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Abstract—The demand for accurate localization in complex envi-
ronments continues to increase despite the difficulty in extracting
positional information from measurements. Conventional range-
based localization approaches rely on distance estimates obtained
from measurements (e.g., delay or strength of received waveforms).
This paper goes one step further and develops localization tech-
niques that rely on all probable range values rather than on a
single estimate of each distance. In particular, the concept of soft
range information (SRI) is introduced, showing its essential role for
network localization. We then establish a general framework for
SRI-based localization and develop algorithms for obtaining the
SRI using machine learning techniques. The performance of the
proposed approach is quantified via network experimentation in
indoor environments. The results show that SRI-based localization
techniques can achieve performance approaching the Cramér–Rao
lower bound and significantly outperform the conventional tech-
niques especially in harsh wireless environments.

Index Terms—Soft range information, network localization,
wireless propagation, machine learning.

I. INTRODUCTION

N ETWORK LOCALIZATION [1] is a key enabler for nu-
merous emerging applications–including autonomous ve-

hicles [2], logistics [3], smart cities [4], distributed sensing [5],
environmental monitoring [6], public safety [7], medical ser-
vices [8], and social networks [9]–that require highly accurate
positional information [10]–[25]. However, harsh propagation
environments such as indoors or urban canyons hinder accurate
localization [26]–[34]. In particular, non-line-of-sight (NLOS)
and multipath propagation prevent the extraction of reliable
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Fig. 1. Examples of conventional localization based on DE and proposed
approach based on SRI.

positional information from wireless signals using classical
techniques [35]–[45].

In range-based network localization, the agents’ positions
are determined from measurements related to pair-wise dis-
tances and prior knowledge such as anchors’ positions (see
e.g., Fig. 1). Conventional approaches typically process these
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Fig. 2. Methodology for SRI-based localization.

measurements to obtain distance estimates (DEs), which are
subsequently used to determine the agents’ positions [16]–[19].
As the harsh propagation conditions directly affect the mea-
surements, these approaches focus on improving the DE to en-
hance localization performance. Most of the effort is dedicated
to estimate the time-of-arrival (TOA) of direct-paths or to cor-
rect TOA of indirect-paths. Specifically, these approaches first
identify NLOS conditions and then mitigate their effects. Such
mitigation is accomplished by removing the positive bias due to
NLOS propagation [34]–[37] or assigning different weights to
line-of-sight (LOS) and NLOS DEs [39].

Most of the aforementioned approaches assume a fixed, often
inaccurate, model for the relationship between the inter-node
measurement and the distance (e.g., Gaussian distribution with
a mean equal to the distance and a given variance [26], [35]).
Extensions of such techniques adapt the model by varying the
standard deviations of the Gaussian distributions [40], by using
a few recent measurements [31], and by assigning samples of
the power dispersion profile with different direct-path probabil-
ities [46]. The limitations of conventional approaches based on
DEs can be observed in the scenario depicted in Fig. 1, which
describes the localization of an agent using range-related mea-
surements with respect to 3 anchors. This example depicts a
scenario in which the inter-node measurements from anchor 3
provide a high likelihood for distances much larger than the
actual distance (see Fig. 1(a)). Therefore, any technique based
on DEs would lead to inaccurate localization (see Fig. 1(b)).

We envision a new paradigm for high-accuracy localization
that relies on the statistical characterization of the relationship
between the inter-node measurements and ranges, hereafter re-
ferred to as soft range information (SRI). The main goal of this
work is to design localization techniques that exploit SRI and
to quantify their performance gain with respect to conventional
localization techniques based on DEs. In the scenario depicted

in Fig. 1, SRI-based localization provides accurate agent’s po-
sition as the range information is fully utilized (see Fig. 1(b)).
In particular, the SRI-based approach can account for the small
but non-negligible likelihood of the actual distance from anchor
3 (see Fig. 1(a)).

In this paper, we propose a framework and develop algorithms
for SRI-based network localization as depicted in Fig. 2. The
main contributions of the paper can be summarized as follows:

� establishment of a general framework for SRI-based net-
work localization;

� development of algorithms for determining the SRI via
machine learning; and

� quantification through network experimentation of the ben-
efits offered by SRI-based algorithms.

The remainder of the paper is organized as follows. Section II
introduces the general methodology of SRI-based network lo-
calization and illustrates SRI benefits in a simple scenario.
Section III develops algorithms for SRI estimation using ma-
chine learning. Section IV presents the performance of SRI-
based localization via network experimentation. Finally, con-
clusions are given in Section V.

Notations: random variables (RVs) are displayed in sans serif,
upright fonts and their realizations in serif, italic fonts; vectors
are denoted by bold lowercase letters; a RV and its realization
are denoted by x and x; a random vector and its realization are
denoted by x and x; x[j] denotes the jth component of the
vector x; fx(x) and, for brevity when possible, f(x) denote
the Radon–Nikodym derivative of a RV x with respect to the
base measure (Lebesgue for continuous RVs and counting for
discrete RVs), e.g., f(x) denotes a probability density function
(PDF) in case of a continuous RV x; f(x|z) denotes either the
conditional distribution of x given z = z for a RV z or the dis-
tribution of x parametrized by z for a parameter z; ϕ(x;μ,Σ)
denotes the PDF of a Gaussian RV x with mean μ and covariance
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matrix Σ; E{·}, V {·}, and P {·} denote, respectively, the expec-
tation, variance, and probability of the argument; [ · ]T denotes
the transpose of the argument.

II. SOFT RANGE INFORMATION

In this section, we first define SRI and describe range-based
localization relying on SRI rather than DE. Then, we propose a
general methodology for network localization based on accurate
SRI estimation, which is illustrated in Fig. 2.

In range-based localization, nodes in a network obtain posi-
tional information from measurements related to the distance
between pairs of nodes. Non-cooperative approaches use mea-
surements related to the distance from agents (nodes at positions
to be estimated) to anchors (nodes at known positions), while
cooperative approaches additionally use measurements between
agents. Localization approaches can also be classified, based on
agent position model, as non-Bayesian and Bayesian: the former
directly obtain position estimates from measurements, while the
latter first determine posterior distributions of positions and then
use them to estimate the positions.

Definition 1 (Soft range information): Let f(y|d) be the dis-
tribution of range-related measurements set y conditioned on or
parametrized by the distance between a pair of nodes. The SRI
of a measurements set1 y = y, denoted Ly(d), is any function
of distance d proportional to f(y|d), i.e., Ly(d) ∝ f(y|d).

In contrast to conventional approaches for range-based local-
ization relying on DE values, this paper proposes to first ob-
tain SRIs from range-related measurements and then use those
distance functions to determine node positions.2 In fact, SRI
provides richer information than DE by quantifying the odds of
all possible distances, thus enabling soft-decision localization
instead of conventional hard-decision localization.3 This paper
focuses on range-related measurements, however the methodol-
ogy introduced here can analogously be used for measurements
related to other positional features including angle, velocity,
and acceleration. For a general positional feature θ, the corre-
sponding soft information (SI) of a θ-related measurements set
y would be a function of θ proportional to f(y|θ) [47].

Consider a network formed by Na agents and Nb an-
chors with index sets denoted by Na = {1, 2, . . . , Na } and
Nb = {Na + 1, Na + 2, . . . , Na +Nb }, respectively. The net-
work acquires measurements sets, where each set is composed
of M scalars related to the distance between a pair of nodes.
Such values can include TOA, received signal strength (RSS),
and waveform samples or any combination thereof. Let pi de-
note the position of node i; di,j ∈ R and yi,j ∈ RM denote, re-
spectively, the distance and a measurements set between nodes
i and j; d(k) and y(k) denote, respectively, the kth distance
and the kth measurements set in a collection of distances

1In this paper, measurements set refers to a collection of observations, possi-
bly of different types.

2Certain DE-based approaches including [26], [35], [40] characterize the

relationship between the distance d and its estimate ̂d with a likelihood function

of d centered at ̂d. Those approaches differ from the SRI-based approach as the
latter directly estimates the function Ly (d) from measurements.

3The SRI can be used in both Bayesian and non-Bayesian formulations. In
the latter case, the SRI coincides with the distance likelihood function. Note
also that the SRI is defined up to a proportionality constant as this is sufficient
for localization purposes.

and measurements sets;4 and, d and y denote, respectively,
the distance and a measurements set between an unspecified
pair of nodes. Range-related measurements are considered, i.e.,
f(yi,j |{pk }k∈Na ) = f(yi,j |di,j ) for each pair of nodes i and j,
and mutually independent measurements given distances, i.e.,
f(yi,j ,yk,r |di,j , dk,r ) = f(yi,j |di,j )f(yk,r |dk,r ) for any two
pairs of nodes {i, j} �= {k, r}.

A. Benefits of SRI-Based localization

A simple case study is presented to provide insights into
how SRI offers richer information than DE for localization.
Specifically, a localization system is considered, in which each
measurements set y = [r, δ]T is a collection of two values (a
distance measurement r and a NLOS indicator δ). In particular,
the distance measurement r is an instantiation of

r = d+ n (1)

where d is the distance between a pair of nodes and n is the
measurement noise with PDF given by

fn(n) =
{

ϕ(n; 0, σ2
LOS) for LOS cases

ϕ(n; b, σ2
NLOS) for NLOS cases (2)

where b is a positive bias due to NLOS conditions. The other
component, δ, of the measurements set is the NLOS detec-
tor outcome with δ = 0 and 1 corresponding to detected LOS
and NLOS conditions, respectively. The error in detecting the
propagation condition is accounted for by means of posterior
probabilities of error

εNLOS = P
{

NLOS|δ = 0
}

(3a)

εLOS = P
{

LOS|δ = 1
}

. (3b)

The detector output and its errors are considered independent of
the distance.

The SRI corresponding to a measurements set y = [r, δ]T,
described in (1)–(3), is (see Appendix A)

Ly(d) ∝
{

(1 − εNLOS)LLOS(d) + εNLOSLNLOS(d) for δ = 0
εLOSLLOS(d) + (1 − εLOS)LNLOS(d) for δ = 1

(4)

with LLOS(d) = ϕ(r; d, σ2
LOS) and LNLOS(d) = ϕ(r; d+

b, σ2
NLOS). Note that when the NLOS detector is highly reli-

able (εLOS � 0 and εNLOS � 0), the SRI is concentrated around
the actual distance. Moreover, the SRI is robust to unreliable
NLOS detectors; that is, SRI has positive values for both the
actual distance and the biased distance weighted appropriately
by the error probabilities of the NLOS detector given in (3).

The minimum mean square error (MMSE) distance estimator
is obtained by modeling distances as RVs. Assuming a constant
reference prior [48] for distances, such DE corresponding to
a measurements set y = [r, δ]T, described in (1)–(3), is (see
Appendix A)

̂d = E
{

d|r, δ} =
{

(1 − εNLOS)r + εNLOS(r − b) for δ = 0
εLOSr + (1 − εLOS)(r − b) for δ = 1 .

(5)

4Negative values of k indicate values obtained during a training phase.



3158 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 12, JUNE 15, 2018

Note that when the NLOS detector is highly reliable (εLOS � 0
and εNLOS � 0), the bias of NLOS cases is correctly subtracted to
refine ranging [34]. However, in the presence of a NLOS detector
error, the DEs are biased by (1 − εNLOS)b in NLOS cases and by
−(1 − εLOS)b in LOS cases.5 In addition, the distance estimator
mean squared error (MSE) for scenarios with σLOS = σNLOS =
σ and εLOS = εNLOS = ε is (see Appendix A)

MSE(̂d ) = ε (1 − ε) b2 + σ2 (6)

which reduces to the MSE of LOS scenarios when the NLOS
detector is totally reliable (ε = 0).

The Fisher information inequality, also known as Cramér–
Rao lower bound (CRLB), for a network with one agent at
position p is

E
{‖ p̂ − p ‖2} ≥ Tr

{

J−1
}

where p̂ is a position estimator, Tr{·} denotes the matrix trace,
and J is the Fisher information matrix (FIM) given by

J =
∑

j∈Nb

λj
d2
j

(p − pj )(p − pj )
T

in which dj is the distance between agent and anchor j, and λj
is the ranging information intensity (RII) of the measurements
set yj related to dj [10], [30]. The RII determines the CRLB
and can be obtained as shown in the following.

Proposition 1: The RII of a measurements set y = [r, δ] de-
scribed in (1)–(3) with σLOS = σNLOS = σ and εLOS = εNLOS =
ε is

λ =
1
σ4

[

E
{

(r − d − χ0)2 |δ = 0
}

P
{

δ = 0
}

+ E
{

(r − d − χ1)2 |δ = 1
}

P
{

δ = 1
}]

(7)

where

χ0 =
b ε ϕ(r; d+ b, σ2)

(1 − ε)ϕ(r; d, σ2) + ε ϕ(r; d+ b, σ2)
(8)

χ1 =
b (1 − ε)ϕ(r; d+ b, σ2)

ε ϕ(r; d, σ2) + (1 − ε)ϕ(r; d+ b, σ2)
. (9)

Proof: See Appendix B. �
Remark 1: As expected, if P {δ = 0} = 1 and ε = 0 (LOS

scenario with totally reliable NLOS detector), the RII reduces
to λ = 1/σ2 . For values 0 < ε < 1, the RII in (7), and, hence,
the CRLB does not have closed-form expressions; however, ex-
pectations in (7) can be evaluated through numerical integration.

The analytical expression in Proposition 1 also reveals that
NLOS detector errors do not fundamentally restrain perfor-
mance as described in the following.

Remark 2: For values of the bias significantly larger than the
standard deviation of measurement noise n, i.e., b � σ, the RII
in (7) and, hence, the CRLB is approximately the one of LOS
scenario with totally reliable NLOS detector (λ � 1/σ2) inde-
pendent of the detector’s reliability ε. Note that when b � σ,
the two Gaussian PDFs in (8) and (9) have negligible overlap.
Hence χ0 � χ1 � 0 (resp. χ0 � χ1 � b) when r has mean d, i.e.,

5These kinds of biases would arise in any DE method since the distance is
expected to be near r (resp. r − b) for cases detected as LOS (resp. NLOS).

Fig. 3. The richer information provided by SRI results in improved accuracies.
In the simulated case study, SRI-based localization achieves performances near
the CRLB also with erroneous NLOS detection.

LOS cases, (resp. d+ b, i.e., NLOS cases) and standard devi-
ation σ. Therefore, both expectations in (7) are approximately
σ2 , for instance

E
{

(r − d − χ0)2 |δ = 0
}

= (1 − ε)
∫

(r − d − χ0)2ϕ(r; d, σ2)dr

+ ε

∫

(r − d − χ0)2ϕ(r; d+ b, σ2)dr

� (1 − ε)σ2 + ε σ2 = σ2 .

The SRI encapsulates information not only about the most
likely distance but also about other probable distances, and this
richer information results in enhanced localization. In particu-
lar, in the system described above, a localization network based
on SRIs would be resilient to NLOS detector errors that would
significantly harm localization based on DEs. Fig. 3 shows the
root mean square (RMS) error as a function of NLOS detector
error probabilities for DE-based localization and SRI-based lo-
calization, along with the CRLB. In particular, we consider a
localization network as depicted in Fig. 1(b) with measurements
sets between the agent and each anchor according to (1)–(3) with
b = 100 m and σ = 2 m. In the simulated scenario, 20 % of the
measurements correspond to NLOS cases, and NLOS detectors
for anchors 1 and 2 are totally reliable (ε = 0) while that for
anchor 3 has a varying probability of error ε. The agent posi-
tion is estimated from DEs and SRIs using maximum likelihood
(ML) criterion (see further details in Section II-B). Specifically,
DE provides two numerical values (5) and (6) for the mean and
variance of a Gaussian distribution that is used in ML posi-
tioning. On the other hand, SRI provides functions (4) that are
directly used in ML positioning.6

Fig. 3 shows that SRI-based localization outperforms DE-
based localization and approaches the performance given by the

6To ensure localization performance independent of specific algorithm imple-
mentations, the positions achieving maxima are obtained by exhaustive search
over a regular grid.
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theoretical benchmark. It can be seen that the performance of
DE-based localization matches that of SRI-based localization
for cases with ε � 0, since in those cases the SRI is a Gaussian
centered at the DE. It can also be observed that the performance
of SRI-based localization attains the CRLB even in the presence
of erroneous NLOS detections, while that of DE-based local-
ization is highly harmed by those errors. Recall from Fig. 1(b)
that every time a NLOS case is incorrectly detected as LOS,
the localization error based on DE is around 120 m, while that
based on SRI continues to be around 2 m. Both the CRLB and
the SRI-based localization are insensitive to the detector’s prob-
ability of error. For the CRLB, this fact is a consequence of
Remark 2, while for SRI-based localization, it is a consequence
of the expression of SRI in (4), which assigns non-negligible
values to the actual distance for any detector’s output and prob-
ability of error. Those non-negligible values get amplified after
multiplication with the SRIs from anchors 1 and 2. Note that
the benefits of SRI can also be achieved by using approximate
SRIs. Even a rough approximation of the SRI without accurate
values of b, εLOS, εNLOS, σLOS, and σNLOS would result in a more
accurate localization than that based on DE. The final position
estimate will be accurate as long as the approximated SRI from
anchor 3 has non-negligible values around the actual distance
(see Fig. 1).

The benefits of SRI-based localization come from the fact
that the distance function offered by a SRI contains richer lo-
calization information than the distance value offered by a DE.
Therefore, SRI-based localization is expected to outperform
DE-based localization in all the situations where the informa-
tion contained in the measurements cannot be fully encapsulated
by a DE.

B. SRI in Network localization

We now describe how SRI can be exploited to estimate the
agents’ positions in different localization settings.7

1) Non-Cooperative Non-Bayesian Localization: Consider
a scenario in which agents’ positions are modeled as unknown
parameters and are estimated based on measurements with re-
spect to the anchors. The ML position estimate for the agent
i ∈ Na is given by

p̂i = arg max
pi

f({yi,j }j∈Nb |pi) = arg max
pi

∏

j ∈Nb

f(yi,j |di,j ) .

(10)

If the distributions f(yi,j |di,j ) are Gaussian with mean di,j , then
the ML estimate leads to the least squares (LS) estimate or to the
weighted least squares (WLS) estimate when the distributions
have the same or different variances, respectively.

2) Non-Cooperative Bayesian localization: Consider a sce-
nario in which agents’ positions are modeled as RVs and are
estimated based on measurements with respect to the anchors.
The MMSE and the maximum a posteriori probability (MAP)

7For notational convenience, we consider the case in which a measurements
set yi ,j is available for each pair of nodes i and j . The expressions for other
cases can be obtained by removing the terms corresponding to node pairs with
unavailable measurements.

position estimates for the agent i ∈ Na are given respectively by

p̂i =
∫

pif(pi |{yi,j }j∈Nb )dpi (11)

p̂i = arg max
pi

f(pi |{yi,j }j∈Nb ) (12)

which compute the mean and mode of the posterior distribution

f(pi |{yi,j }j∈Nb ) ∝ f(pi)
∏

j ∈Nb

f(yi,j |di,j ) . (13)

If the prior distribution of pi is constant, then the MAP estimate
coincides with the ML estimate.

3) Cooperative Non-Bayesian localization: Consider a sce-
nario in which agents’ positions are modeled as unknown pa-
rameters and are estimated based on measurements with respect
to the anchors as well as to the neighboring agents. The ML
positions estimates for the agents are given by

{p̂i}i∈Na = arg max
{pi }

f({yi,j } i∈Na
j ∈Na ∪Nb

|{pi}i∈Na )

= arg max
{pi }

∏

i∈Na
j ∈Na ∪Nb

f(yi,j |di,j ) . (14)

If the distributions f(yi,j |di,j ) are Gaussian with mean di,j , then
the ML estimate leads to the LS estimate or to the WLS estimate
when the distributions have the same or different variances,
respectively.

4) Cooperative Bayesian localization: Consider a scenario
in which agents’ positions are modeled as RVs and are estimated
based on measurements with respect to the anchors as well as
to the neighboring agents. The MMSE and the MAP position
estimates for the agents are given respectively by (11) and (12)
using the posterior distribution8

f({pi}i∈Na |{yi,j } i∈Na
j ∈Na ∪Nb

) ∝
∏

i∈Na

f(pi)
∏

j∈Na ∪Nb

f(yi,j |di,j ) (15)

The centralized implementation of such estimates can be im-
practical due to the high dimensionality of all nodes positions,
and various distributed implementations have been developed
based on belief propagation (BP) techniques [49]–[51]. In par-
ticular, each agent i approximates the posterior distribution of pi
by exchanging messages with neighboring nodes. For instance,
if Y is a collection of measurements sets, agent i can update its
approximated marginal posterior distribution ̂f(pi |Y) by using
a new measurements set yi,j as

̂f(pi |yi,j ,Y) ∝ ̂f(pi |Y)
∫

f(yi,j |di,j ) ̂f(pj |Y)dpj (16)

where the second term, which involves an integral, is known
as the message from agent j [49]. BP techniques assume the
information contained in messages from different neighbors are
conditionally independent given the positions [51], and each
node iteratively updates the approximated marginal posterior
distribution in a process known as message passing.

In summary, a general range-based localization system can
be described by the following steps.

8In this expression, the prior knowledge about each agent’s position is con-
sidered independent of other agents’ positions.
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Algorithm 1: – SRI Estimation.
Offline Phase

1: Acquire training data T = {(y(k) , d(k))}−1k=−N through
a measurement campaign.

2: Estimate the generative model as ̂f(y, d).
3: Store the estimated generative model.

Online Phase
1: for k ≥ 0 do
2: Acquire a new measurements set y(k) at time tk .
3: Estimate the SRI of the measurements set y(k) from the

stored generative model as Ly(k ) (d) ∝ ̂f(y(k) , d).
4: end for

1) Acquisition of range-related measurements sets yi,j be-
tween different pairs of nodes.

2) Characterization of the SRI corresponding to each mea-
surements set, Lyi , j

(di,j ) ∝ f(yi,j |di,j ).
3) Localization of agents using one of the techniques de-

scribed above relying on SRIs obtained in step 2).
Despite the popularity of approaches based on DEs, inference
techniques for range-based localization rely on SRIs as shown
above. In the following, we propose a methodology to obtain
accurate SRI estimates from measurements, and then present
machine learning techniques to obtain such estimates.

C. Localization via Estimated SRI

The SRIs can be estimated directly from measurements sets
without the need for DEs using a methodology with two phases
(see Algorithm 1). In an offline phase, the data generative model
is learned by using a measurement campaign. In an online phase,
the SRI for each new measurements set is estimated based on
the generative model learned in the previous phase. Specifically,
during the offline phase, training data with measurements sets
and corresponding distances are used to learn their joint distribu-
tion f(y, d), i.e., generative model. During the online phase, the
SRI of a new measurements set y(k) for k > 0 can be obtained
directly from the generative model as Ly(k ) (d) ∝ f(y(k) , d) in
the absence of prior information on the distance (using a con-
stant reference prior [48]).9

Estimating the generative model from training data is chal-
lenging, especially for measurements sets with high dimen-
sionality. In fact, to obtain detailed knowledge of the proba-
bility distribution of a RV with moderately high dimensions
often requires a large number of instantiations [52]. For high-
dimensional measurement sets, e.g., waveform samples with
high delay resolution, an additional step for dimensionality re-
duction is needed. Such a dimensionality reduction step can
be described as a function ψ transforming a measurements set
y ∈ RM into features ψ(y) ∈ RM ′

where M ′ �M . Dimen-
sionality reduction does not necessarily involve distance estima-
tion, while distance estimation can be thought of as a specific
type of dimensionality reduction. Algorithm 2 describes SRI
estimation with dimensionality reduction.

9SRI can be analogously obtained in a scenario with available prior knowledge
about distance f (d) as Ly(k ) (d) ∝ f (y(k ) , d)/f (d).

Algorithm 2: – SRI Estimation with Dimensionality
Reduction.
Offline Phase

1: Acquire training data T = {(y(k) , d(k))}−1k=−N through
a measurement campaign.

2: Perform dimensionality reduction to the training data:

{(y(k) , d(k))}−1k=−N → {(ψ(y(k)), d(k))}−1k=−N .

3: Estimate the generative model as ̂f(ψ(y), d).
4: Store the estimated generative model.

Online Phase
1: for k ≥ 0 do
2: Acquire a new measurements set y(k) at time tk .
3: Perform dimensionality reduction to the new

measurements set:

y(k) → ψ(y(k)) .

4: Estimate the SRI using the reduced measurements set
ψ(y(k)) from the stored generative model as

Ly(k ) (d) ∝ ̂f(ψ(y(k)), d) .

5: end for

The proposed methodology can be used for any kind of range-
related measurements, while the specific dimensionality reduc-
tion and generative model are technology-dependent as the RVs
y corresponding to different technologies are not necessarily the
same. In the following section we describe several techniques
for both dimensionality reduction and generative model esti-
mation based on machine learning. This diversity of techniques,
each with different strengths and weaknesses, can offer the most
adequate alternative for the specific choice of technology.

III. SRI ESTIMATION VIA MACHINE LEARNING

This section presents machine learning techniques for dimen-
sionality reduction and generative model estimation. We first
introduce three dimensionality reduction techniques: physical
features (PFs), principal component analysis (PCA), and Lapla-
cian eigenmap (LEM). Then, we present two density estimation
techniques: the Fisher–Wald (FW) setting and kernel density
estimation (KDE).

A. Dimensionality Reduction

The purpose of dimensionality reduction is to find a map-
ping ψ : RM → RM ′

that transforms high-dimensional range-
related measurements in RM to low-dimensional features in
RM ′

with M ′ �M . In what follows, three dimensionality re-
duction techniques for SRI estimation are presented.

1) Physical Features: PFs account for the intrinsic proper-
ties of the wireless link such as its strength, delay, and waveform
shape. The PFs have been used to obtain DEs and to mitigate the
effects of harsh propagation conditions [34], [36], [37], [39]–
[41]. In this paper, the PFs are used to form a low-dimensional
representation of range-related measurements. In addition to
RSS and TOA, other PFs are considered such as the maximum
amplitude (MA) νMA, rise time (RT) νRT, mean excess delay
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(MED) νMED, delay spread (DS) νDS, and kurtosis νkurtosis. These
PFs are evaluated as follows

νMA = max
t
{|v(t)|} (17a)

νRT = arg min
t
{|v(t)| ≥ β2νMA} − arg min

t
{|v(t)| ≥ β1σn }

(17b)

νMED =
∫ +∞

−∞
t
|v(t)|2
νRSS

dt (17c)

νDS =
∫ +∞

−∞
(t − νMED)2 |v(t)|2

νRSS
dt (17d)

νkurtosis =
1

σ4
|v |T

∫

T

[ |v(t)| − μ|v | ]4dt (17e)

where v(t) is the received waveform at time t, σn is the standard
deviation of the thermal noise, the values ofβ1 andβ2 are chosen
empirically,10 and

μ|v | =
1
T

∫

T

|v(t)| dt (18a)

σ2
|v | =

1
T

∫

T

[ |v(t)| − μ|v | ]2dt . (18b)

The main advantages of PFs are as follows: i) they have a
simple and intuitive meaning; ii) they do not require a training
phase; and iii) they can often be obtained efficiently since many
commercial devices are designed to compute some of them.
However, PFs are not able to encapsulate all the localization
information provided by rich measurement sets, e.g., waveform
samples with high delay resolution.

2) Principal Component Analysis: PCA is a prevalent tech-
nique for dimensionality reduction [53]. PCA projects the data
into a lower-dimensional linear subspace. Let Σ be the M ×M
empirical covariance matrix of measurements sets {y(k)}−1k=−N
obtained during the offline phase and e1 ,e2 , . . . ,eM ′ be the
M ′ eigenvectors of Σ corresponding to the largest eigenvalues.
A new measurements set y = [y1 , y2 , . . . , yM ]T ∈ RM can be
projected onto the linear subspace generated by such eigenvec-
tors to obtain its low dimensional representation, also known as
principal components, that is

ψ(y) =
[

yTe1 ,y
Te2 , . . . ,y

TeM ′
]T
. (19)

The main advantages of PCA are as follows: i) it is the linear
transformation that results in the lowest MSE; ii) it is easy to
implement and only requires the choice of the number of prin-
cipal components, which can be guided by the relative size of
the eigenvalues, see e.g., [53, Chapter 6]; and iii) it can be used
in the online phase by directly employing the eigenvectors of
the empirical covariance. However, PCA is not able to encap-
sulate the localization information provided by measurement
sets with strong nonlinear relationships since PCA projects the
measurements into a lower-dimensional linear subspace.

3) Laplacian Eigenmap: LEM provides a low-dimensional
representation by approximating the support of the measure-
ments set with a graph embedded in a low dimensional nonlinear
space. In particular, it represents measurements sets using the

10In the numerical results shown in Section IV, β1 = 6 and β2 = 0.6.

eigenvectors of the Laplacian of a graph [54] obtained from the
measurements sets. The graph has vertices corresponding to the
measurements sets {y(k)}−1k=−N and edges corresponding to pairs
of similar measurements sets as follows. The ε-neighborhoods
graph has an edge connecting each pair of measurements sets
(y(k) , y(l)) with ‖y(k) − y(l)‖ ≤ ε [54], while the K-nearest
neighborhoods graph has an edge connecting each pair of mea-
surements (y(k) , y(l)) when both y(k) is among the K-nearest
neighbors of y(l) and y(l) is among the K-nearest neighbors of
y(k) [54].

Let W be a weighted adjacency matrix of the so formed
graph; each component Wk,l of matrix W quantifies the simi-
larity between the pair of measurements y(k) and y(l) with

Wk,l =

{

e−
‖y(k ) −y( l ) ‖

t if y(k) and y(l) are connected
0 otherwise

(20)

where t ∈ R is a parameter. Then, the unnormalized Laplacian
matrix is L = D −W , where D is the diagonal matrix with en-
tries Dk,l =

∑N
l=1 Wk,l . Let ĕ1 , ĕ2 , . . . , ĕM ′ be the M ′ eigen-

vectors corresponding to the smallest non-zero eigenvalues of
the generalized eigenvalue problem

Lĕ = λ̆Dĕ (21)

then a low dimensional representation of a measurement set
y(�) ∈ {y(k)}−1k=−N is obtained as the �th components of such
eigenvectors, that is

ψ(y(�)) =
[

ĕ1 [�], ĕ2 [�], . . . , ĕM ′ [�]
]T
. (22)

The main advantage of LEM is that it can efficiently reduce
the dimensionality of measurements sets with strong nonlinear
relationships. However, LEM requires the choice of several pa-
rameters such as t,K, andM ′, and its usage in the online phase
requires an out-of-sample extension as described in [55].

B. Generative Model Estimation

In this section, techniques are provided to estimate the gen-
erative model, i.e., the joint distribution of measurements and
distances, which can be cast as density estimation.11 First a
measurement preprocessing technique called “data sphering” is
described, and then efficient techniques for density estimation
based on the FW setting and KDE are presented. For notational
convenience, in the following x = [ψ(y)T, d]T, so that the goal
is to estimate the generative model f(x) = f(ψ(y), d).

Before performing the density estimation process, it is useful
to preprocess the data to make the scales of different variables
compatible [52]. We use the linear transformation called data
sphering that maps the original data into a set with zero mean and
identity covariance matrix. Specifically, if {x(k)}−1k=−N is the set
of original data, where x(k) = [ψ(y(k))T, d(k) ]T, the processed
data are

z(k) = Λ−
1
2 AT(x(k) − x̄), for k = −N,−N + 1, . . . ,−1

(23)

11Note that, when some measurements are discrete, as those in Section II-A,
the corresponding joint f (y, d) is a general Radon–Nikodym derivative. The
approach presented in this section is still valid in those situations with small
modifications such as estimating separately the cases corresponding to each
discrete value.
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where x̄ is the empirical mean of the original data, and AΛAT

is the spectral decomposition of the empirical covariance of the
original data, i.e., Λ is a diagonal matrix with diagonal elements
equal to the eigenvalues of the empirical covariance, and the
columns of A are made of the eigenvectors of the empirical
covariance. Then, the estimate of the density of the original data
can be obtained from that of fz(z) as

̂fx(x) = ̂fz(Λ−
1
2 AT(x − x̄)) |det(Λ−

1
2 AT)| . (24)

1) Fisher–Wald Setting: With this approach, the problem of
density estimation is cast as an empirical risk minimization
[56]. The risk of estimating the distribution f(z) by another
distribution ˜f(z) is measured by

R( ˜f) = −
∫

RM ′+ 1
f(z) log ˜f(z) dz .

The minimum of such a risk is attained by distributions that
differ from f(z) only in a set of measure zero. Therefore, an
estimate of f(z) can be obtained from a measurement campaign
as

̂f ∈ arg min
˜f ∈F

Remp( ˜f) (25)

whereRemp( ˜f) = − 1
N

∑−1
k=−N log ˜f(z(k)) is the empirical risk

of the density ˜f for the N random instantiations {z(k)}−1k=−N ,
and F is a chosen family of distributions.

In this paper, we propose F to be the family formed by
mixtures of m Gaussian distributions with parameters ξ =
[α1 ,μ1 ,Σ1 , α2 ,μ2 ,Σ2 , . . . , αm ,μm ,Σm ]. Each member of
this family is given by

˜f(z; ξ) =
m

∑

i=1

αiϕ(z;μi ,Σi) (26)

where α1 , α2 , . . . , αm ∈ R+ , and
∑m

i=1 αi = 1.
From empirical risk minimization, the density function is esti-

mated using an ML estimator whose goal is to find the parameter
ξ that solves (25). An approximation for the ML solution can be
found via the expectation maximization (EM) algorithm [57],
as follows:

� Let ξ[0] be an initial solution.
� For each j = 1, 2, . . . ,m, iterate

α
[�+1]
j =

α
[�]
j

N

−1
∑

k=−N

ϕ(z(k) ;μ[�]
j ,Σ

[�]
j )

˜f(z(k) ; ξ[�])

μ
[�+1]
j =

α
[�]
j

Nα
[�+1]
j

−1
∑

k=−N
z(k) ϕ(z(k) ;μ[�]

j ,Σ
[�]
j )

˜f(z(k) ; ξ[�])

Σ[�+1]
j =

α
[�]
j

Nα
[�+1]
j

−1
∑

k=−N

z(k)(z(k))Tϕ(z(k) ;μ[�]
j ,Σ

[�]
j )

˜f(z(k) ; ξ[�])

− μ
[�+1]
j (μ[�+1]

j )T

in increasing � until they convergence.
Each iteration of this algorithm reduces the empirical risk, i.e.,

increases the likelihood, while its performance highly depends
on the initial solution [57]. In this paper, the initial solution ξ[0]

is found by first clustering the training data and then performing
ML estimation for each cluster. Specifically,

� Cluster the training data {z(k)}−1k=−N into m clusters, for
instance, by using the k-means algorithm [58].

� For each cluster j = 1, 2, . . . ,m, α[0]
j is the fraction of

training data assigned to this cluster, and μ
[0]
j and Σ[0]

j

are the empirical mean and covariance of the jth cluster,
respectively.

The main advantages of density estimation in the FW setting
described above are as follows: i) it can obtain a parsimonious
parametric generative model characterized byαj , μj , andΣj for
j = 1, 2, . . . ,m; and ii) it only requires the choice of the number
of components m in the mixture. However, generative models
with a fixed number of parameters may lead to inaccuracies
when the joint distribution of measurements sets and distances
is highly complex.

2) Kernel Density Estimation: With this approach, the gen-
erative model is estimated using a sum of kernels centered at
the {z(k)}−1k=−N . Specifically, f(z) is approximated as

̂f(z) =
1
N

−1
∑

k=−N
K(z − z(k))

where K(·) is a positive kernel function. This paper uses the
Gaussian kernel

K(z − z(k)) = ϕ(z;z(k) ,H)

where H is a positive definite matrix called bandwidth
matrix. Consider bandwidth matrices of the form H =
diag([h1 , h2 , . . . , hM ′+1]), where the values of hi can be cal-
culated according to the normal reference rule as [59]

hi =
(

4
N(M ′ + 3)

) 1
M ′+ 5

σi (27)

where M ′ + 1 is the dimension of z(k) and σ2
i is the empirical

variance of the ith components of the training data {z(k)}−1k=−N .
For a Gaussian kernel, the approximating density is a mixture
of Gaussians and the number of mixture components is equal to
the number of elements N in the training data.

The main advantages of the KDE described above are as
follows: i) it does not require an optimization process and the
approximating density is obtained directly from the training
data once a bandwidth matrix is chosen; and ii) it provides
non-parametric estimates that can approximate highly complex
distributions. However, the KDE results in a complexity in-
crease since the approximating density has a large number of
components, and its accuracy depends on the suitability of the
bandwidth chosen.

IV. CASE STUDY

The methodology presented for SRI-based localization is
technology-agnostic since it is applicable to any technology
capable of providing range-related measurements. The specific
algorithm best suited for the dimensionality reduction and the
generative model estimation steps are technology-dependent
since they are contingent on the characteristics of the mea-
surements. This section presents a case study in which
ultra-wideband (UWB) signals are employed and shows the
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performance of SRI-based localization relative to conventional
techniques.

A. UWB Measurements

UWB technology offers the potential of high accuracy local-
ization due to its ability to resolve multipath propagation and
penetrate obstacles [60]–[66]. Commercial UWB impulse ra-
dios can obtain round-trip-time (RTT) measurements together
with samples of the received waveform signal.12 Each measure-
ments set is given by

y =
[

τ, νMA, v̆[1], v̆[2], . . . , v̆[M − 2]
]T ∈ RM

where τ and νMA are the RTT and MA of the received waveform,
respectively, and v̆[i] satisfies 0 ≤ v̆[i] = |v(ti)|/νMA ≤ 1 with
|v(ti)| denoting the absolute value of the received waveform
at each sampling time ti . Note that the use of UWB technol-
ogy can result in a large number of waveform samples and
the dimensionality of y can be on the order of thousands.
Therefore, the usage of such measured waveforms requires
a step of dimensionality reduction as described in previous
sections.13

B. Network Experimentation

An extensive measurement campaign using Federal Com-
munications Commission (FCC)-compliant UWB impulse ra-
dios was conducted in a typical office environment at the Mas-
sachusetts Institute of Technology (MIT) as described in [37].
In this network experimentation, 112 points in the monitored
area were chosen, and 1024 pairs of nodes’ position were used
to collect measurements sets. For each pair, three elements were
recorded: 1) a set of samples v(ti), i = 1, 2, . . . ,M − 2 from the
received waveform, where M = 3503 and ti+1 − ti = 41.3 ps
for all i; 2) the delay estimate τ obtained from RTT measure-
ments; and 3) the distance d between the two nodes. In addition,
a label indicating LOS or NLOS condition was also recorded
for each pair of nodes’ positions; such labels were not used by
the algorithms, they only enabled the performance results to be
assessed in terms of LOS vs NLOS conditions. This campaign
produced a database D = {(y(k) , d(k))}−1k=−Nd

with Nd = 1024.

C. SRI Estimation

Algorithm 3 describes the specific approaches for SRI-based
localization used in the case study.14 The dimensionality reduc-
tion is achieved by the techniques described in Section III-A.
Since the high dimensionality is due to the large number of
waveform samples, dimensionality reduction is performed over
the normalized samples v̆[i] for i = 1, 2, . . .M − 2 while the
measured delay and MA are left unmodified, that is

ψ(y) =
[

τ, νMA,ν[1],ν[2], . . . ,ν[M ′ − 2]
]T ∈ RM ′

12Note that RTT measurements enable the estimation of distances among
asynchronized devices without a common time reference [38].

13In this section M = 3503 and we use M ′ = 7 for all methods to ensure
fair comparison since 7 PFs are considered, which is also the number of PFs
used in previous works [37], [40].

14The numerical results are obtained with t = 0.8 and m = 5 in equations
(20) and (26).

Algorithm 3: SRI Estimation via Network Experimentation.
Offline Phase

1: Acquire training data T =
{

(y(k) , d(k))
}−1
k=−N from a

network experimentation.
2: Perform dimensionality reduction of the training data

for k = −N,−N + 1, . . . ,−1
{

(y(k) , d(k))
}→ {

([τ (k) , νMA,ν
(k) ], d(k))

}

based on one of the following techniques described in
Section III-A.

i) PF: Form the vector ν(k) using RSS, RT, MED,
DS, and kurtosis obtained from v̆(k) via (17).

ii) PCA: Form the vector ν(k) using the M ′ − 2
principal components of v̆(k) corresponding to the
empirical covariance matrix of samples {v̆(l)}−1l=−N
via (19).

iii) LEM: Form the vector ν(k) using the M ′ − 2
eigenvectors with smallest non-zero eigenvalues of
the generalized eigenvalue problem (21) for the
graph with vertices {v̆(l)}−1l=−N via (22).

3: Preprocess the data through data sphering in (23).
4: Obtain the estimated generative model based on one of

the following techniques.
i) FW setting: Obtain initial solution ξ[0] using
k-means algorithm with m clusters; and then obtain
estimate for ξ using EM algorithm.

ii) KDE: Find the generative model estimation using
H calculated according to the normal reference
rule in (27).

5: Obtain the estimated generative model as
̂f(ψ(y), d) = ̂fx(x) using ̂fx(·) from (24).

6: Store the estimated generative model.
Online Phase

1: for k ≥ 0 do
2: Acquire a new set of normalized measurements at time
tk y(k) =

[

τ (k) , ν
(k)
MA, (v̆

(k))T
]T

.
3: Perform dimensionality reduction to the new

measurements set:

y(k) ∈ RM+1 → [

τ (k) , ν
(k)
MA, (ν

(k))T]T ∈ RM ′+1 .

4: Estimate the SRI of the measurements set
[

τ (k) , ν
(k)
MA, (ν

(k))T
]T

from the stored generative model
as

Ly(k ) (d) ∝ ̂f(τ (k) , ν
(k)
MA,ν

(k) , d) .

5: end for

where ν =
[

ν[1],ν[2], . . . ,ν[M ′ − 2]
]T

is a low dimensional

representation of v̆ =
[

v̆[1], v̆[2], . . . , v̆[M − 2]
]T

.
The vector ν is the RSS, RT, MED, DS, and kurtosis of v̆

for dimensionality reduction based on PFs; the M ′ − 2 prin-
cipal components of v̆ for dimensionality reduction based on
PCA; and the components corresponding to v̆ of the first
M ′ − 2 eigenvectors of the generalized eigenvalue problem
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TABLE I
COMPARISON OF DIFFERENT TECHNIQUES TO PROCESS

RANGE-RELATED MEASUREMENTS

for dimensionality reduction based on LEM.15 The generative
model estimation is achieved by the two techniques described in
Section III-B. Specifically, the joint density f(ψ(y), d) is esti-
mated using a mixture of m Gaussians for the FW setting, and
using a bandwidth matrix obtained from the normal reference
rule for KDE.

D. Localization Performance Metrics

The performance of the proposed techniques is assessed via a
semi-experimental approach using waveforms’ measurements,
collected at different receiver positions, as inputs to Monte Carlo
simulation. In each Monte Carlo instantiation, the following
steps are performed.

� Select a training set T randomly from the database D
obtained by network experimentation, with |T | = N =
Nd −Nb where Nd = |D|. Leave the remaining data sets
D \ T = {(y(kj ) , d(kj ))}Nb

j=1 for testing.16

� Emulate a network with an agent at the origin and Nb
anchors using d(kj )’s from D \ T, where the jth anchor is
at known position

pj = [d(kj ) sin(θj ), d(kj ) cos(θj )]T . (28)

� Infer the agent position for different localization tech-
niques listed in Table I using y(kj )’s fromD \ T, and record
the corresponding localization errors.17

The LS, WLS, support vector machine (SVM)-based, and Gaus-
sian process regression (GPR)-based techniques use DEs ob-
tained from the range-related measurements. Specifically, LS
and WLS techniques use DEs obtained directly from RTTs (PFs
are used in WLS to weight the DEs) [39], while SVM-based and
GPR-based techniques use the DEs obtained from RTTs after
subtracting a bias (PFs are used to estimate the RTTs bias) [37],
[40]. Instead of DEs, SRI-based techniques use SRI estimates

15For LEM, we choose the K -nearest neighbors graph with K = N and the
online dimensionality reduction stage is performed by using its out-of-sample
extension based on kernel eigenfunctions as described in [55].

16This methodology corresponds to leave-p-out cross-validation [67] with
p = Nb . The techniques for NLOS mitigation presented in [37] and [40] are
also trained with the same data for a fair comparison.

17Bayesian localization is implemented by using MAP estimator and constant
priors, where the maximum is obtained by exhaustive search over a regular grid
with 0.12 m spacing in the region [−10, 10] × [−10, 10] m2 .

TABLE II
PERFORMANCE OF DIFFERENT TECHNIQUES TO PROCESS

RANGE-RELATED MEASUREMENTS

Fig. 4. Complementary LEO as a function of target localization error for
different localization techniques.

obtained directly from range-related measurements as described
in Algorithm 3.

Localization error and localization error outage (LEO) are
considered as metrics to provide insights into the behavior of
different localization techniques. The localization error is de-
fined as the Euclidean distance between the estimated position
p̂ and the actual position p, namely e (p) = ||p̂ − p || . The LEO
is given in terms of the outage probability based on the local-
ization error, as

Po(eth) = P
{

e (p) > eth
}

= E
{

1(e th,+∞) (|| p̂ − p ||)}

where eth is the target (i.e., maximum allowable) localization
error, and 1A (x) = 1 when x ∈ A and 0 otherwise. Here the
statistical expectation E{·} is over the ensemble of possible an-
chors positions and channel realizations. In addition, consider
the RMS and median localization errors, which are respectively
given by

erms =
√

E{|| p̂ − p ||2 }
emed = P −1o (0.5) .
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Fig. 5. LEO as a function of NLOS occurrence probability for different localization techniques.

E. Localization Performance Results

In the following we show the performance of different local-
ization techniques listed in Table I and its relationship with the
measurement sets. Consider two scenarios: A) where Nb = 3
and each θj is uniformly distributed over [0, 2π) in (28); and B)
where Nb = 5 and each θj = j2π/5 in (28).

Table II shows the performance of the proposed SRI-based
localization techniques in comparison with conventional tech-
niques in terms of accuracy and training complexity. The accu-
racy of the LS estimator for the subset of cases where all the
measurements are obtained in LOS (LS+LOS) is also shown
as a benchmark for techniques that deal with harsh propaga-
tion conditions. Table II shows the accuracy for the localization
techniques listed in Table I for scenario A) in terms of RMS
localization error, median localization error, and LEO. It can
be observed that SRI-based techniques achieve higher accuracy
than conventional techniques. In particular, techniques based on
SRI estimation can reduce the localization error of about 50%
with respect to LS-based techniques (LS, WLS) and of about
30% with respect to regression-based techniques (SVM, GPR).
Table II also shows the average processing time of the training
stage, Ttr for the localization techniques listed in Table I. It can
be observed that SRI techniques using simple dimensionality
reduction together with parsimonious generative models (SRI
Type I and SRI Type II) offer the best trade-off between accu-
racy and complexity in this case study. Hence, in the following
the focus will be on these two SRI methods.

Fig. 4 shows the complementary LEO in scenario A) as a
function of eth. It can be observed that the SRI-based tech-
niques achieve higher accuracy compared to conventional tech-
niques and approach that of LS+LOS. In particular, the curves
corresponding to SVM, GPR, and SRI Type I show a direct
comparison between conventional approaches based on regres-
sion and the proposed approach based on SRI using the same
waveform features. It can also be observed from the curve cor-
responding to SRI Type II that further improvement can be
obtained by using more sophisticated dimensionality reduction
techniques such as PCA.

Fig. 6. Complementary LEO as a function of target localization error for
different localization techniques.

Fig. 5 shows LEO in scenario B) as a function of NLOS
probability pNLOS for eth = 2 m and eth = 1 m. It can be ob-
served that SRI-based localization techniques can outperform
conventional techniques regardless of the occurrence of NLOS
situations.

Finally, the effects of different measurements types on
localization accuracy are considered. This is of practical
relevance since cost-effective devices may provide waveform
features instead of waveform samples. Fig. 6 shows the
complementary LEO as a function of eth for LS localization
technique in comparison with SRI-based techniques that use
RTT measurements only (SRI+RTT), RTT and RSS mea-
surements (SRI+RTT+RSS), or RTT and waveform samples
(WS) measurements (SRI+RTT+WS). As expected, the use of
richer measurements sets results in higher accuracy. This figure
also shows that the addition of RSS or waveform samples
to RTT measurements in SRI-based localization increases its
localization accuracy of about 20% or 40%, respectively.
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V. FINAL REMARK

The paper introduces the new paradigm of soft range in-
formation (SRI)-based localization. SRI enables soft-decision
localization by capturing the odds of all possible distances in-
stead of a single most likely distance as in conventional tech-
niques based on distance estimates. To obtain the SRI, core of
the proposed methodology, algorithms are developed based on
machine learning. The performance of SRI-based localization is
evaluated using measurements obtained via network experimen-
tation in wireless environments. The results reveal that the pro-
posed method outperforms conventional localization techniques
in harsh-propagation environments. This work shows that SRI
encompasses richer information than conventional approaches,
opening a way to a new level of location-awareness.

APPENDIX

A. Derivations for DE and SRI in Section II-A

Consider measurements y = [r, δ]T where r and δ are defined
as in (1) and (2), respectively. The SRI of y is

Ly(d) ∝ f(y|d) = P
{

δ = δ|d}f(r|δ, d).
Let s be the RV identifying the propagation scenario, i.e., s =
LOS or s = NLOS; since the detector output is independent of
the distance, we have

Ly(d) ∝ f(r, s = LOS|δ, d) + f(r, s = NLOS|δ, d)
= P

{

s = LOS|δ, d}f(r|s = LOS, δ, d)

+ P
{

s = NLOS|δ, d}f(r|s = NLOS, δ, d).

This gives (4) as the distance measurement r is independent of
the NLOS detector δ given the LOS/NLOS condition s and the
distance, and the detector errors do not depend on the distance.

The MMSE distance estimator is obtained by using a
Bayesian formulation, which models the distance as a RV, and
by computing the posterior distribution f(d|y) [68]. Such pos-
terior is proportional to the likelihood f(y|d) for a constant
reference prior on the distance. Hence f(d|y) equals the right
hand side of (4) as it integrates to one with respect to d, which
leads to the expression for the MMSE distance estimate in (5). In
addition, its MSE is the expectation of V {d|r, δ}, which becomes
for εLOS = εNLOS = ε
{

(1 − ε) [

((1 − ε) b)2 + σ2
]

+ ε
[

(ε b)2 + σ2
]

for δ = 0

ε
[

((1 − ε) b)2 + σ2
]

+ (1 − ε) [

(ε b)2 + σ2
]

for δ = 1

using the expression for the variance of a mixture [69]. Then,
(6) is obtained after some algebra.

B. Proof of Proposition 1

The FIM for a network with one agent and Nb anchors is

J =
∑

j∈Nb

E

{

∂ log f(yj |p)
∂p

(

∂ log f(yj |p)
∂p

)T
}

.

For j ∈ Nb ,

∂ log f(yj |p)
∂p

=
∂ log f(yj |p)

∂dj

∂dj
∂p

and

∂ log f(yj |p)
∂dj

=
∂ log f(yj |dj )

∂dj

∂dj
∂p

=
1
dj

(p − pj ) .

Therefore,

J =
∑

j∈Nb

λj
d2
j

(p − pj )(p − pj )
T

where, for j ∈ Nb ,

λj = E
{(∂ log f(yj |dj )

∂dj

)2}

. (29)

Finally, from (4) and after some algebra, for each measurement
set y = [r, δ]T related to distance d we obtain

∂ log f(y|d)
∂d

=
1
σ2

{

r − d − χ0 for δ = 0
r − d − χ1 for δ = 1

with χ0 and χ1 given by (8) and (9), respectively. Hence, the
result is obtained by using (29) and the fact that f(y|d) = P {δ =
δ}f(r|δ, d) as the detector output is independent of the distance.
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