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Distributing quantum states with finite lifetime
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This paper considers a quantum node tasked with the teleportation of multiple information-carrying qubit
(ICQ) streams, each to a different receiver, by means of entanglements, local operations, and classical communi-
cation. Our vision is that the node establishes entangled qubit pairs (EQPs) with the receivers before the arrival
of ICQs, rather than waiting for their arrival. In this vein, the paper focuses on the class of protocols referred
to as class I that instantaneously teleport arriving ICQs using preestablished EQPs, preventing arriving ICQs
from decohering. The excess ratio εr is introduced as a quantifier of the system resources per arriving ICQ,
and εr = 1 is shown to be a critical threshold. With εr > 1: for arrival streams characterized by interarrivals
stochastically larger than exponential random variables, any member of class I teleports all arriving ICQs after
a finite transient. With εr < 1: for stationary ergodic arrival streams, there exists no protocol that teleports all
arriving ICQs after a finite transient. This work thus establishes the ultimate limit for distributing quantum states
with finite lifetime. Within class I, a protocol referred to as fresh information delivery (FID) is introduced
and its optimality is proven. The operational characteristic of FID is provided in terms of the tradeoff between
the waiting time of the EQP before it is utilized for teleportation and the excess ratio. Numerical experiments,
comparing the proposed FID protocol with alternatives, corroborate the theoretical results. The results in this
paper can be used for designing quantum nodes, paving the way for the implementation of the future quantum
internet.
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I. INTRODUCTION

The next technological revolution is expected to be driven
by quantum information science [1–3], which will transform
many fields including sensing, communication, control, com-
puting, positioning, navigation, timing, and more [4–14]. A
crucial step towards this revolution involves storing quantum
states and distributing them to spatially separated locations,
paving the way for the quantum internet [15–17]. The future
quantum internet is among the foremost anticipated techno-
logical breakthrough [18].

One key physical phenomenon enabling the design of fu-
ture quantum networks is entanglement, a purely quantum
phenomenon with no classical counterpart [19–21]. Entangle-
ment is the enabling mechanism for quantum teleportation and
plays a key role in quantum information science [22–26]. The
simplest form of a quantum state suitable for teleportation is
the qubit, which is a representation of a two-level quantum
system such as the polarization of a single photon or the spin
of an electron [27,28].

Approaches, guidelines, and technological solutions that
drove the development of the internet in the last few decades
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are not directly applicable to the design of the quantum
internet [15–17]. While prototypical real-word applications of
quantum networks composed of a few nodes are foreseeable
[18], there are several challenges in realizing large-scale quan-
tum networks.

Storing, processing, and transmitting quantum states are
difficult tasks due to the decoherence phenomenon caused
by the uncontrolled interactions between the quantum states
and the environment. The environment behaves as a source
of quantum noise which degrades quantum states [29,30]. In
addition, quantum states cannot be cloned [24,31–33], making
it impossible to replicate information as in classical repeaters.
To efficiently transmit information over long distances, quan-
tum repeaters [34,35], entanglement distribution operations
[29,34], and distillation operations [36–38] have been pro-
posed.1

A crucial building block of future quantum networks is
a quantum node that can perform two basic operations: (i)
stores local qubits of entangled qubit pairs (EQPs) shared be-
tween the source node and different destination nodes; and (ii)
teleports arriving information-carrying qubits (ICQs) to the
intended destinations utilizing the stored EQPs. Classical fun-
damental limits for the transmission of qubits that decohere
while waiting in a queue have been derived in [41]. The design

1Quantum error correction techniques [9,39,40] can also be used
for direct transmission over long distances. However, these tech-
niques require a large overhead, and their implementation remains
largely problematic.
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of the operative modality of a quantum node is addressed
in [42], based on the assumption that quantum states do not
decohere in time, i.e., they have an infinite lifetime. However,
lifetime of quantum states is limited by the decoherence phe-
nomenon, and it may significantly affect the performance of
practical quantum networks. Thus, finite lifetime of quantum
states needs to be accounted for in the design of quantum
network.

A central question related to the distribution of quantum
states with finite lifetime2 is: “How can protocols be designed
to prevent decoherence of the arriving ICQs while efficiently
utilizing EQPs?” The answer will make a substantial stride
towards enabling quantum networks using noisy intermediate-
scale quantum (NISQ) technology. The goal of this paper is to
design robust, scalable, and reliable protocols for distributing
quantum states. Towards this end, protocols that immediately
teleport the arriving ICQs utilizing preestablished EQPs with
an appropriate establishment rate are conceived. The concept
is motivated by observing that information carried by the
arriving qubits cannot be replaced whereas established EQPs
can be replenished. In designing the protocols the arrival time
of ICQs and the establishment time of EQPs are modeled as
point processes. The arriving ICQs and the established EQPs
have finite lifetimes in the sense that their states decohere in
time.

This paper develops a framework in which distributing
quantum states with finite lifetime is formulated as a problem
of matching points that belong to two point processes. The key
contributions are as follows:

(a) identification of the excess ratio εr as a fundamental
parameter providing a threshold for statistical consis-
tency of the protocols;

(b) establishment of the ultimate limit for distributing
quantum states with finite lifetime by means of statis-
tically consistent protocols;

(c) proof of optimality for the fresh information delivery
(FID) protocol among all the instantaneous protocols;
and

(d) derivation of a simple and accurate closed-form for-
mula for the operational characteristic of the FID
protocol.

The remaining sections are organized as follows. Section II
introduces the basic elements of the quantum node and de-
scribes the problem setting. Section III presents the quantum
protocols studied in the paper. The optimality of the FID pro-
tocol is proven in Sec. IV. Characterization of the protocols
is discussed in Sec. V. A brief recapitulation of the main
analytical results is provided in Sec. VI. Section VII contains
numerical experiments that corroborate the analysis. Finally,
Sec. VIII summarizes the findings of the paper.

Notations: The set of integers, nonnegative integers, pos-
itive integers, real numbers, nonnegative real numbers, and
positive real numbers are respectively denoted by Z, N0, N,

2For brevity, a quantum state that decoheres in time is referred to
as a “quantum state with finite lifetime.”

R, R+
0 , and R+. The set of integers {1, 2, . . . , N} is denoted

by IN . Quantum states and quantum density operators are
denoted by bold lowercase using Dirac notation (e.g., |φ〉)
and bold uppercase (e.g., Ξ) letters, respectively. Random
variables (RVs) are displayed in sans serif, upright fonts;
their instantiations in serif, italic fonts. For example, a RV
and its instantiation are denoted by x and x, respectively.
The functions fx(x) and Fx(x) denote the probability distribu-
tion function (PDF) and the cumulative distribution function
(CDF) of the RV x, respectively. The notation x ∼ E (L, λ)
denotes that the RV x follows the indicated distribution where,
as an example, the Erlang distribution with parameters L ∈ N
and λ ∈ R+ is used. Statistical expectation and probability op-
erators are represented by E{·} and P{·}, respectively. For two
RVs x and y, x is stochastically larger than y, written x � y,
if P {x > t} � P {y > t} for all t ∈ R. The indicator function
of the set S is denoted by 1S (·), i.e., 1S (s) = 1 if s ∈ S and
1S (s) = 0 if s /∈ S . The symbol K{S} denotes the number of
elements in the set S , with K{∅} = 0 where ∅ is the empty set.
For a ∈ R, (a, a] = ∅. Finally, �(x) = ∫ ∞

0 t x−1e−t dt denotes
the Gamma function and u(·) denotes the unit step function,
i.e., u(x) = 1 for x � 0, and u(x) = 0 otherwise.

II. MODEL AND ASSUMPTIONS

A quantum node is composed of: (i) L � 1 queues, each
equipped with a dedicated quantum memory for storing ICQs
intended for receiver � ∈ IL; (ii) a platform for establishing
entanglements with the L receivers; and (iii) a shared quan-
tum memory for storing local qubits of EQPs shared with
each of the L receivers. For simplicity, this paper considers
a single-hop connection between the quantum node and each
of the L receivers. The problem being addressed here is com-
plementary to that considered in [42]; there the lifetime of
the quantum states is infinite and the memory size is limited,
while in this work the lifetime of the quantum states is finite
and the memory size is treated as unlimited.3

A. Memories

Two kinds of memories are involved, namely information
qubit memory (IQM) and entangled qubit memory (EQM).
IQM is not needed in the special case of immediate ICQ
teleportation. This paper considers on-demand access to the
memory, i.e., quantum states can be stored and retrieved in-
stantaneously with no fidelity penalty associated with such
accesses [30]. The considerations in this paper hold for gen-
eral memory models. For concreteness, reference can be made
to a hybrid implementation in which traveling light-based
quantum states are linked to matter-based quantum memories.

Light-matter coupling is a promising area of research for
the development of devices capable of storing, processing, and
transmitting quantum states [15,27,43–45]. Using light-matter
coupling technology, a decoherence-protected memory has

3Note, however, that the finite lifetime of the quantum states pre-
vents the accumulation of a large number of “alive” qubits in the
system. Indeed, in practical implementations, qubits stored in the
memory for a long time can be eliminated with negligible impact
on the system performance.
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been realized for a single-photon qubit with coherence times
on the order of 100 ms, average fidelity of about 0.8, and
storage-and-retrieval efficiency of 22% [45].

B. Arriving ICQs

The state of arriving ICQs is unknown to the quantum node
and these ICQs arrive with a “label” indicating their destina-
tion.4 Upon arrival, they are either teleported immediately or
stored in the pertinent queue. For concreteness, ICQs as well
as EQPs can be thought of as polarized photons which are ex-
cellent carriers and one of the most effective forms of “flying
qubits” [28]. However, the approach developed in this paper is
applicable to other kinds of physical qubits. Special attention
will be paid to the case where arriving ICQs are immediately
teleported,5 which prevents them from decohering and relaxes
the requirement of the L memories for storing them in the
queues.

The theoretical results in Sec. IV are valid for ICQ arrival
processes described by general point processes. Specific sta-
tistical models for the arrival times of the ICQs are used in
Sec. V. In particular, Theorem 4 is valid for any renewal pro-
cess with interarrivals stochastically larger than exponential
RVs. Theorem 5 is valid for any stationary ergodic interarrival
process. Both theorems cover the homogeneous Poisson point
process (PPP) model [47] as a special case. For brevity, the
term PPP will be used to refer to the natural and popular
homogeneous PPP [48–51].

C. ICQ decoherence models

Let the two-dimensional Hilbert space H2, having
{ |0〉, |1〉} as computational basis, be the reference space for
ICQs. Let Ξ0 be the density operator representing the quan-
tum state6 of the arriving ICQ. As soon as an arriving ICQ is
stored in the IQM, it starts to decohere. Let τ ∈ R+

0 denote
the waiting time (in seconds) of the ICQ, namely, the duration
that the ICQ is stored in the IQM before it is teleported. The
following three decoherence models deserve special attention.

(a) Depolarizing model: After a time interval of duration
τ , the original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1 − pτ ) I2/2 , (1)

where I2/2 = (|0〉〈0| + |1〉〈1|)/2 is the one-qubit
maximally mixed state [24,25].

(b) Erasure model: After a time interval of duration τ , the
original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1 − pτ ) |v〉〈v| , (2)

4For example, the insertion of labels can be obtained by “piggy-
backing” classical information on a stream of qubits [46].

5Here “immediately” means that the local operations and classical
communication (LOCC) required to teleport the ICQ begin as soon
as it arrives, in contrast to the case in which the ICQ is stored
in a memory and retrieved at a later time to perform LOCC for
teleportation.

6For brevity, the term “quantum state” will be used for “density op-
erator describing the quantum state” whenever there is no ambiguity.

where |v〉 is some pure state in a Hilbert space that is
different from H2 [25,41].

(c) Bistate model: The original quantum state Ξ0 remains
unaffected for a fixed time interval of duration 1/rq,
rq ∈ R+, and then becomes |v〉〈v|, namely,

Ξτ = 1Grq
(τ ) Ξ0 + 1Brq

(τ ) |v〉〈v| , (3)

where Grq = [0, 1/rq] and Brq = (1/rq,∞).

A generally accepted model for the probability pτ in (1) and
(2) is exponential [24], i.e.,

pτ = e−rqτ , (4)

where rq ∈ R+ is the decoherence rate (in Hz) of ICQs.7 The
bistate model (3) can be obtained from the erasure model (2)
with pτ = 1 for τ ∈ Grq and pτ = 0 for τ ∈ Brq .

D. Establishment of EQPs

The platform for establishing entanglements in the quan-
tum node supplies EQPs, entangled with each receiver, for
teleporting the arriving ICQs. This paper considers a fully
heralded entanglement establishment mechanism, similar8 to
that in [29,42], which makes multiple attempts until an EQP
is successfully established with a given receiver. Let

λe � EQP establishment rate (Hz) , (5)

λa � entanglement attempt rate (Hz) , (6)

ps � probability of successful attempt , (7)

with λe ∈ R+, λa ∈ R+, and ps ∈ (0, 1]. The number of at-
tempts to obtain the first occurrence of a success is a discrete
geometric RV [52,53]. Clearly, λe = λa ps. Assuming λa �
λe, namely, ps 	 1 [29], the geometric RV can be approx-
imated by an exponential RV having expected value 1/λe.
Thus, the random establishment delay z � 0 (in seconds)
needed to successfully establish an EQP with a given receiver
satisfies

P {z > z} = e−λez, z � 0 . (8)

As soon as a success is achieved, the established EQP is stored
in EQM9 and a new series of attempts starts again, and so forth
indefinitely. Successive establishment delays are independent
and identically distributed (IID) [42]. These settings will be
used in Sec. V A to derive the statistical model for the estab-
lishing times of the EQPs.

When the classical communication delay dominates
platform-dependent delays, the time needed to complete an
attempt is limited by the propagation distance. Denoting by c
the speed of light, this time is 3 × 103/c ≈ 10 μs for a receiver

7The environment, e.g., a quantum memory, causing a quantum
state to decohere exponentially in time is called “Ohmic.” In this
model, the state is coupled with a bath of harmonic oscillators.

8In [29] the system is composed of nitrogen vacancy diamond spin
qubit nodes separated by only 2 m.

9In many scenarios of practical interest, the EQM consists of two
local EQMs, each of which stores the local qubit of the EQP.
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located at a distance of 3 km from the quantum node (100
μs at a distance of 30 km), which corresponds to the attempt
rate λa � 105 Hz (λa � 104 Hz). These values will be used to
compute λe in (16) of Sec. II E.

E. EQP decoherence models

Let the four-dimensional Hilbert space H4, having
{ |00〉, |01〉, |10〉, |11〉} as computational basis, be the refer-
ence space for EQPs. Suppose, for concreteness, that the
established EQP is a depolarized version of the maximally
entangled Bell state |φ+〉 = (|00〉 + |11〉)/

√
2. In this case,

Ξ0 = w0 |φ+〉〈φ+| + (1 − w0) I4/4 , (9)

where 0 � w0 � 1 and I4/4 = (|00〉〈00| + |01〉〈01| +
|10〉〈10| + |11〉〈11|)/4 is the two-qubit maximally mixed
state [24,25]. As soon as the established EQP is stored in the
EQM, it starts to decohere. Let τ ∈ R+

0 denote the waiting
time (in seconds) of the EQP, namely, the duration that the
local qubit of the EQP spent in the EQM before it is utilized
for teleportation. The following three decoherence models,
analogous to those in (1), (2), and (3) for a single qubit,
concern a pair of qubits.

(a) Depolarizing model: After a time interval of duration
τ , the original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1 − pτ ) I4/4 . (10)

(b) Erasure model: After a time interval of duration τ , the
original quantum state Ξ0 becomes

Ξτ = pτ Ξ0 + (1 − pτ ) |v〉〈v| , (11)

where |v〉 is some pure state in a Hilbert space that is
different from H4.

(c) Bistate model: The original quantum state Ξ0 remains
unaffected for a fixed time interval of duration 1/re,
re ∈ R+, and then becomes |v〉〈v|, namely,

Ξτ = 1Gre
(τ ) Ξ0 + 1Bre

(τ ) |v〉〈v| , (12)

where Gre = [0, 1/re] and Bre = (1/re,∞).

The probability pτ in (10) and (11) is given by

pτ = e−reτ , (13)

where re ∈ R+ is the decoherence rate (in Hz) of the EQP
which depends on the implementation technology of the local
EQMs [30]. The bistate model (12) can be obtained from the
erasure model (11) with pτ = 1 for τ ∈ Gre and pτ = 0 for
τ ∈ Bre .

When arriving ICQs are immediately teleported, their
degradation is mainly determined by the decoherence of the
EQPs that are utilized to teleport them. Such degradation can
be characterized by the fidelity

�(Σ,Ψ ) =
(

tr

{√√
Ψ Σ

√
Ψ

})2

∈ [0, 1] , (14)

where Σ and Ψ , respectively, denote the decohered and the
original state of the EQP that is utilized for teleportation
[24,25]. When the original state is a Bell state, e.g., Ψ =

|φ+〉〈φ+|, the fidelity is called Bell-state fidelity. For the de-
polarizing model in (10), it can be shown that

�(Ξτ , |φ+〉〈φ+|) = 1
4 + 3

4 w0 e−reτ . (15)

Let �0 � �(Ξ0, |φ+〉〈φ+|) denote the initial fidelity of an
established EQP before it is stored in the EQM. The success
probability of a single attempt to establish an EQP is given
by ps = 10−3 (1 − �0) [42]. Thus, the corresponding EQP
establishment rate is

λe = λa ps = λa 10−3 (1 − �0) . (16)

Using the values of λa provided in Sec. II D gives λe � 10 Hz
at a distance of 3 km (λe � 1 Hz at a distance of 30 km) for
�0 = 0.9. Note from (15) that �0 = 0.9 corresponds to w0 ≈
0.87.

III. QUANTUM NODE PROTOCOLS

This section first defines the point processes and the cor-
responding counting processes describing the arrival times of
the ICQs and the establishment times of the EQPs. Then, the
teleportation protocols are introduced.

A. Point processes

For brevity, “ICQ point” and “EQP point” will be used to
refer to arrival time of the ICQ and establishment time of the
EQP, respectively. ICQ points and EQP points are measured
in seconds. In the following, reference is made to a generic
receiver � ∈ IL.

Definition 1 (Point Processes). The ICQ point process
over the (time) real half-axis R+

0 is a collection of nonneg-
ative RVs {q(�)

i , i ∈ N0} with the properties that q(�)
k−1 < q(�)

k

almost surely (a.s.), k ∈ N, and limk→∞ q(�)
k = ∞ a.s. By

convention, q(�)
0 = 0. The corresponding counting process

is {n(�)
q (t ), t ∈ R+

0 } where n(�)
q (t ) � K{i ∈ N0 : 0 < q(�)

i � t}
satisfies n(�)

q (t ) < ∞ and limt→∞ n(�)
q (t ) = ∞. Similar defi-

nitions hold for the EQP point process {e(�)
j , j ∈ N0} and the

corresponding counting process {n(�)
e (t ), t ∈ R+

0 }. �
It is assumed that q(�)

i = e(�)
j a.s., for all i, j ∈ N. ICQ point

processes {q(�)
i , i ∈ N0} for different � ∈ IL are IID point pro-

cesses. Furthermore, ICQ point processes {q(�)
i , i ∈ N0}, � ∈

IL, are independent of EQP point processes {e(�)
j , j ∈ N0},

� ∈ IL.
In the remainder of Sec. III and in Sec. IV the superscript

(�) is omitted for notational simplicity. The random quantities
nq(t ) and ne(t ) describe the number of arriving ICQs and
established EQPs in the interval (0, t], respectively, where
t ∈ R+

0 denotes time. The interarrivals of the ICQ and the EQP
point process are, respectively, given by

xk � qk − qk−1, k ∈ N , (17a)

yk � ek − ek−1, k ∈ N . (17b)

The point process is said to be generated by its interarrivals.
Note that the definition of the point process does not require a
specific statistical model for these interarrivals; in particular,
the interarrivals are not necessarily independent.
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Definition 2 (Superposed Process). The superposed point
process {sk, k ∈ N0} is defined as the collection of elements
from ICQ and EQP point processes, arranged in increasing
order a.s.{
sk, k ∈ N

} = {
qi, i ∈ N

} ∪ {
e j, j ∈ N

}
, s1 < s2 < . . . .

(18)

By convention, s0 = 0. The corresponding counting pro-
cess {ns(t ), t ∈ R+

0 } is given by ns(t ) = nq(t ) + ne(t ). The
superposed point process {sk, k ∈ N0} is marked so that a
point of {sk, k ∈ N} can be distinguished as belonging to
{qi, i ∈ N} or {e j, j ∈ N}. �

B. Protocols

The key aspect to efficiently distribute quantum states with
finite lifetimes is the protocol that matches arriving ICQs to
established EQPs. To introduce the protocols, let {qim , m ∈
IM} and {e jm , m ∈ IM} respectively denote the subsequence
of ICQs that are teleported and the subsequence of the EQPs
that are utilized for teleportation, where M denotes the num-
ber of ICQs that are teleported, with M = ∞ not excluded.
The subsequences of teleported ICQs and utilized EQPs are,
respectively, extracted from the point processes {qi, i ∈ N0}
and {e j, j ∈ N0}, with q0 and e0 excluded, i.e., im = 0 and
jm = 0 for all m ∈ IM . For m ∈ IM , the mappings m �→ im and
m �→ jm indicate that the mth teleported ICQ arrived at qim uti-
lized the EQP established at e jm . The mappings m �→ im and
m �→ jm are one-to-one, since any teleported ICQ is matched
to one and only one utilized EQP and any utilized EQP is
matched to one and only one teleported ICQ.

The teleportation protocol is a rule for matching elements
of {qi, i ∈ N} to elements of {e j, j ∈ N}, i.e., a rule for
determining the subsequences {qim , m ∈ IM} and {e jm , m ∈
IM}. The vector [e jm qim ] is referred to as the mth matched
vector and the sequence {[e jm qim ], m ∈ IM} is referred to as
the matched sequence. Any point of {sk, k ∈ N} is called
matched if it belongs to some vector in the matched sequence,
otherwise it is called unmatched. The teleportation protocol
can be executed at the points of {sk, k ∈ N} sequentially; if
previously stored in a memory, matched points are removed
from the memory because either they (ICQs) are teleported or
they (EQPs) are utilized for teleportation.

This paper focuses on the class I of instantaneous proto-
cols, which consists of the following operations executed at
the points of {qi, i ∈ N} sequentially.

As soon as an ICQ arrives at the quantum node, it is
immediately teleported utilizing an EQP that has been
stored in the EQM, if any. The utilized EQP is effec-
tively removed from the EQM. If the EQM is empty,
the ICQ is deleted, i.e., it is irremediably lost.

With instantaneous protocols, the arriving ICQs are never
stored in the IQM. If multiple EQPs are available in the EQM,
one of them is selected for teleportation according to some
rule. One member of the class I deserving special attention
is the FID protocol hF, which consists of the following opera-
tions executed at the points of {qi, i ∈ N} sequentially.

As soon as an ICQ arrives at the quantum node, it is
immediately teleported utilizing the most recent EQP

Algorithm 1. Fresh information delivery.

Input: q = [q1 q2 . . . qn], ICQ arrival times;
e = [e1 e2 . . . ek], EQP establishment times,
with ek � qn.

Output: δ = [δ1 δ2 . . . δn], delays (∞ if not teleported).
Initialize: δ ← n-vector of ∞; e2q ← k-vector of 0.
for i ← 1 to n

m ← find{e � qi & e2q == 0, largest}
if m is not empty then

e2qm ← i
δi ← qi − em

end
end
return δ

that has been stored in the EQM, if any. The utilized
EQP is effectively removed from the EQM. If the EQM
is empty, the ICQ is deleted, i.e., it is irremediably lost.

The pseudocode10 illustrating the FID protocol is shown in
Algorithm 1. For each ICQ, the algorithm outputs a nonnega-
tive number referred to as “the delay.” The delay is equal to the
waiting time of the EQP that is matched to the ICQ before it is
utilized for teleportation. For the depolarizing model in (10),
the sequence of delays can be used to compute the sequence
of fidelity values by (15).

With the FID protocol, an ICQ is irremediably lost if the
EQM is empty when the ICQ arrives. This is still the case even
if an EQP is established shortly after the ICQ arrives. To avoid
this, protocols not belonging to the class I are also conceived
and one such protocol is now introduced. Define two time
intervals of duration Wb and Wf (in seconds). The bounded
delay delivery (BDD) protocol11 hB consists of the following
operations executed at the points of {sk, k ∈ N} sequentially.

(a) If the point corresponds to an ICQ, then it is teleported
utilizing the most recent EQP that has been stored in
EQM for no more than Wb seconds ago. The utilized
EQP is effectively removed from the EQM. If such an
EQP does not exist, the ICQ is stored in the IQM.

(b) If the point corresponds to an EQP, then it is utilized to
teleport the most recent ICQ that has been stored in the
IQM for no more than Wf seconds ago. The teleported
ICQ is effectively removed from the IQM. If such an
ICQ does not exist, the EQP is stored in the EQM.

The pseudocode illustrating the BDD protocol is shown
in Algorithm 2. For each ICQ, the algorithm outputs a real

10Algorithms 1 and 2 utilize a MATLAB-like pseudocode; e2qm

denotes the mth element of vector e2q; e2qm = i indicates that the
ith ICQ is teleported utilizing the mth EQP; q2em = i indicates that
the mth ICQ is teleported utilizing the ith EQP; inequalities between
vectors and scalars are applied element-wise and result in vectors
of logicals; find{a, largest} returns the largest index of the “true”
elements of the logical vector a; and cumsum{a} returns the vector
of the cumulative sums of vector a.

11The BDD protocol is similar to the BGM algorithm used in
[54,55].
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Algorithm 2. Bounded delay delivery.

Input: q = [q1 q2 . . . qn], ICQ arrival times;
e = [e1 e2 . . . ek], EQP establishment times,
with ek � qn; Wb, Wf , window lengths.

Output: δ = [δ1 δ2 . . . δn], delays (∞ if not teleported).
Initialize: e2q ← k-vector of 0;

q2e ← n-vector of 0;
δ ← n-vector of ∞;
isq ← (n + k)-vector of 0.

s ← superposition of q and e [see (18)]
Set to 1 all entries of isq corresponding to ICQs of s
indq ← cumsum{isq == 1}
inde ← cumsum{isq == 0}
for i ← 1 to n + k do

if isqi == 1 then
m ← find{e � si & e � si − Wb

& e2q == 0, largest}
if m is not empty then

q2eindqi
← m

e2qm ← indqi

δindqi
← si − em

end
else

m ← find{q � si & q � si − Wf

& q2e == 0, largest}
if m is not empty then

e2qindei
← m

q2em ← indei

δm ← qm − si

end
end

end
return δ

number referred to as “the delay.” By convention, a nonnega-
tive delay occurs when the EQP precedes the ICQ matched to
it, in which case the delay is equal to the waiting time of the
EQP in the EQM. Conversely, a negative delay occurs when
the EQP follows the ICQ matched to it, in which case the
negative of the delay is equal to the waiting time of the ICQ
in the IQM.

The EQP utilized for teleporting the arriving ICQ is con-
tained in a window beginning Wb seconds prior to the arrival
and ending Wf seconds after the arrival. Quantum states stored
in EQM and IQM for more than Wb seconds and Wf seconds,
respectively, can be removed from the memory. With Wb = ∞
and Wf = 0, the BDD protocol reduces to FID. When Wb = ∞
and Wf > 0, BDD retains most advantages of FID at the cost
of an IQM for storing the ICQs. In the following, the quanti-
ties Wb and Wf are considered to be finite.

IV. OPTIMALITY ANALYSIS

This section first introduces the performance indicators for
characterizing the teleportation protocols and then proves the
path optimality of the FID protocol.

A. Performance indicators

Let h ∈ P denote a teleportation protocol, where P is a
given class of protocols. Let {δi(h), i ∈ N} be the sequence
of delays (in seconds) associated with the sequence of ICQ
points {qi, i ∈ N} and let {δim(h), m ∈ IM} be the subse-
quence of delays associated with the teleported ICQs arriving
at times described by the subsequence {qim , m ∈ IM}, i.e.,

δim(h) � qim − e jm . (19)

The delays associated to the arriving ICQs that are not tele-
ported take on a dummy value.

The arithmetic mean of the absolute value of the delays (in
seconds) using protocol h ∈ P is defined as

d(h) � lim
n→∞

∑n
i=1 1A(h)(i) |δi(h)|∑n

i=1 1A(h)(i)
, (20)

where A(h) = {i1, i2, . . . }, in ∈ N, denotes the set of indices
describing arrival times of the teleported ICQs using protocol
h. For h ∈ I, the absolute value in (20) is immaterial and
the delay δim(h) in (19) coincides with the waiting time in
the EQM of the EQP established at time e jm . The fraction of
teleported ICQs using protocol h ∈ P is defined as

ηt (h) � lim
n→∞

∑n
i=1 1A(h)(i)

n
. (21)

The two limits in (20) and (21) are assumed to exist in the a.s.
sense, and they exist as deterministic values in most cases of
practical interest.12 The quantities in (20) and (21) are key pa-
rameters for determining the performance of the teleportation
protocols. The former quantity, d(h), characterizes the quality
of the teleported ICQs. Indeed, the delay in (19) regulates
the quantum state degradation for the decoherence models
(1)–(3) and (10)–(12). The latter quantity, ηt (h), characterizes
the probability of teleportation.

Next, the indicators for characterizing the performance of
teleportation protocols are introduced; these indicators will be
used in Sec. VII to illustrate the performance of FID and BDD
protocols.

Definition 3 (Path-Optimality). A teleportation protocol
h∗ ∈ P is path-optimal in the class P if, for any instantiation
of the point processes {qi, i ∈ N0} and {e j, j ∈ N0}, it simul-
taneously solves the following two optimization problems:

inf
h∈P

d (h) , (22a)

sup
h∈P

ηt (h) , (22b)

where d (h) and ηt (h), respectively, denote the instantiations
of d(h) in (20) and ηt (h) in (21). �

12For a stationary sequence {|δim(h)|, m ∈ N}, rewrite (20) as
d(h) = limν→∞ 1

ν

∑ν

m=1 |δim(h)|. A sufficient condition for the exis-
tence of this limit as a RV is E{|δim(h)|} < ∞, m ∈ N; if in addition
the sequence is ergodic, then the limit is deterministic and given by
E{|δim(h)|} [56]. Similarly, for a stationary sequence {1A(h)(i), i ∈
N} a sufficient condition for the existence of the limit in (21) as a
RV is E{1A(h)(i)} < ∞, i ∈ N; if in addition the sequence is ergodic,
then the limit is deterministic and given by E{1A(h)(i)}.
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Definition 4 (Statistical Consistency). Under a given sta-
tistical model for the point processes {qi, i ∈ N0} and
{e j, j ∈ N0}, a teleportation protocol is statistically consis-
tent if all arriving ICQs (q0 excluded) are teleported a.s.,
possibly after a transient of finite duration t0 (in seconds),
where

t0 � min
i∈N0

{
qi : i + k ∈ A(h), ∀k ∈ N

}
. (23)

�
For a statistically consistent protocol h ∈ P , ηt (h) = 1 a.s.

B. Optimality of FID protocol

To prove the path-optimality of the FID protocol, the
matched sequence {[e jm qim ], m ∈ IM} resulting from apply-
ing the FID protocol to the superposed point process {sk, k ∈
N0} is characterized.

Definition 5 (Bridges and Covers). Let [e jm qim ] be a
matched vector. Then: (i) a bridge is said to connect the
points e jm and qim ; and (ii) any point of {sk, k ∈ N} in the
interval ( min {e jm , qim}, max {e jm , qim} ) is said to be covered
by the bridge connecting e jm and qim . �

Proposition 1 (FID Bridges). Consider the superposed
point process {sk, k ∈ N0} defined in (18). The bridges,
resulting from using the FID protocol, do not cover a.s. any
unmatched point. �

Proof. The proof employs the principle of contradiction.
Consider the superposed point process {sk, k ∈ N0} in (18)
and suppose that the FID protocol leaves at least one un-
matched point of {sk, k ∈ N} covered a.s. by the bridge
connecting some points e jm and qim . Let sν be the minimum
among the unmatched points; it satisfies a.s. the inequalities
0 < e jm < sν < qim . The point sν can be either an ICQ or an
EQP point. In the former case, the FID protocol would match
sν to e jm , implying that e jm would be matched a.s. to at least
two ICQs. In the latter case, the FID protocol would match qim
to sν , implying that qim would be matched a.s. to at least two
EQPs. Both cases lead to a contradiction. �

Definition 6 (FID Clusters). A cluster induced by the FID
protocol (henceforth simply cluster) is any collection of con-
secutive matched points of {sk, k ∈ N} delimited to the left
end by an unmatched point unless the collection contains
s1 and to the right end by an unmatched point unless the
collection is right-unbounded. �

Definition 7 (FID Holes). A hole induced by the FID pro-
tocol (henceforth simply hole) is any collection of consecutive
unmatched points of {sk, k ∈ N} delimited to the left end by
a matched point unless the collection contains s1 and to the
right end by a matched point unless the collection is right-
unbounded. �
In both definitions, the delimitation points are not part of the
cluster or hole. Holes can be made of a single point, while
clusters contain at least one ICQ point and one EQP point. The
following theorem gives the structure of clusters and holes.

Theorem 1 (FID Clusters and Holes). Consider the points
{sk, k ∈ N} of the superposed point process {sk, k ∈ N0} de-
fined in (18). With the FID protocol, the following assertions
are a.s. true.

(i) For any cluster, the first element is an EQP point and
the last element, if any, is an ICQ point.

(ii) There exists a one-to-one correspondence between
ICQ points and EQP points belonging to the same
cluster; the clusters contain an equal number of ICQ
points and EQP points.

(iii) Any hole has one of the following structures: (a) all
elements are ICQ points; (b) all elements are EQP
points; (c) it consists of a sequence of all ICQ points
followed by a sequence of all EQP points.

(iv) If there exists a hole containing an EQP point, then all
successive holes consist of EQP points only. �

Proof. The arguments in the proof are intended in the a.s.
sense. Suppose that, contrary to the assertion in (i), the first
element of a cluster is an ICQ point. If such an ICQ point is
s1, then it cannot be matched to some EQP point to its left,
leading to a contradiction. If such an ICQ point is not s1,
then it is matched necessarily to some EQP point to its left,
forming a bridge. Furthermore, the point immediately to the
left of the cluster is unmatched implying that the bridge covers
this unmatched point. This contradicts Proposition 1. Similar
arguments show that the last element of a cluster is an ICQ
point. To prove (ii), note that clusters contain only matched
points and the matching must be made necessarily within the
same cluster as, otherwise, there exists a bridge connecting
two clusters covering at least one unmatched point, which
contradicts Proposition 1. Therefore, the matching defines
a one-to-one correspondence between ICQ points and EQP
points belonging to the same cluster. To prove (iii), note that
in a hole an EQP point cannot be followed by an ICQ point as,
otherwise, the ICQ point would be matched. The structures of
holes asserted in (iii) (a)–(c) follow from this observation. To
prove (iv), note that if an EQP point in a hole was followed
by one or more unmatched ICQ points in successive holes,
then the smallest of those unmatched ICQ points would be
necessarily matched and cannot be part of a hole. �

Corollary 1. With the FID protocol, all ICQ points appear-
ing after the occurrence of an unmatched EQP point are a.s.
teleported. �

Proof. This follows from the last assertion of Theorem 1.�
The importance of the FID protocol is apparent in the

next theorem. Note that the theorem is valid for general point
processes without requiring specific statistical models for ICQ
and EQP points.

Theorem 2 (Path Optimality of FID). For ICQ and EQP
point processes, the FID protocol hF ∈ I is path-optimal in
the class I of instantaneous protocols. �

Proof. Consider an instantiation {sk, k ∈ N} of {sk, k ∈
N}. For protocol h ∈ I, let d (h) and ηt (h) denote the instantia-
tions, corresponding to {sk, k ∈ N}, of d(h) and ηt (h) defined
respectively in (20) and (21). Any two protocols belonging
to class I teleport the same collection of ICQs. The only
difference among the protocols is the policy for matching
those ICQs to EQPs. Therefore, ηt (h) does not depend on
h ∈ I and the second objective (22b) of the multiobjective
optimization problem in (22) is maximized by any h ∈ I.
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Consider the first objective (22a) and recall that each of
the clusters in {sk, k ∈ N} induced by hF contains an equal
number of ICQs and EQPs. For any such cluster C, let
qim , qim+1 , . . . , qim+ν−1 and e jm , e jm+1 , . . . , e jm+ν−1 denote its ICQ
and EQP points, respectively, where 2ν is the cluster size,
which can be finite or infinite.

Suppose first ν < ∞. The contribution of the cluster C to
the sum of the delays is

m+ν−1∑
k=m

δik (hF) =
m+ν−1∑

k=m

qik −
m+ν−1∑

k=m

e jk . (24)

For any alternative protocol h ∈ I, there are two possible
cases. In the first case, all the ν ICQ points in C are matched
to all the ν EQP points in C, yielding

∑m+ν−1
k=m δik (h) =∑m+ν−1

k=m δik (hF). This is true regardless of the specific match-
ing as long as all matched points belong to C. In the second
case, at least one of the ICQ points in C is matched to
an EQP point not belonging to C. Such an EQP point is
necessarily smaller than min{e jm , e jm+1 , . . . , e jm+ν−1}, yielding∑m+ν−1

k=m δik (h) >
∑m+ν−1

k=m δik (hF).
Combining the conclusions for the two cases, the contribu-

tion of the ICQ points qim , qim+1 , . . . , qim+ν−1 to the sum of the
delays at the numerator of (20) satisfies

m+ν−1∑
k=m

δik (h) �
m+ν−1∑

k=m

δik (hF) , (25)

implying that the contribution of those ICQ points to the
arithmetic mean of the delays for protocol h ∈ I is not smaller
than the corresponding contribution for FID protocol hF ∈ I.
Repeating the argument for all clusters in {sk, k ∈ N} proves
that the FID protocol is an optimal solution to the first objec-
tive (22a) of the multiobjective optimization problem in (22).

Suppose now ν = ∞. The size of cluster C is infinite and
the arithmetic mean in (20) for FID protocol hF ∈ I can be
computed considering only the ICQ and EQP points belong-
ing to the cluster C as d (hF) = limμ→∞ 1

μ

∑m+μ−1
k=m δik (hF).

Dividing both sides of (24) by μ and using similar arguments
as in the case of finite clusters gives a scaled version of in-
equality (25) with scaling factor 1/μ. Finally letting μ → ∞
proves that d (h) � d (hF). �

V. CHARACTERIZATION OF PROTOCOLS

This section presents the renewal process for the ICQ
points, describes the functionality of the quantum node, and
derives the renewal process for the EQP points. Based on
the renewal process models for the ICQ and EQP points,
the statistical consistency of the instantaneous protocols is
proven and the operational characteristic of the FID protocol
is derived.

A. Consistency theorems

The L ICQ streams {q(�)
i , i ∈ N0} for � ∈ IL arriving at the

quantum node are described by point processes, each gener-
ated by IID interarrivals {x(�)

k , k ∈ N} with E{x(�)
k } = 1/λq,

where limt→∞ n(�)
q (t )/t = λq a.s. is the rate (in Hz) of each

ICQ stream, with λq ∈ R+.

EQPs represent the resources of the quantum node. From
(8), the EQP establishment time is an exponential RV hav-
ing expected value 1/λe, where λe ∈ R+ is determined by
setting λa ∈ R+ in (16) compatible with the distances of the
receivers. Our vision is that the node establishes EQPs with
the receivers before the arrival of ICQs, rather than waiting
for their arrival. Thus, it is natural to establish as many EQPs
as possible with the receivers, in which case the intervals
between adjacent EQP points form a sequence of IID expo-
nential RVs.

To accommodate ICQ streams with the same arrival rate
λq for L different receivers, the resources of the quantum
node are equally apportioned among the L receivers in a
round-robin fashion without considering the instantiation of
the arriving ICQ streams. More specifically, the platform first
makes attempts to establish an EQP with receiver � = 1 until
the first occurrence of a success; this process is repeated with
receiver � = 2, 3, . . . , L; and then a new round-robin cycle
takes place.

With the round-robin EQP establishment procedure, the se-
quence {e(�)

j , j ∈ N0} is a delayed renewal process generated

by independent interarrivals {y(�)
k , k ∈ N} for each � ∈ IL:13

e(�)
j ∼ E (L( j − 1) + �, λe ), j ∈ N , (27a)

y(�)
k ∼ E (�, λe ), k = 1,

(27b)
y(�)

k ∼ E (L, λe ), k = 2, 3, . . . .

The rate of the EQP point process is [51]

lim
t→∞

n(�)
e (t )

t
= λe

L
, (28)

where the limit is in the a.s. sense. The rate λq of the ICQ point
process together with the rate λe/L of the EQP point process
define the excess ratio.

Definition 8 (Excess Ratio). The excess ratio is defined to
be

εr �
λe

L λq
. (29)

�
The excess ratio serves as a fundamental parameter that char-
acterizes the functionality of the quantum node with respect to
arriving ICQ streams. It represents a quantifier of the node’s
resources (number of established EQPs) per arriving ICQ.

Consider a single receiver L = 1 and an arriving stream
with exponentially distributed ICQ interarrivals {xk, k ∈ N};
the superscript (�) is superfluous because � = 1. Then the
point processes {qi, i ∈ N0} and {e j, j ∈ N0} become two

13Recall that the RV z has the Erlang distribution with shape pa-
rameter i ∈ N and rate parameter λ ∈ R+, denoted by z ∼ E (i, λ), if
its PDF is [57]

fz(z) = λi zi−1e−λz

�(i)
u(z) (26)

having expected value E{z} = i/λ. For i = 1, the Erlang distribution
E (1, λ) coincides with the exponential distribution having expected
value 1/λ.
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PPPs with rates λq and λe, respectively. If εr > 1, the next
theorem shows that for any instantaneous protocol the prob-
ability P {nq(t ) < ne(t )} is close to unity for large t . In other
words, if λq < λe, ICQs that arrive at the quantum node at
large times have a good chance of being teleported.

Theorem 3 (Excess of EQPs for L = 1). For a quantum
node serving a single receiver, consider: (i) the ICQ point pro-
cess {qi, i ∈ N0} generated by IID interarrivals {xk, k ∈ N}
with xk ∼ E (1, λq ); (ii) the EQP point process {e j, j ∈ N0}
generated by IID interarrivals {yk, k ∈ N} with yk ∼ E (1, λe ).
Let the node employ an instantaneous protocol and let εr =
λe/λq > 1. For any 0 < ε � 1, the following holds:

P
{
nq(t ) � ne(t )

}
� ε for t � tε , (30)

where

tε �
− log10 ε(√
λe − √

λq
)2 . (31)

�
Proof. For any fixed t > 0, the probability mass function

(PMF) of the RV nq(t ) − ne(t ) is the Skellam PMF

P
{
nq(t ) − ne(t ) = k

} = e−t (λq+λe )

(
λq

λe

) k
2

Ik
(
2t

√
λqλe

)
,

(32)

where k ∈ Z and Ik (w), w ∈ R+
0 , is the modified Bessel func-

tion of the first kind, see [58, 8.445, p. 919]. The moment
generating function of the RV nq(t ) − ne(t ) is [59]

E
{
eξ [nq (t )−ne (t )]

} = et(−λq−λe+λqeξ +λee−ξ ) (33)

with ξ ∈ R. Using the Chernoff-Rubin14 bound [63] gives

P
{
nq(t ) � ne(t )

}
� inf

ξ>0
M(ξ ) . (34)

The infimum in (34) can be found since the moment gener-
ating function M(ξ ) is a convex function [64]. Indeed, the
right-hand side of (33) is a composition of an inner strictly
convex function with an outer convex increasing function
[65,66]. The upper bound in (34) can be computed by noting
that the exponent on the right-hand side of (33) attains its
minimum at ξ ∗ = 1

2 log λe
λq

> 0, yielding

P
{
nq(t ) � ne(t )

}
� e−t (

√
λe−

√
λq )2

. (35)

Therefore, if t � tε , then P {nq(t ) � ne(t )} � ε. �
While Theorem 3 considers L = 1, Theorems 4 and 5 refer

to an arbitrary number L � 1 of receivers.
Theorem 4 (Statistical Consistency). For � ∈ IL, consider:

(i) the ICQ point process {q(�)
i , i ∈ N0} generated by IID

interarrivals {x(�)
k , k ∈ N} having a PDF with respect to the

Lebesgue measure; (ii) the EQP point process {e(�)
j , j ∈ N0}

generated by the IID interarrivals (27b), yielding e(�)
j ∼

E (L( j − 1) + �, λe), j ∈ N. If x(�)
k � x̃k and x̃k ∼ E (1, λ̃q ),

14Inequality (34) is referred to as Chernoff-Rubin bound, although
often named as Chernoff bound, to reflect the contribution of Herman
Rubin [60–63].

∀k ∈ N, with λ̃q < λe/L, then any instantaneous protocol is
statistically consistent. �

Proof. Dropping the superscript (�) for notational sim-
plicity, consider the RV qi = ∑i

k=1 xk that represents the
ith ICQ point. The RV qi has a PDF with respect to the
Lebesgue measure since the RV xk has a PDF with respect
to the Lebesgue measure. Define the denumerable collection
of events Ei � {ICQ corresponding to the arrival time qi is
not teleported}, i ∈ N. The following relationships between
events hold for any instantaneous protocol: Ei = {at qi, no
unmatched EQP established at time � qi exists} ⊆ {ne(qi ) �
nq(qi )} = {ne(qi ) � i}. Thus, denoting the PDF of qi by fqi (t ),
the total probability law gives [52]

P {Ei} =
∫ ∞

0
P {Ei | qi = t} fqi (t ) dt

�
∫ ∞

0
P {ne(qi ) � i | qi = t} fqi (t ) dt

=
∫ ∞

0
P {ei+1 > qi | qi = t} fqi (t ) dt

=
∫ ∞

0
P {ei+1 > t} fqi (t ) dt , (36)

where the last equality follows from the independence of
the RVs ei+1 and qi. Thus, P {Ei} � E{g(qi )} with g(t ) �
P {ei+1 > t}. Using xk � x̃k , Theorem 1.A.3b in [67] gives
qi = ∑i

k=1 xk �
∑i

k=1 x̃k � q̃i. Since g(t ) is a nonincreasing
function of t ∈ R+

0 , Theorem 1.A.3a in [67] implies g(qi ) �
g(q̃i ), resulting in E{g(qi )} � E{g(q̃i )}. Therefore

P {Ei} �
∫ ∞

0
P {ei+1 > t} fq̃i (t ) dt � Ai , (37)

where fq̃i (t ) is the PDF of q̃i, which has an Erlang distribution.
For q̃i ∼ E (i, λ̃q) and λ̃q < λe/L, Appendix A proves that∑

i∈N Ai < ∞. This implies
∑

i∈N P {Ei} < ∞. Then, by the
first Borel-Cantelli Lemma [64, Thm. 4.3]

P {lim sup
i→∞

Ei} = 0 ,

which is equivalent to

P {infinitely many events Ei occur} = 0 . (38)

The equivalence follows from the set-theoretical definition
lim supi→∞ Ei �

⋂
i∈N

⋃∞
k=i Ek = {infinitely many events Ei

occur}. Equation (38) implies that, a.s., only finitely many
events Ei occur, namely, only finitely many ICQs are not
teleported. Thus, there exists a finite time after which all
arriving ICQs are teleported a.s., which proves the statistical
consistency. �

Theorem 4 proves the statistical consistency of instan-
taneous protocols for all renewal processes generated by
interarrivals that are stochastically larger than exponential
RVs having expected value 1/λ̃q. Note that x(�)

k � x̃k implies
E{x(�)

k } � E{x̃k}, namely, the rate λq of the ICQ point process
with interarrivals {x(�)

k , k ∈ N} is less than or equal to the
rate λ̃q of the PPP with interarrivals {x̃k, k ∈ N}. Thus, the
assumptions of the theorem imply εr > 1. If λq = λ̃q, then
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x(�)
k ∼ E (1, λ̃q ) and the ICQ point process reduces to the PPP

[67].
The next theorem establishes an upper bound on the ICQ

arrival rate, above which no statistically consistent teleporta-
tion protocol can be found.

Theorem 5 (Excess of ICQs). For � ∈ IL, consider ICQ
and EQP point processes, each with interarrivals forming a
stationary and ergodic sequence of RVs having finite expected
values 1/λq and L/λe, respectively. If εr < 1, then no statisti-
cally consistent teleportation protocol exists a.s. �

Proof. The definitions of ICQ and EQP point processes
imply the following a.s. relationships [superscript (�) is
dropped]:

nq (t )∑
k=1

xk = qnq (t ) � t < qnq (t )+1 =
nq (t )+1∑

k=1

xk , (39a)

ne (t )∑
k=1

yk = ene (t ) � t < ene (t )+1 =
ne (t )+1∑

k=1

yk . (39b)

Dividing (39a) by nq(t ) and (39b) by ne(t ), lower and upper
bounds for t/nq(t ) and t/ne(t ) can be obtained. From these
bounds, it follows that(∑ne (t )

k=1 yk

ne(t )

)
︸ ︷︷ ︸

a.s.−→ L/λe

(
nq(t )∑nq (t )+1

k=1 xk

)
︸ ︷︷ ︸

a.s.−→ λq

<
nq(t )/t

ne(t )/t

<

(∑ne (t )+1
k=1 yk

ne(t )

)
︸ ︷︷ ︸

a.s.−→ L/λe

(
nq(t )∑nq (t )
k=1 xk

)
︸ ︷︷ ︸

a.s.−→ λq

. (40)

Letting t → ∞ yields nq(t ) → ∞ a.s. and ne(t ) → ∞ a.s.
The pointwise ergodic theorem [56] then implies the a.s. con-
vergences indicated in (40). Thus, letting t → ∞ in (40) gives
the a.s. limit

lim
t→∞

nq(t )

ne(t )
= 1

εr
. (41)

The proof now employs the principle of contradiction. Sup-
pose that εr < 1 and there exists some statistically consistent
protocol, even noninstantaneous. This implies

1

εr
= lim

t→∞
nq(t )

ne(t )
(a)= lim

t→∞
nq(t ) − nq(t0)

ne(t )

(b)
� 1 , (42)

where the limits are in the a.s. sense, t0 is defined in (23),
equality (a) follows from the fact that nq(t0) is a.s. finite, and
inequality (b) follows from the supposed statistical consis-
tency. Thus, (42) contradicts that εr < 1. �

B. Operational characteristic

Armed with the renewal models described at the beginning
of Sec. V A, a simple closed-form expression for the oper-
ational characteristic of the FID protocol is derived in the
following, assuming M = ∞.

The resources of the quantum node are the EQPs estab-
lished with the L receivers. Part of these EQPs is eventually
utilized to teleport arriving ICQs and the remaining part is
eventually dissipated, i.e., never utilized for teleportation.

Using a protocol h ∈ P , the expected number of eventually
utilized EQPs per unit time is E{ηt (h)} Lλq. By Little’s law
[68], the expected number of eventually utilized EQPs that
are in the EQM is given by

Nd = E{d(h)}E{ηt (h)} Lλq . (43)

The value of E{d(h)} in (43) is the same for all � ∈ IL. Since
(E{ηt (h)} Lλq )

−1
represents the interval between the arrival

times of two consecutive teleported ICQs in the aggregate L
arriving ICQ streams, Nd in (43) will also be referred to as
the normalized delay. A large value of Nd indicates that the
quantum node is inefficient in consuming its resources. When
ηt (h) = 1 a.s., the relationship between Nd and εr represents
the fundamental tradeoff between the inefficiency in consum-
ing resources and the amount of resources supplied by the
EQP establishment platform per arriving ICQ.

Consider the FID protocol hF ∈ I operating on ICQ and
EQP point processes as described in Theorem 4, yielding
ηt (hF) = 1 a.s. in view of the statistical consistency of the
protocol. For receiver � ∈ IL [superscript (�) is dropped], let t
denote the instantiation of the arrival time qim corresponding
to the mth teleported ICQ, m ∈ N. For εr � 1 and m � 1,
with high probability the ICQ point qim = t is matched to the
closest EQP point ek < t , because it is unlikely that the arrival
time of the (m − 1)th teleported ICQ satisfies ek < qim−1 < t .
If the ICQ point qim = t is matched to the closest EQP point
ek < t , then jm = k and k = ne(t ). The first equality is due
to the matching of the FID protocol and the second equality
is due to the observation that k is simply the number of EQP
points up to time t . Therefore, for qim = t , the delay in (19)
can be approximated as

δim(hF) = t − e jm ≈ t − ene (t ) � ae(t ) , (44)

where ae(t ) is known as the age at t of the renewal process
{e j, j ∈ N0}. The conditions εr � 1 and m � 1 imply that t
is large and from [51, Prop. 3.4.6]

lim
t→∞E{ae(t )} = E

{
y2

k

}
2E{yk} = L + 1

2λe
, (45)

where yk is given in (27b) and k > 1 because εr � 1 and
m � 1.

Two ages ae(t1) and ae(t2) can be considered independent
if |t2 − t1| � L/λe because they correspond, with high proba-
bility, to fractions of two distant interarrivals of the EQP point
process established with receiver �. When t1 and t2 correspond
to arrival times of two ICQs teleported to receiver �, the
condition |t2 − t1| � L/λe is implied by εr � 1. When, in
addition to |t2 − t1| � L/λe, t1 and t2 are large, then both the
CDFs characterizing ae(t1) and ae(t2) can be approximated
by the same asymptotic CDF [51, Prop. 3.4.5]. Thus, the sub-
sequence {δim(hF), m ∈ N} can be considered IID for εr � 1
and m � 1. For an IID sequence {δim(hF), m ∈ N} the strong
law of large numbers implies d(hF) = E{δim(hF)} a.s. [52],
thus E{d(hF)} = d(hF). This motivates the approximation

E{d(hF)} ≈ lim
m→∞E{δim(hF)} = L + 1

2λe
, (46)

where the last equality is due to (44) and (45).
It will be apparent in Sec. VII that (46) is accurate

for εr � 1. However, for moderate values of εr > 1, the
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probability that the ICQ point qim = t is matched to the closest
EQP point ek � t is no longer close to unity and (46) requires
a correction. A correction factor is given by the ratio between
the number of established EQPs and the number of eventually
dissipated EQPs, i.e., λe/L

λe/L−λq
, thus yielding

E{d(hF)} ≈ L + 1

2

1

λe − Lλq
, (47)

which is valid for any � ∈ IL. For a given L and λe, (47)
characterizes the tradeoff between E{d(hF)} and λq. For
example, fixed values of L = 1 and λe = 10 Hz imply that
E{d(hF)} � 0.2 s can be achieved for arriving ICQ streams
having rate λq � 5 Hz. Similarly, fixed values of L = 5 and
λe = 10 Hz imply that E{d(hF)} � 0.6 s can be achieved for
arriving ICQ streams having rate λq � 1 Hz.

The operational characteristic Nd(εr ) of the quantum node
using the FID protocol operating on ICQ and EQP point
processes as described in Theorem 4 is obtained for εr > 1
by substituting (47) and ηt (hF) = 1 into (43) as

Nd(εr ) ≈ L + 1

2

1

εr − 1
. (48)

Node inefficiency in consuming its resources, Nd, is inversely
proportional to the eventually dissipated resources per arriving
ICQ, εr − 1, through the proportionality factor (L + 1)/2. No
protocol of class I operating on ICQ and EQP point processes
that are described in Theorem 4 can achieve Nd(εr ) smaller
than the right-hand side of (48) and the approximation in (48)
is tight for εr � 1.

VI. RECAPITULATION OF THE MAIN
ANALYTICAL RESULTS

Before delving into the numerical investigations, a brief
recapitulation of the main analytical results is provided.

(a) FID is path-optimal in the class I of instantaneous
protocols in the sense that it achieves both the smallest
delay and the largest teleportation probability.

(b) For arriving ICQ streams described by renewal pro-
cesses with interarrivals stochastically larger than
exponential RVs having expected value 1/λ̃q > L/λe,
any instantaneous protocol is statistically consistent.

(c) For arriving ICQ streams described by point processes
with stationary ergodic interarrivals having finite ex-
pected values, no statistically consistent teleportation
protocol exists for εr < 1.

(d) A simple closed-form analytical expression describing
the fundamental operational characteristic Nd(εr ) of
the quantum node using the statistically consistent FID
protocol has been derived for εr > 1.

VII. NUMERICAL EXPERIMENTS

Statistical consistency is a desirable property for the design
of the quantum node and motivates the adoption of instanta-
neous protocols since they permit statistically consistency for
εr > 1. This section presents the results of numerical experi-
ments for the FID protocol hF, which is optimal in the class

1 2 4 6 8 10 15 20
10-2

10-1

100

101

102

103

FIG. 1. Operational characteristic Nd(εr ) of the quantum node
serving L = 1, 5, and 20 receivers, using the FID and BDD pro-
tocols. The arriving ICQ streams are characterized by independent
PPPs having a common rate λq. The solid lines refer to the closed-
form expression (48).

I of instantaneous protocols. The BDD protocol hB is also
considered for comparison.

The main parameters characterizing the functionality of
the quantum node are L, λq, λe, rq, and re. The numerical
experiments consider: (i) a quantum node serving multiple
receivers L � 1; (ii) arriving ICQ streams, having a common
rate λq, characterized by independent point processes with
interarrivals stochastically larger than exponential RVs; and
(iii) an established EQP point process, having rate λe/L, char-
acterized by (27). The role of λq and λe is manifested in the
excess ratio εr defined by (29). The parameters rq and re,
characterizing IQM and EQM, span several orders of mag-
nitude to reflect the large variability of the decoherence rates
associated with different technologies for quantum memories.
The numerical experiments are based on Monte Carlo simu-
lations and these simulations show no appreciable difference
for different values of � ∈ IL. This is expected because the
value of � affects only the first interarrival of the EQP point
process, see (27b). The results shown in Figs. 1–5 are based on
numerical experiments using 5 × 104 Monte Carlo runs with
an observation window of length 2 × 103/λq s.

For arriving ICQ streams characterized by independent
PPPs having a common rate λq, Fig. 1 shows the opera-
tional characteristic Nd(εr ) of the quantum node using the
FID protocol hF, for different values of L. An excellent match
between closed-form expression (48) and simulation results
is observed, except for values of εr close to unity. Figure 1
also shows the results of numerical experiments for the BDD
protocol hB, assuming two values of W � Wb = Wf . It can be
seen that the operational characteristic of the quantum node
using the BDD protocol is not monotonic with respect to
εr . Furthermore, the BDD and FID protocols yield similar
normalized delays Nd for large εr . This is expected because
for large εr , the probability that an ICQ arriving at t is im-
mediately teleported by the BDD protocol utilizing an EQP
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FIG. 2. Probability of loss as a function of the excess ratio εr

of the quantum node using the BDD protocol hB. The arriving ICQ
streams are characterized by independent PPPs having a common
rate λq.

established between t − W and t is close to one, yielding Nd

similar to that obtained by the FID protocol.
The appearance that the BDD protocol outperforms the

FID protocol for small εr should not be misinterpreted, since
BDD protocol incurs ICQ losses as shown in Fig. 2, while the
FID protocol is statistically consistent as proven by Theorem 4
in Sec. V. In particular, Fig. 2 shows that the probability of
loss for W λq = 10 is smaller than that for W λq = 1. This is
expected because with the BDD protocol, an ICQ is teleported
by utilizing an available EQP established within a window
of length 2W centered on the arrival time of the ICQ and
increasing W gives more chances of finding an available EQP.

Consider next arriving ICQ streams characterized by in-
dependent renewal point processes with interarrivals stochas-
tically larger than exponential RVs. Specifically, the IID
interarrivals {xk, k ∈ N} of the ICQ point process {qi, i ∈
N0} are given by xk = x̀k + x́k , with x̀k and x́k being inde-
pendent Gamma15 RVs,

x̀k ∼ E
(

1

2
, λ̃q

)
, x́k ∼ E

(
1

2
,
λ̃q

υ

)
, (49)

where λ̃q ∈ R+ and υ � 1. The rate of the ICQ point process
{qi, i ∈ N0} is λq = 2λ̃q/(1 + υ ). The stochastic order rela-
tion xk � x̃k , where x̃k ∼ E (1, λ̃q ), follows by [69, Thm. 3],
and Theorem 4 in Sec. V then proves that the FID protocol
is statistically consistent for λ̃q < λe/L. The parameter υ � 1
in (49) serves as a quantifier of the largeness in the relation
xk � x̃k . For υ = 1, xk has the same distribution as x̃k and the
PPP with interarrivals xk ∼ E (1, λq ) is obtained for the ICQ
interarrivals. Figure 3 shows the operational characteristic
Nd(εr ) of the quantum node using the FID protocol hF. The
figure confirms the accuracy of the closed-form expression

15The Gamma RV z ∼ E (i, λ), i ∈ R+, is a generalization of the
Erlang RV z ∼ E (i, λ) for which i ∈ N; in both cases, the PDF of
the RV is given by (26).
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FIG. 3. Operational characteristic Nd(εr ) of the quantum node
serving L = 1, 5, and 20 receivers using the FID protocol hF. The
arriving ICQ streams are renewal point processes with interarrivals
stochastically larger than exponential RVs. The parameter υ � 1
serves as a quantifier of deviation from the PPP. The solid lines refer
to the closed-form expression (48).

(48) even when arriving ICQ streams are characterized by re-
newal processes that severely deviate from the PPP according
to (49).

Figures 4 and 5 consider the same case study illustrated in
Fig. 1 of arriving ICQ streams characterized by independent
PPPs having a common rate λq. The fidelity obtained by
the FID protocol hF for the depolarizing model in (10) is
considered in Fig. 4. The figure shows the arithmetic mean
1
n

∑n
m=1 �m as a function of the EQP decoherence rate re.

Here, n is the number of Monte Carlo runs and �m is the
fidelity (15) with τ replaced by the instantiation of the de-
lay δim(hF) = qim − e jm , which is the duration that the EQP
established at time e jm is stored in the EQM before it is
utilized to teleport the ICQ arrived at time qim . The fidelity
of the EQP at the time of its establishment is 0.9. The two
dashed asymptotes in the figure depict two extreme cases.
Upper dashed line corresponds to the ideal EQM (re = 0) in
which the established EQP does not decohere regardless of
the duration that it spends in the EQM. Lower dashed line
corresponds to the worst-case EQM (re = ∞) in which the
state of the established EQP decoheres to I4/4 as soon as
it is stored in the EQM. It can be seen from Fig. 4 that the
arithmetic mean of the fidelity is a decreasing function of re.
It can be also seen that the arithmetic mean of the fidelity is
an increasing function of the excess ratio εr, which is expected
because increasing εr reduces δim(hF).

Finally, Fig. 5 refers to the case in which the teleportation
of the ICQ arrived at time qim is successful if |δim(h)| =
|qim − e jm | is less than or equal to a preassigned threshold
value. Otherwise, if |δim(h)| = |qim − e jm | is larger than the
preassigned threshold value, a failure is said to occur because
the teleported ICQ is severely degraded due to outdated EQP
or ICQ. This fits the bistate models for ICQs and EQPs,
respectively, described in Sec. II C and Sec. II E. In such sce-
nario, the BDD protocol hB may represent a valid alternative
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FIG. 4. Arithmetic mean of the fidelity (15) for the FID protocol
as a function of the decoherence rate re of the EQPs, for several val-
ues of the excess ratio εr . Upper and lower dashed lines correspond
to re = 0 and re = ∞, respectively. The parameter w0 is equal to
0.87, and the quantum node serves L = 5 receivers. The arriving ICQ
streams are characterized by independent PPPs having a common
rate λq.

to the FID protocol hF, because severely degraded teleported
ICQs are equivalent to lost ICQs. Figure 5 considers L = 5,
with various values of W λq, and εr . For simplicity of analysis,
r � re = rq and the teleportation is successful if |δim(h)| �
1/r. The figure shows the failure probability for the FID and
the BDD protocols versus r. When W λq = 10, the failure
probabilities of the two protocols are close for large values of
r (severe decoherence) while the BDD outperforms the FID
for small values of r (high-quality memories). As to the case
W λq = 1, for large εr , the BDD outperforms the FID, while
for small εr and small r the FID is superior. For instance, with
εr = 2, FID exhibits smaller failure probability than BDD for
r � 0.34 Hz.

VIII. SUMMARY

This paper puts forth a framework in which distributing
information-carrying quantum states with finite lifetime is
formulated as a problem of matching between two point pro-
cesses. Performance degradation due to the decoherence of
the arriving ICQs is mitigated by the utilization of EQPs
established prior to their arrivals. We consider the class I of
instantaneous matching protocols that guarantee zero waiting
time for distributing the information-carrying quantum states.
The excess ratio εr is identified as a fundamental parameter
and εr = 1 as a critical threshold. With εr > 1: under qual-
ifying conditions on the arriving ICQ streams, any protocol
belonging to class I is statistically consistent. With εr < 1:
no statistically consistent protocol, even not belonging to
class I, exists. This establishes the ultimate limit for dis-
tributing quantum state with finite lifetime. Within class I,
the FID protocol is introduced and its optimality is proven.
The operational characteristic of the optimal FID protocol,
describing the functional relationship between the normal-
ized waiting time of the preestablished EQPs and the excess

10-2 10-1 100 101 102
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10-4

10-2

100

FIG. 5. Failure probability as a function of the memory decoher-
ence rate r = re = rq, for several values of the excess ratio εr . The
quantum node serves L = 5 receivers. The arriving ICQ streams are
characterized by independent PPPs having a common rate λq.

ratio, is derived. The proposed framework has been validated
by numerical experiments which corroborate the theoretical
analysis. The results obtained in this paper provide guidelines
for the design of quantum nodes, paving the way for future
quantum networks using NISQ technology.
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APPENDIX: PROOF OF
∑

i∈N Ai < ∞
With reference to the proof of Theorem 4 in Sec. V A, this

Appendix shows that
∑

i∈N Ai < ∞, where

Ai �
∫ ∞

0
P {ei+1 > t} fq̃i (t ) dt . (A1)

The moment generating function of an Erlang distribution
E (i, λe ) with shape parameter i ∈ N and rate parameter λe ∈
R+ is

M(ξ ) =
(

1 − ξ

λe

)−i

, ξ < λe . (A2)

Exploiting (A2), Chernoff-Rubin bound gives [60–63]

P
{
ei+1 > t

}
� inf

0<ξ<λe

e−ξ t

(
1 − ξ

λe

)−(iL+�)

=
{

1, t < iL+�
λe

,

e−tλe+iL+�
( t λe

iL+�

)iL+�
, t � iL+�

λe
,

(A3)
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where the value of ξ attaining the infimum is ξ ∗ =
max{0, λe − (iL + �)/t}. Using (A3) in (A1),

Ai �
∫ iL+�

λe

0
fq̃i (t ) dt +

∫ ∞

iL+�
λe

fq̃i (t )e−tλe+iL+�

(
t λe

iL + �

)iL+�

dt

� Bi + Ci , (A4)

where

Bi �
∫ iL+�

λe

0
fq̃i (t ) dt , (A5a)

Ci �
∫ ∞

0
fq̃i (t )e−tλe+iL+�

(
t λe

iL + �

)iL+�

dt . (A5b)

In order to show that
∑

i∈N Ai < ∞, it is sufficient to show
that

∑
i∈N Bi < ∞ and

∑
i∈N Ci < ∞.

Consider the integral Bi in (A5a). Using the expression for
fq̃i (t ) given in (26) yields

Bi = λ̃i
q

�(i)

∫ iL+�
λe

0
t i−1e−t λ̃q dt = γ

(
i, iL+�

λe
λ̃q

)
�(i)

, (A6)

where γ (a, b) = ∫ b
0 t a−1e−t dt is the incomplete Gamma

function. Since � � L and γ (a, b) is monotonically increasing
in b,

Bi = γ
(
i, iL+�

λe
λ̃q

)
�(i)

� γ (i, (i + 1)κ )

�(i)
� B̌i , (A7)

where κ � Lλ̃q/λe ∈ (0, 1). The condition
∑

i∈N Bi < ∞ is
implied by the condition

∑
i∈N B̌i < ∞. In order to show that∑

i∈N B̌i < ∞, it is sufficient to show that limi→∞ B̌i+1/B̌i <

1, in view of the ratio test for the convergence of the series
[70, Thm. 2, p. 117].

Consider the ratio

B̌i+1

B̌i
= 1

i

γ (i + 1, (i + 2)κ )

γ (i, (i + 1)κ )
. (A8)

Using the recurrence formula γ (a + 1, b) = aγ (a, b) −
ba e−b [71, 6.5.22] yields

γ (i, (i + 1)κ ) = γ (i + 1, (i + 1)κ )

i
+ [(i + 1)κ]ie−(i+1)κ

i
.

(A9)

Since κ ∈ (0, 1), for a → ∞, γ (a, aκ ) can be replaced
with the following asymptotically equivalent expression [72,
8.11.6]:

(aκ )ae−aκ

∞∑
m=0

(−a)mcm(κ )

[a(1 − κ )]2m+1
, (A10)

where c0(κ ) = 1. Eqs. (A9) and (A10) give an asymptotically
equivalent expression for iγ (i, (i + 1)κ ) as follows:(

[(i + 1)κ]i+1e−(i+1)κ
∞∑

m=0

(−1)mcm(κ )

(i + 1)m+1(1 − κ )2m+1

)

+ [(i + 1)κ]ie−(i+1)κ . (A11)

Retaining the dominant term in the series of (A11),
namely, [(i + 1)(1 − κ )]

−1
corresponding to the m = 0 term,

expression (A11) reduces to [(i + 1)κ]
i
e−(i+1)κ/(1 − κ ). Us-

ing this asymptotically equivalent expression for iγ (i, (i +
1)κ ) in (A8) and taking the limit yields

lim
i→∞

B̌i+1

B̌i
= lim

i→∞
1

i + 1

[(i + 2)κ]i+1 e−(i+2)κ

[(i + 1)κ]i e−(i+1)κ

= lim
i→∞

κ e−κ

(
i + 2

i + 1

)i+1

= κ e1−κ . (A12)

The value on the right-hand side of (A12) is less than unity for
κ ∈ (0, 1), which proves that limi→∞ B̌i+1/B̌i < 1.

Consider the integral Ci in (A5b). Using the expression for
fq̃i (t ) given in (26) yields

Ci = λ̃i
q

�(i)
eiL+�

∫ ∞

0
t i−1e−t (λe+λ̃q )

(
t λe

iL + �

)iL+�

dt

= eiL+�

(
λ̃q

λe + λ̃q

)i(
λe

λe + λ̃q

1

iL + �

)iL+�
�(i(L + 1) + �)

�(i)
.

(A13)

In order to apply the ratio test for the convergence of the series
[70, Thm. 2, p. 117], consider the ratio

Ci+1

Ci
= eL

i

λ̃q

λe + λ̃q

(
λe

λe + λ̃q

)L

× (iL + �)iL+�

(iL + � + L)iL+�+L

�((i + 1)(L + 1) + �)

�[i(L + 1) + �]
.

(A14)

Using the asymptotic expansion �(ia + b) ∼ √
2πe−ia

(ia)ia+b− 1
2 valid for a > 0 and i → ∞ [71, 6.1.39], the ratio

of Gamma functions on the right-hand side of (A14) can
be replaced by the asymptotically equivalent expression
[i(L + 1)]

L+1
. Thus, taking the limit of (A14) yields

lim
i→∞

Ci+1

Ci
= λ̃q

λe + λ̃q

(
e λe

λe + λ̃q

)L

(L + 1)L+1

× lim
i→∞

(iL + �)iL+�

(iL + � + L)iL+�+L
iL

= (L + 1)
λ̃q

λe + λ̃q

(
λe

λe + λ̃q

L + 1

L

)L

. (A15)

For any integer L � 1 and any λe > 0, the function on
the right-hand side of (A15) is nonnegative and strictly in-
creasing for 0 � λ̃q � λe/L, taking value 0 at λ̃q = 0 and
value 1 at λ̃q = λe/L. This shows that the right-hand side of
(A15) is less than unity when λ̃q < λe/L, which proves that
limi→∞ Ci+1/Ci < 1.
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