zk|zr—1) can be expressed as follows:

f@ilze-1) = f(pelpi—1) f(vrlvi-1).

1. We adopt the Markov model for p,;, because it does not require
assumptions on the user’s walking patterns.
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The conditional PDF f(p,|p;_;) is obtained via the map
information. Specifically, we partition the area of interest
into a set of small disjoint squares and denote such set by
M ={L1,2,..., M}, where M is the number of the squares.
Let ¢ € R? denote the coordinate of the center of square i.
For two different squares ¢ and j, if the Euclidean distance
¢ — cU)|| between their centers is smaller than a prede-
fined threshold, and there are no obstacles (e.g., walls) on
the line segment connecting ¢(”) with ¢\/), then we say square
i is a neighbor of square j and vice versa. The presence of
obstacles can be determined based on the floor plan. For a
position p € R?, let function I(p) denote the index of the
square that contains it, and let A(p) denote the index set
containing all the neighbors of square I(p). We also define
¢(p) as the center of the square that contains p, i.e.,

c(p) = 1P, (2)

It is assumed that at each step, a user moves to one of the
neighboring squares with equal probability. The conditional
PDF f(p,|p;_,) is thus given by

m7 if I(py) € N(py-1)
0, otherwise,

J(pelper) = { 3)

where constant S is the area of each square.
The conditional PDF f(vj|v;—1) is obtained as follows.
First, wy, is modeled as

Wy = Wy—1 + €51 At + n}j,

where At;, is the duration of the kth step, and n} ~ N (0,02)
is noise with known variance o?2. The second term is due to
the fact that at the kth step, the gyroscope bias brings addi-
tional error of €;,_;At; in the phone heading estimate. Sec-
ond, e, is modeled as [42], [43]

& = €51 + Ny,

where n§ ~ N(0,0?) is noise with known variance o?. The
conditional PDF f(vy|vi_1) can thus be written as

florlvi—1) = glwp; w1 + ex_1Aty, 02)g(er; ex—1,02).

The prior distribution of X, is modeled as follows. Ran-
dom variables p,, Wy, and g are independent. It is assumed
that ey ~ N(0, ¢?) with variance ¢?, whereas the distribu-
tions of p, and wy depend on the availability of the initial
positional knowledge. Specifically, f(p,) is assumed to be
constant in each square, and its value depends on whether
the initial position of the user is known. If the initial position
is known to be in square i € M, then f(p,) is

178 if I(py) = s

0 otherwise.

f(po) = {

If the initial position is unknown, then f(p,) is uniform in
the entire area of interest, and it can be written as

f(il’o):SL

e
The distribution of w; depends on whether the initial phone
heading is known. If such heading is known, there is no
error in the phone heading estimate initially, and thus
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Wy =0 with probablhty 1; otherw1se we model w, as
Wy ~ N (0, ¢2), where ¢? is a constant.”

The intra-user measurement Yy, consists of the step
length measurement |, and the step direction measure-
ment U, ie., Y,:= [Ik uk]T. These measurements are
obtained via a processing of the acceleration and angular
velocity samples. It is assumed that I; and u;, are indepen-
dent given X;_;;, and therefore the conditional PDF
f(yi|xr—1:x) can be expressed as

Splzi—1x) = fllp-1x) f(ur]Te1).-

The measurement |, is modeled as

Ik = IPx — Pr_sll + n}m

where n} ~ N(0,0?) is noise with known variance o7, and
the conditional PDF f(Ij|z)_1.;) can then be written as

F(elzr-11) = flk|pr_1x)

4)
= g(l; lpr. — Pl 0.

The measurement U, is modeled as

Pi-1 } + W+ n};a

Up ="/ [pk -
where n! ~ N(0,0?) is noise with known variance o2, and
/[p] is the angle of vector p € R%. The second term is due
to the fact that uy, is obtained based on the phone heading
estimate at the kth step, and therefore it contains the phone
heading error wj,. The conditional PDF f(uy|x;_1,) can thus

be written as

fQur|@r-1k) = f(urlpp1.0, we) ®
= gluis /[Py — Py ] + wyp, 0}).
The inter-user measurement yk ) between user i and jis the
range measurement obtained via acoustic signals. It is mod-
cled as i) _ 1ol _ pi)[| 4 )
yA,ka = ”pk,; - pki [+

where nk k ~ N(0,0?) is noise with known variance of o2
The conditional PDF f yg k) ‘m,ﬁ ), zi )) can thus be written as

wﬁ”) = yk k |pl< ’pk>)

—p[l,07)

f(yk K ll'k s
_ (7J ©)
g y], k 7

Hpk

Other types of sensor measurements, such as the com-
pass measurements and WiFi received signal strength (RSS)
measurements, can also be incorporated into the system by
extending the measurement model. For example, the com-
pass measurement can be incorporated as follows. Consider
that y, := [l Uk Zk] Specifically, z; is defined as z; :=
hi; — sk, where hy, is the phone heading estimate based on
the acceleration and angular velocity samples, and s;, is the

2. When the initial phone heading is unknown, Mercury chooses a
value in [—m, ) randomly according to the uniform distribution and
sets it as the initial phone heading estimate. Therefore, [w], is uni-
formly distributed in [, 7), where [wg], denotes the value in [, 1)
that is congruent to wy modulo 27. In other words, [wy], = wy + 2k,
where k is an integer such that wy + 2k € [, 7). To facilitate the deri-
vation of our algorithm, we make an approximation on wy such that
wy ~ N (0,6%). When ¢ > 72, the PDF of [wo], is close to that of the
uniform distribution in [—7, 77), and such approximation is tight.
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phone heading estimate based on the compass reading. The
conditional distribution f(y;|x;—1.;) can be written as

(7)

The conditional PDF f(z|x)-1.) is obtained according to
the following measurement model of z;,

Fylzi—1k) = felze—rn) furlTr—re) f(2rlTr1ar)-

®

where nj i~ N(0,0?) is noise with known variance o?2. Equa-
tion (8) is justified as follows. The variable h;, is the sum of
the true phone heading with the heading error w;, whereas
Sy is modeled as the sum of the true phone heading with
noise nj. Therefore, their difference z;, = h;, — s}, can be writ-
ten as (8). The conditional PDF f(z|zy_1.) is thus

Zp = Wy, + N7,

9)

F(zrlzi-1k) = gz wp, 02).

3 MEASUREMENT FUSION WITH BELIEF
PROPAGATION ALGORITHM

In this section, we describe the BP algorithm for spatiotem-
poral cooperation [27], and present efficient methods for
computing the messages and beliefs when intra- and inter-
user measurements are available.

3.1 BP Algorithm for Spatiotemporal Cooperation
We use the BP algorithm to compute the posterior distribution
of the positional states given the available intra- and inter-user
measurements. We adopt the BP algorithm for three reasons.
First, the BP algorithm is efficient in computing such distribu-
tion based on the graphical model. In particular, the BP algo-
rithm fuses the intra- and inter-user measurements as well as
the map constraints in a principled manner, and the uncer-
tainty in the position estimate of each user is also taken into
account. Second, the BP algorithm facilitates the implementa-
tion of cooperation, especially spatial cooperation. Specifically,
a user exchanges information only with users in its communi-
cation range, called neighboring users, when it performs spa-
tial cooperation. Third, the BP algorithm enables a distributed
implementation of the system. With the BP algorithm, a user
can process the measurements and estimate its position locally,
and thus a central processing unit is not required.

The posterior distribution of a state given the available
measurements in the BP algorithm is called the behef of that
state, and we denote the behef of state X\ by bV ( i .

Moreover, the dlstrlbutlon by ( Jj ) of pm is obtained by

marginalizing Vk Y out, ie.,

g /bm( D))

Let bk ( | pk ) denote the conditional PDF of Vk given p

and the avallable measurements. The belief b ( (’)) can
then be written as

o) (=) = b (o) )]

In the BP algorithm, the belief is computed according to the
messages passed in the graphical model (see Fig. 2) [44]. Mes-
sages are passed between connected states, and a message is a
function of the destination state. There are two types of mes-
sages in the proposed graphical model, namely temporal
cooperation messages and spatial cooperation messages. The
former are passed from one time instant to the succeeding one

(3)],,(4)
(vkj ’pkj )
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when intra-user measurements are available, whereas the lat-
ter are passed between two users performing spatial coopera-
tion when inter-user measurements are available. The belief
of a state is proportional to the product of all the messages

passed to it. Specifically, let m; )( ) ) denote the temporal
cooperation message passed from state Xi) | to x .In addr—
tion, suppose user j cooperates with users 1n a subset ct/ .
{1,2,...,N} at the kjth step, and let m|"") (z} ) (i ec<f)
denote the spatial cooperatron message passed from state
x,E) to xk]> The belief b’ ( <ﬁ) can then be written as

NG 1 ;
) = i) T] ko
I‘J LEC

(] ) is a normalization constant such that

[ ¥ @iz =1

The messages and beliefs in the BP algorithm are com-
puted in a recursive manner when new intra- and inter-user
measurements are available. When intra-user measurement
yg 7 is available, the temporal cooperation message mY >(x§j))
is Computed as !

where Z

/f |xk ) (y}V |5L'k 717552]))
X blE:]j)—l(x 71)d$k —10

(10)

(J)

and when inter-user measurement Y, is available, the

spatial cooperation message m ,f ],2 (z m) is computed as

<u ]> /fyff’k) 2, én) Efl)( §f.>)

< T b oot

IEC \]

an

The integrals in (10) and (11), however, are analytically
intractable in general. To address this issue, we propose
efficient methods for computing the messages and beliefs
described in the following section.

3.2 Approximate Belief Update in the BP Algorithm
We next present an efficient method for updating the beliefs
when intra- and inter-user measurements are available. We
make a few approximations on the measurement model.
Specifically, p, and p;_; in (4) and (5) are approximated by
c(p,) and c(p,_;), respectively, where function c(p) is
defined in (2) In addltlon p,(c) and p,(J in (6) are approxi-
mated by c(pk ) and c(pk )) respectrvel}Jz Then we have

FUklpr—1.) = g(li; l|e(py) — C(Pk—l)“v(’%) (12)

J(urlpr— 1 wi) = glug; [e(py) — e(pr_1)] + wi, Ui) (13)

P o) pl)) ~ a(uid s llel)) = el 02). A

Note that (12), (13), and (14) are common approximations
[30], [34]. Moreover, (12), (13), and (14) are asymptotically
accurate as the size of each square goes to zero. Based
on these approximations, we show an important property

of belief bg) (zr,;) in the following proposition. This property
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will be used for designing an efficient belief update method
when intra- and inter-user measurements are available.

Proposition 1. With approximations (12), (13), and (14),
b;cj) (z (’)) can be expressed as

4 o) =) el )1 o i)

for j=1,2,...,N and k; > 0, where the conditional distribu-
tion b )( (J)| (p,<f ))) is a Gaussian mixture distribution, with
all its components having the same covariance matrix that
does not depend on xgji,y

Proof. See the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/10.1109/TMC.2017.2725265. O

Remark 1. Proposition 1 indicates that the approximations
(12), (13) and (14) enable the efficient computation of

belief b’ ( ) First, b )( G )) can be represented by the
product of b ( )) and b m‘c with 1 =1,2,..., M.
In particular, b(] (c®) is a scalar and b(] ,E,jj)|c(l)) is a

Gaussian mixture distribution parameterrzed by the
weights, means, and covariance matrices of its compo-
nents. Second, these scalars and the Gaussian mixture
parameters can be computed easily, as shown in the
Appendix, available in the online supplemental material.

Remark 2. The proof in the Appendix, available in the
online supplemental material, considers only the step
direction and step length measurements. It can be shown
that Proposition 1 still holds when the compass measure-
ments given by (7), (8) and (9) are incorporated. In partic-
ular, the proof is still valid with the equations for
computing the Gaussian mixture parameters modified.

An efficient method for belief update can be designed
based on Proposition 1. Consider the belief update of user j
at its k;th step, and for simplicity, assume that user j per-
forms spatlal cooperation with user i, ie., C(’ = {i}. The
belief update consists of two stages. In the frrst stage, user j
obtains intra-user measurements [}’ ) and ui User j then
evaluates the temporal cooperatlon message and obtains
an 1ntermed1ate belief b<J (z J] ) represented by the product
of by ( () and Gaussian mixture distribution by’ s (v ;(jj>|c<l))
with l =1,2,..., M (see the Appendix, available in the online
supplemental materlal) In the second stage, user j obtains
inter-user range measurements y2 k) , sends b ( ) to user i,

and receives bki( ) from user i. User j then evaluates
the spatial cooperation message and obtains the updated

belief b,%) (:c,(fj)) represented by the product of b,%) (c")
and b,{,];_) (v%)‘c(l)) = bm |c ) with 1 =1,2,..., M (see the

Appendix, available in the online supplemental material).” If
no user perforrns spatial cooperation with user j at its k;th
step, i.e., ct/ k= =, then the belief update in the second stage is

not reqLured andb ( ) = 556? (c®).

3. The proof in the Appendix, available in the online supplemental
material, shows that inter-user measurements affect the posterior distri-
bution of the user’s position, but they do not affect the distribution of
the phone heading error and gyroscope bias. Therefore, we have

o 04 10) = 67 (04|,


http://doi.ieeecomputersociety.org/10.1109/10.1109/TMC.2017.2725265
http://doi.ieeecomputersociety.org/10.1109/10.1109/TMC.2017.2725265

1124

[

[ Phone orientation

Coordinate
transform

estimator
Step information Range estimator
estimator

l“ka I l yd)

Belief propagation

lbk(mk)

Bluetooth
transceiver

Speaker

i Microphone

acceleration
samples

I e )

exchanged
information

acoustic
signals

angular velocity
samples

Fig. 3. System architecture for Mercury.

Moreover, we make three other approximations in the
belief update process to reduce the computation and commu-
nication overhead. Consider the belief update of user j at
its k;th step. First, user i sends only the largest N. < M ele-

ments in the set {b(l (c®),1=1,2,..., M} touser j when per-
forming spatial cooperation. Second user j keeps the largest
Ny, < M elements in the set {b ( ),l=1,2,...,M}, and
sets the rest to 0. Third, user j approxunates the Gaussian

mixture distribution bkj (v Lj )|¢)) by keeping N of its compo-

nents with the largest weights, where NV, is a constant. The
computational complexity of the proposed belief update
method can be obtained as follows. Since the beliefs of IV,
squares are tracked, and for each square the parameters
of a Gaussian mixture distribution with N, components are
computed the total computational complexity scales as
O(N,N,).* The efficiency of our algorithm is demonstrated
by experimental results, since desirable localization perfor-
mance can be achieved with a small N, and a reasonable NV},.
Combining the results in this section, we design a distrib-
uted BP algorithm that incorporates spatiotemporal coopera-
tion and map information for NLN. The details of this
algorithm are presented in Algorithm 1 using user j as an
example: lines 3-18 describe the first stage of the belief update
with intra-user measurements; lines 19-24 describe the sec-
ond stage of the belief update with inter-user measurements.

4 SYSTEM IMPLEMENTATION

In this section, we present implementation details of
Mercury. We first describe the system architecture, and
then show how to obtain phone orientation estimates, step
direction measurements, and range measurements.

4.1 System Architecture

Fig. 3 shows the system architecture of Mercury. In Mercury,
a Bluetooth transceiver and built-in sensors including the
IMU, speaker, and microphone are used to obtain intra- and
inter-user measurements (green and red arrows in Fig. 3).
These measurements are fused by the BP algorithm to obtain
the positional belief of a user. The location at which the maxi-
mum belief is achieved is the position estimate of the user.

4. With spatial cooperation, there is additional computational com-
plexity for incorporating the inter-user measurements that scales as
O(N,N.). However, since spatial cooperation is performed only inter-
mittently in Mercury, its contribution to the overall computational com-
plexity is negligible.
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Algorithm 1. Distributed BP Algorithm for Mercury
Input: Prior distribution b( ) (mgj )

measurements l,f

); step length and direction

(i.4)
and uk ; range measurements y, . ;

Output: Belief b ( )) and b ( s |c )), for I € M and
1<k <K. '
1: k‘ — 1
2: whlle k; < K do
3: Compute 3, according to (20) in the Appendix, avail-
able in the online supplemental material;
4: forall/ € M do
5: foralli € N'(c") do
6: forallm =1,2,...,N, do
7: Compute ug >( D) and & a >( ) according to
(21) and (22) in the Appendlx available in the
online supplemental material, respectively;
8: end for
9: end for
10: foralln=1,2,..., N, ( )| do
11: Obtain &1(: )(pk) and uk (p,\) by reordering
{&;f;'" ))} and {M " '”)( )} as described in the
Appendix, available in the online supplemental
material;
12: end for 0
~(4 Ng|N(c ~(n
B () = T & ();
14: foralll <n < N, do
n ~(n Ny ~(v
15: o () = &) () ot ) (e);
16: end for N
17: bi vk ]c Z vk ,;LEL)( (l))72kj);
18: end for _ .
19:  foralli () do
20: Transmit b ( ( >) to user i, and receive 5,? (c(l))
from user z,
21: foralll € M do
. - M i
22: b () = 57 () D flyh e e
n=1
X 55‘1) (c(”’));
23: end for
24: end for
25: kj—k;j+1;
26: end wh11e

The IMU provides acceleration and angular velocity sam-
ples, and these samples are used to estimate the three-
dimensional phone orientation [45]. Based on the phone ori-
entation estimate, the acceleration samples are transformed
from the phone coordinate system to the earth coordinate
system. The transformed acceleration samples are then
used to compute the step direction and length, which are
used as the intra-user measurements in the BP algorithm. In
Mercury, the difference between the phone heading and
the step direction, known as heading offset, is assumed to
be time-varying during the localization procedure. This
assumption is more practical compared with the assump-
tion in existing systems that the heading offset is a constant
[34], [35], [36], since the user may rotate the phone and the
heading offset may change.

The speaker and microphone are used to transmit and
record acoustic signals, respectively, when a user performs



LIU ET AL.: MERCURY: AN INFRASTRUCTURE-FREE SYSTEM FOR NETWORK LOCALIZATION AND NAVIGATION

spatial cooperation. Based on the recorded acoustic signal,
the user computes its range with respect to another user
[41], and the result is used as the inter-user measurement in
the BP algorithm. Moreover, the Bluetooth transceiver is
used to exchange the information that is required for the
range computation and belief update.

A map of the accessible area is pre-processed and serves
as an input for Mercury. Specifically, the borders of the acces-
sible area are labeled, and then the area inside the borders is
partitioned into identical squares. The size of each square
affects both the localization accuracy and the computational
complexity. On the one hand, the approximations (12), (13),
and (14) become more accurate, and the localization accuracy
is higher with a smaller square size. On the other hand, a
larger number of squares are required to cover the area of
interest, and thus the computational complexity is increased.
As a tradeoff, we set the size of each square as 0.7 m x0.7 m
for the results presented in this paper.

4.2 Phone Orientation Estimation and Step
Direction Measurement

The method proposed in [45] is used in Mercury for estimat-
ing the phone orientation. In this method, a calibration term
obtained according to the acceleration samples is consid-
ered in the phone orientation estimation. However, such
calibration reduces the error only in the estimate of the
angle between the phone and the direction of the gravity.
It does not reduce the error in the horizontal orientation
estimate, i.e., the phone heading estimate. Such limitation
motivates the incorporation of the phone heading error into
the state vector.

The direction of a step is computed based on the spec-
trum of the acceleration samples obtained during this step
as follows. First, the acceleration samples obtained in this
step are transformed to the earth coordinate system based
on the phone orientation estimate. Then a discrete Fourier
transform (DFT) is performed on the transformed samples
to obtain their spectrum. Let ax = [anp ani ... ani-1 ]T
and aw = [awo aw1 .- aw?L,l]T denote the acceleration
spectrum of the kth step in the north and west direction,
respectively, where L is the number of acceleration samples
obtained in that step. We make a similar observation as in
[46] that the first and second frequency components,
a| = [aN‘l aw,1 }T and as = [G,NQ a\vjz]T, Capture most of
the energy in the spectrum.” We also observe that a; has a
large vector component in the direction u; + /2 that is per-
pendicular to the step direction, whereas a; has a large vec-
tor component in the step direction u;. Based on these
observations, we compute the step direction w;, by solving
the following optimization problem analytically

up = argmax (|af e(6 + 7'[/2)|2 + ’a;re(é’)ﬁ),
0€0,27)

where e(6) := [cos6 sinf ]’

The step direction measurement u;, contains the phone
heading error caused by the bias and noise in the IMU, since
it is computed based on the phone orientation estimate. To
mitigate the impacts of the phone heading error, we

5. Since the number of points for the DFT is the same as the number
of acceleration samples contained in a step, the first and second fre-
quency component correspond to the first and second harmonic of the
acceleration measurements, respectively, with the step frequency as the
fundamental frequency.
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incorporate w;, and ey, into the state vector x;. In addition,
while the gyroscope bias exists along all the three axes of
the phone coordinate system, only the component along the
Z-axis (i.e., the axis perpendicular to the screen of the smart-
phone) is considered in Mercury. The reason is explained as
follows. For simplicity, we assume that the Z-axis is perpen-
dicular to the ground, and therefore the biases with respect
to the other two axes, X- and Y-axis, do not affect the phone
heading estimate and the step direction measurement.®
Experimental results show that incorporating the gyroscope
bias with respect to the Z-axis leads to sufficiently accurate
position estimates. Moreover, removing this assumption
and extending the system model to include the biases with
respect to all the three axes is straightforward.

4.3 Spatial Cooperation via Acoustic Signals

Users perform spatial cooperation by making range measure-
ments and exchanging positional information. The spatial
cooperation between a pair of users, user j and user i, consists
of four stages: cooperation request, carrier sensing, acoustic
ranging, and belief exchange. User j starts the spatial coopera-
tion by setting up a Bluetooth connection with user . After
the connection is established, user j sends a cooperation
request to user ¢ and waits for its response. When the response
is received, user j starts carrier sensing by turning on the
microphone to detect the presence of acoustic signals trans-
mitted by other users. If no such signals are detected, user j
performs two-way ranging with user i by measuring the
round-trip propagation time of acoustic signals [41]. When
the ranging is finished, the two users exchange their positional
beliefs using Bluetooth, update their position estimates as
described in Algorithm 1, and close the Bluetooth connection.
If there are multiple neighboring users available, user j per-
forms spatial cooperation with them in succession. Note that
the spatial cooperation requires only the sensors embedded
in smartphones. Moreover, since the propagation speed of
acoustic signals is slow compared to that of RF signals, desir-
able ranging accuracy can be achieved with the acoustic
sampling rate of a smartphone. The latency of the spatial
cooperation is as follows. The delay of the cooperation request
ranges from 300 ms to 1.8 s, and the duration of carrier sensing
is set to 400 ms. The delay of two-way ranging and belief
exchange is 1.1 s. Thus, the total delay of the spatial coopera-
tion is moderate for typical indoor applications.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of Mercury
via experiments. The results are shown for both single-user
scenarios and multi-user scenarios.

5.1 Experiment Setup

We implement Mercury using three different types of
smartphones, namely Samsung Galaxy S4, LG Nexus 5, and
Motorola Moto X (2nd Generation). The Galaxy S4 and
Moto X models run Android version 4.4.4, whereas the
Nexus 5 model runs Android version 5.0.1. The built-in sen-
sors in these phones are used to obtain intra- and inter-user
measurements for localization. In particular, the IMU pro-
vides acceleration and angular velocity samples at rate of

6. The aim of this assumption is only for simplifying the model of
the gyroscope biases. Our system also operates well if the Z-axis is not
perpendicular to the ground.
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TABLE 1
Values of Parameters in the System Model
Parameter ol 3252 orm?] o2 o [m
Value 7.62x 1070 2.74x 107  0.09 0.024 0.036

100 Hz for the Galaxy 5S4 model, and 200 Hz for the Moto X
and Nexus 5 models. In the spatial cooperation, we adopt
acoustic chirp sequences consisting of 4,096 samples under
the sampling rate of 44.1 kHz for making range measure-
ments. The duration and bandwidth of such a sequence are
93 ms and 2.2 kHz, respectively. Based on the intra- and
inter-user measurements, we obtain empirically the values
of the parameters in the system model described in Section
2.2. These values are listed in Table 1.

To evaluate the performance of Mercury, we conduct
experiments on the first floor and the sixth floor in the Stata
Center at MIT. The first floor contains large open space,
whereas the sixth floor is a typical office environment. The
accessible areas of the first and sixth floor are partitioned
into around 2,000 and 500 squares, respectively. The experi-
ments are conducted in both single-user and multi-user sce-
narios. In single-user scenarios, only temporal cooperation is
available, whereas in multi-user scenarios both temporal
and spatial cooperation are available. In addition, the experi-
ments are conducted under different settings of the prior dis-
tribution depending on whether the initial positions of the
users and the phone headings are known. If the initial posi-
tion of a user is unknown, the prior distribution of its posi-
tion is uniform in the area of interest, and thus we set
Ny, = M. If the initial position is known, we set IV}, as 500 and
150 in the first and the sixth floor, respectively. Moreover, we
set N, and N, to 3 and 30, respectively, unless otherwise
noted (see Section 3.2 for the explanation of N}, N,, and N.).

Mercury is compared with the systems described in [30]
and [34] in the single-user scenarios, as spatial cooperation is
not considered in the compared systems. The system in [30] is
called MapCraft; the system in [34] uses the particle filtering
(PF) technique and thus is referred to as PF. Both of the com-
pared systems require discretized maps for the areas of inter-
est, and for a fair comparison, they both use the ones obtained
via the pre-processing described in Section 4.1. The step
length and step direction measurements obtained by Mercury
are used as the inputs of the two compared systems, and their
variances, 012 and aﬁ, are set to the same value as those in Mer-
cury (see Table 1). Furthermore, even though WiFi RSS meas-
urements can be incorporated in all the three systems, they
are not taken into consideration in this paper for simplicity.

In MapCraft, the posterior distribution of the user trajec-
tory is represented by a set of functions called potential
functions. The logarithm of a potential function is the
weighted sum of several feature functions that describe the
dynamic and measurement models. We use the first two
feature functions in [30], since the other feature functions
are optional and require WiFi measurements. In particular,
the first feature function is the product of (3), (4), and

g(ur; /[ — i ], 00). (15)

Compared with (5) used by Mercury, (15) does not consider
the phone heading error w;, and its impact on the step direc-
tion measurement u;. To mitigate such impact, the second
feature function is adopted in MapCraft, and it is the prod-
uct of (3), (4), and
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glue — Wy L[py, — Pp1 ], 05),

where

1 ke
wk:w Z

n=k—W

(u" - Z[ﬁn - i)nfl])7

with p,, being an estimate of p, and W being a constant. In
other words, Mercury calibrates the step direction measure-
ment uy, by subtracting the error @, from it in the second fea-
ture function. The error w; is computed using the position
estimates in a previous time window containing W steps.
The Viterbi algorithm is used in MapCraft to compute the
state sequence of a user that achieves the maximum posterior
distribution, and the complexity of updating the posterior
distribution at each step scales as O(V},). The performance of
MapCraft depends on the value of W and the weights of the
two feature functions. In this paper, W is chosen from the set
{20, 40}. The weight \; of the first feature function is chosen
from {0.05,0.1,0.2,0.4}, and the weight of the second feature
is set to 1 — A;. The best localization accuracy of MapCraft
when W, A1, and \s are chosen from the above values is com-
pared with the performance of Mercury.”

In PF, the posterior distribution of a positional state is
characterized by a set of weighted particles, and the values
of these particles are chosen from a set of grids obtained via
partitioning the area of interest. When a step is detected, a
set of new particles are generated via a prediction stage,
and their weights are computed in an update stage. The par-
ticle with the largest weight is the position estimate corre-
sponding to the detected step. Specifically, in the prediction
stage, the values of the new particles are computed based
on the connectivity of the grids in the area of interest,
whereas in the update stage, the weights of the new par-
ticles are computed according to the step direction and
length measurements. The complexity of the PF technique
scales linearly with respect to the number of particles, and
we set such number to NV, IV, so that the complexity of PF is
similar to that of Mercury.

5.2 Experimental Results in Single-User Scenarios

We first conduct experiments to evaluate the accuracy of the
step direction measurements. Specifically, a user walks along
the corridor on the sixth floor for two consecutive laps as
shown in Fig. 4a. The user rotates the phone horizontally by
90 degrees after finishing the first lap. Fig. 4b shows the phone
heading estimates and step direction measurements in one
experiment. First, one can observe that desirable accuracy is
obtained both before and after the phone is rotated. The aver-
age error of the step direction measurements is 8.9 degrees.
Second, it can be seen that in the first lap, the step direction
measurements and phone heading estimates are close to each
other, whereas in the second lap there is a difference of about
90 degrees between them. This demonstrates the necessity to
consider the heading offset to be time-varying.

We next evaluate the localization accuracy of Mercury in
single-user scenarios. The user walks along the trajectory
shown in Fig. 5. Fig. 5 also shows the estimated trajectory in
one experiment when the initial position and phone

7. The feature function weights are obtained through a training pro-
cess in [30]. Such a training process is not considered in this paper for
fair comparisons.

8. The floor plans used in this paper are provided by the Depart-
ment of Facilities, MIT.
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Fig. 4. Phone heading estimates and step direction measurements: (a) the trajectory of the user starting at the blue dot; (b) phone heading estimates
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Fig. 5. The ground truth and estimated trajectory at the Stata Center, MIT: (a) on the sixth floor and (b) on the first floor.

heading are known. It can be seen that the estimated trajec-
tory is very close to the ground truth.

Fig. 6 shows the cumulative distribution function (CDF)
of the localization error when the initial state of the user is
known. First, the 80th percentile of the localization error for
Mercury is 1.6 and 3.5 m in the sixth and first floor, respec-
tively. Second, it can be seen that both Mercury and the
MapCraft system outperform the PF system. This is because
the PF system does not take the accumulated error in the
step direction measurements into account. Third, the perfor-
mance on the sixth floor is better than that on the first floor.
This is because more positional constraints can be extracted
from the map information on the sixth floor.

Fig. 7 shows the CDF of the localization error when
the initial position of the user is unknown and the initial
phone heading is known. First, the 80th percentile of the
localization error for Mercury is 1.7 and 3.9 m in the sixth and
first floor, respectively. Second, since the initial position is
unavailable, the localization accuracy is degraded compared

with the scenario that the initial position is known. Fortu-
nately, the position estimate quickly converges to the true
position after a few steps, and therefore the overall perfor-
mance is almost the same.

Fig. 8 shows the CDF of the localization error when the
initial position of the user is known and the initial phone
heading is unknown. The 80th percentile of the localization
error for Mercury is 1.7 and 3.8 m in the sixth and first floor,
respectively. Compared to the MapCraft system, Mercury is
more robust to the unavailability of the initial phone head-
ing information. In particular, the MapCraft system uses the
position estimates in a previous time window to compute
and correct the step direction measurement errors. When
the previous position estimates are close to the true posi-
tions, such errors can be corrected. However, the errors can-
not be correctly computed if the previous position estimates
are unreliable, e.g., if the initial phone heading is unknown.
In contrast, Mercury does not use position estimates in a
previous window for measurement calibration directly.
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Fig. 6. The CDF of the localization error for Mercury, MapCraft, and the
PF system in the sixth (F6) and first (F1) floor. The initial position and
phone heading are known.
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Fig. 7. The CDF of the localization error for Mercury, MapCraft, and the
PF system in the sixth (F6) and first (F1) floor. Only the initial phone
heading is known.

Instead, it incorporates the phone heading error in the state
vector and updates its posterior distribution when intra-
user measurements are available. With such a distribution,
the effects of step direction measurement errors are miti-
gated when the positional belief is updated using the pro-
posed BP algorithm. Therefore, Mercury is less sensitive to
the information of the initial phone heading.

Fig. 9 shows the CDF of the localization error when
neither the initial position nor the phone heading of the
user is known. Different values of N, are used in this sce-
nario. First, even when there is no information about the
initial state, Mercury still achieves 80th percentile of local-
ization error of about 2.1 m when N, is small. Second, the
improvement from increasing N, is not remarkable. In
particular, the 80th percentile of localization error is 2.1
and 2.2 m when N, is 4 and 2, respectively. Therefore, we
use a small value of N, in Mercury.

The experimental results in single-user scenarios demon-
strate the efficiency of the BP algorithm in Mercury compared
with conventional filtering techniques for indoor localization.
Specifically, we extend the state vector in Mercury by incorpo-
rating the phone heading error and gyroscope bias. Since the
conditional distribution of these two random variables given
the user’s position can be represented by a Gaussian mixture
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Fig. 8. The CDF of the localization error for Mercury, MapCraft, and the PF
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Fig. 9. The CDF of the localization error for Mercury and MapCraft on
the sixth floor. Neither the initial position nor phone heading is
known.

distribution, and the parameters of such a distribution can be
computed easily, the extra computational overhead of extend-
ing the state vector is small. Compared with filtering techni-
ques (e.g., the PF technique) whose complexity grows fast
with respect to the dimension of the state vector, our algo-
rithm is more amenable for infrastructure-free localization
systems. In addition, experimental results show that Mercury
is more robust than MapCraft when the initial positional
knowledge is imperfect, and its computational complexity is
only slightly higher than that of MapCraft.

5.3 Experimental Results in Multi-User Scenarios
We next evaluate the localization accuracy of Mercury
in multi-user scenarios with two experiments. The first experi-
ment is conducted on the sixth floor with user 1 and user 2,
and the second one is conducted on the first floor with user 1,
user 2, and user 3. User 1 walks along the trajectory in Fig. 5,
and user 2 and user 3 walk along the trajectories in Fig. 10.
The users perform spatial cooperation intermittently as they
walk, and the cooperation between a pair of users is repre-
sented by a red arrow in Fig. 10. In the first experiment, user 1
knows both its initial position and phone heading, whereas
user 2 knows neither. In the second experiment, user 1 knows
both its initial position and phone heading; user 2 knows only
its initial phone heading; user 3 knows neither.
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Fig. 10. The trajectories of user 2 and user 3 in the multi-user scenario: (a) on the sixth floor and (b) on the first floor. Solid red arrows represent

spatial cooperation.
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Fig. 11. The CDF of the localization error for Mercury with and without spatial cooperation: (a) on the sixth floor and (b) on the first floor.

Fig. 11 shows the CDF of the localization error for the set-
ting with and without spatial cooperation. First, desirable
localization accuracy is achieved in both experiments with
spatial cooperation. In the first experiment, the median local-
ization error of user 1 and user 2 are 1.0 and 0.8 m, respec-
tively; in the second experiment, the median localization
error of user 1, user 2, and user 3 are 2.3, 2.7, and 3.8 m,
respectively. Second, spatial cooperation benefits the locali-
zation performance remarkably if the initial positional state
is entirely or partly unknown. Specifically, the CDFs of the
localization error for user 2 and user 3 without spatial coop-
eration almost first-order stochastically dominate those with
spatial cooperation.” Moreover, the median localization
errors of user 2 are reduced from 6.5 and 8.2 m to 0.8 and 2.7
m in the first and second experiment, respectively; the

9. A CDF F(z) first-order stochastically dominates CDF Fj(z) if
Fy(z) < F5(z) for all z with strict inequality over some interval.

median localization errors of user 3 are reduced from 25.2 to
3.8 m in the second experiment.’

5.4 Evaluation on the Robustness of Mercury

We next evaluate the robustness of Mercury when the sys-
tem runs for a long time period on the zeroth floor of the
Stata Center. The user trajectory has longer distance, con-
tains more turns, and covers a larger region on the zeroth
floor compared with trajectories in experiments conducted
on the first and sixth floor. Specifically, the floor plan of the
zeroth floor is partitioned into 4,748 squares for Mercury. In
the single-user scenario, user 1 walks along the trajectory
shown in Fig. 12 for two laps with total length of 832 m. We

10. The performance of user 2 and user 3 are worse than user 1 when
the initial position and phone heading are unknown and spatial cooper-
ation is unavailable. This is because the information extracted from the
intra-user measurements and the map is less sufficient as the trajecto-
ries of user 2 and user 3 are shorter than that of user 1.
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Fig. 12. The trajectories of user 1 — 4 on the zeroth floor. Solid red arrows
represent spatial cooperation.

evaluate the localization performance under two different
settings: the information of the initial position and phone
heading is perfectly known and unknown. In the multi-user
scenario, three additional users, user 2 — 4, are included in
the experiments. They walk along the trajectories for one
lap shown in Fig. 12 and perform spatial cooperation with
user 1. The initial position and phone heading of user 1 are
unknown, whereas those of user 2 — 4 are known. For both
the single-user and multi-user scenarios, we evaluate the
localization performance when the compass measurements
are and are not incorporated.

Fig. 13 shows the CDF of the localization error in the sin-
gle-user scenario. When the initial position and phone head-
ing are known, the 80th percentile of localization error are
3.6 and 3.8 m for the setting with and without compass
measurements, respectively. When the initial position and
phone heading are unknown, the 80th percentile of localiza-
tion error are 4.1 and 4.2 m for the setting with and without
compass measurements, respectively. These results validate
the robustness of Mercury when the trajectory of the user is
complicated and the area of interest has a large size. More-
over, it can be observed that the compass measurements
can improve the localization accuracy.

Fig. 14 shows the CDF of the localization error of user 1 in
the multi-user scenario. Spatial cooperation reduces the 80th
and 90th percentile of localization errors from 4.2 and 6.5 m to
4.1 and 5.1 m, respectively, without compass measurements,
and spatial cooperation reduces these errors from 4.1 and 5.9
m to 3.8 and 4.7 m, respectively, with compass measurements.
Compared with the results obtained in the sixth and first floor
shown in Fig. 11, the performance gain of spatial cooperation
is less remarkable on the zeroth floor with a longer trajectory
of the user. This is because better localization performance is
achieved without spatial cooperation when the trajectory is
longer. In particular, with a longer trajectory, more informa-
tion about the positional states of the user can be extracted
from the intra-user measurements as well the map con-
straints. With such information, Mercury can track the posi-
tion of the user after the first several steps even when the
initial position and phone heading are unknown.
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Fig. 13. The CDF of the localization error for Mercury in the single-user
scenario on the zeroth floor.
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Fig. 14. The CDF of the localization error for Mercury in the multi-user
scenario on the zeroth floor.

TABLE 2
Computational Overhead of Mercury

Ny Model CPU (%) Mem. [MB] Exe. Time [ms]
Galaxy S4 4.8-10.6 18.6 82

150 Nexus 5 6.8 -15.3 28.3 43
Moto X 6.0 -11.1 25.8 43
Galaxy S4 6.0-15.6 18.7 218

500 Nexus 5 7.3-189 29.8 101
Moto X 9.5-135 30.0 172

5.5 Computational Overhead and Execution Time

We next evaluate the computational overhead and execution
time of Mercury. We measure the central processing unit
(CPU) usage and memory usage using the Android Studio
integrated development environment. We also measure the
execution time it takes for updating the position estimate
when a new step is detected. The results for NN}, = 150 and
Ny, = 500 are summarized in Table 2. It can be seen that both
the CPU usage and the execution time increase with NN,
On the other hand, the memory usage does not change much
with N, Instead, it depends on the smartphone model and
the operating system version. For both values of NNV, the
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amount of used memory is below 30 MB. This shows that
the memory consumption of Mercury is moderate, as
modern smartphones have memory of no less than 1 GB. The
maximum CPU usage is below 20 percent for all the three
models. This shows that the computational overhead of
Mercury is acceptable. The execution time increases with the
parameter NV}, and it is below 220 ms for all the three models.
This verifies that Mercury is responsive and is able to pro-
vide position estimates in real time.

6 RELATED WORK

In this section, we present related work on navigation with
inertial measurements and spatial cooperation with range
measurements.

6.1 Navigation with Inertial Measurements

Inertial measurements provide information about the move-
ment of a user [29]. They contain errors caused by gyro-
scope bias and noise, and these errors can degrade the
localization performance remarkably if they are not handled
appropriately. Different methods have been proposed to
obtain position estimates using inertial measurements and
mitigate the effects of the errors.

Most existing methods formulate the navigation problem
with inertial measurements within the Bayesian estimation
framework. In such a framework, the joint distribution of
the positional states and the measurements are described
with a dynamic model, a measurement model, and a prior
distribution model [47]. Based on these models, the Bayes-
ian filtering techniques are applied to compute the posterior
distribution of the current positional state given the avail-
able measurements. The Kalman filtering method is an effi-
cient technique for determining such a distribution [38],
[42], [48]. In this method, the posterior distribution of the
positional state is approximated by a Gaussian distribution.
The mean and covariance matrix characterizing the Gauss-
ian distribution are updated when new measurements are
available. Moreover, the zero-velocity update (ZUPT)
method can be applied to mitigate the impact of the errors
in the inertial measurements [42], [48]. This method calibra-
tes the posterior distribution of the positional state when a
user’s foot is detected to strike the ground. However, this
method requires that a user mounts an IMU onto its shoes
and thus its practicality is limited. In addition, since the pos-
terior distribution of the user’s position is approximated by
a Gaussian distribution, it is non-trivial to incorporate the
map information appropriately.

Another method for inferring the posterior distribution of
a user’s position is the PF technique [29], [34], [35], [37]. In
this method, the state vector contains the user’s position, and
its posterior distribution is approximated by the weighted
sum of Dirac delta functions. These Dirac delta functions are
also referred to as particles. The map information can be
incorporated into this method to combat the inertial mea-
surement errors. In particular, the weights of particles that
do not satisfy the map constraints are set to zero [29], [35].
The computational complexity of the PF technique depends
on the number of particles used to approximate the actual
distribution of the state. This number grows fast with the
dimension of the state if one needs a tight approximation
[29]. Therefore, it is non-trivial to incorporate extra variables,
such as the phone heading error and gyroscope bias, into the
state vector with moderate computational overhead.
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Recently it has been shown that the navigation problem
can be formulated using the graphical model of conditional
random field (CRF) [30]. In this model, the posterior dis-
tribution of the positional states is represented by a set of
functions called feature functions describing the relation
between the measurements and the states. To mitigate the
effects of the inertial measurement errors, the position esti-
mates in a previous time window is used to calibrate the step
direction measurements, as described in Section 5.1. Little is
known on how to incorporate spatial cooperation into the
framework of CRF.

6.2 Spatial Cooperation

It has been shown that spatial cooperation among different
users can benefit the localization performance remarkably
[2], [3], [26]. A widely adopted technique for realizing spa-
tial cooperation is UWB radio [3], [13], [48], [49], [50]. This
technique requires customized hardware to provide accu-
rate range measurements between users. However, due
to the limited hardware capability of smartphones, it is diffi-
cult to obtain range measurements using RF signals.
Another technique to realize spatial cooperation is employ-
ing acoustic signals for making inter-user measurements
[39], [40], [41], [51], [52]. Since acoustic signals propagate
more slowly than RF signals, desirable inter-user measure-
ments can be obtained through two-way ranging with only
a pair of smartphones.

The inter-user measurements can be fused with other
types of measurements in different manners [38], [39], [40],
[48], [51], [53]. In [39], a pair of users send the range measure-
ments between them as well as their own displacement
measurements obtained via IMU to a server periodically.
The server combines the measurements sent by each pair of
users, computes their geometric relationship, and determine
their relative positions. In [40], the inter-user range measure-
ments are combined with WiFi RSS measurements for
improved localization accuracy. In particular, a user first
estimates its position using the fingerprinting method
according to the WiFi RSS measurements. The user then
makes range measurements with neighboring users via
acoustic signals, and calibrates its position estimate accord-
ingly. In [51] and [53], the BP method is adopted for process-
ing inter-user measurements and obtaining user’s positions
in scenarios where users are static. Specifically, in [51], a
server collects all the range measurements made by neigh-
boring users and runs a centralized BP method to infer users’
positions. In [53], a user exchanges positional beliefs with
neighboring users, and adopts the distributed BP method to
estimate its position. Even though the BP method is applied
in these two papers, the movement of users is not taken into
account. The Kalman filtering technique has also been
applied for incorporating the spatial cooperation. In [38], a
user performs spatial cooperation by broadcasting sinusoid
acoustic signals periodically and detecting the signals trans-
mitted by its neighboring users. The frequency of the acous-
tic signal sent by a user is associated with the estimate of the
user’s position. Therefore, a user can determine the position
estimates of its neighboring users according to the signals it
receives. The average of the neighboring users’ position esti-
mates is then used as a measurement of the user’s own posi-
tion in the Kalman filtering technique. In [48], a user makes
range measurements opportunistically using UWB radios.
The range measurements and the inertial measurements
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obtained from a shoe-mounted IMU are fused using the Kal-
man filtering technique to estimate the user’s position. The
map information is not taken into account in [38] and [48].

7 CONCLUSION

In this paper, we presented Mercury, a network loca-
lization and navigation system consisting of only smart-
phones. This system exploits positional information from
spatiotemporal cooperation and environmental knowledge
in a principled manner. In particular, we designed a graphi-
cal model and developed a BP algorithm accordingly. In the
graphical model, each state vertex represents a user’s
position, the phone heading error, and the gyroscope bias.
The proposed BP algorithm fuses intra-user measurements
and inter-user measurements, where the former includes
acceleration and angular velocity samples via IMU, and the
latter includes range measurements via acoustic signals.
We fused the map information into the BP algorithm by
imposing positional constraints. Extensive experiments
were carried out in both single-user and multi-user scenar-
ios and the performance of Mercury was compared with
that of existing systems. In the singer-user scenario, the
80th percentile of the localization error in the sixth and first
floor of the Stata Center is 1.6 and 3.5 m, respectively. More-
over, the performance of Mercury is more robust than that
of existing systems in the presence of imperfect initial posi-
tional knowledge. In multi-user scenarios, the localization
performance is remarkably improved by spatial coopera-
tion, especially for users whose initial positional knowl-
edge is entirely or partly unknown. Mercury is a prototype
of NLN implemented with only smartphones, and the
results demonstrate its advantages thanks to the exploita-
tion of spatiotemporal cooperation as well as environmen-
tal knowledge.
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