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Abstract—Inferring a sequence of variables from observations
is prevalent in a multitude of applications. Traditional techniques
such as Kalman filters (KFs) and particle filters (PFs) are widely
used for such inference problems. However, these techniques fail
to provide satisfactory performance in many important nonlinear
or non-Gaussian scenarios. In addition, there is a lack of a uni-
fied methodology for the design and analysis of different filtering
techniques. To address these problems, in this paper, we propose a
new filteringmethodology called belief condensation (BC) filtering.
First, we establish a general framework for filtering techniques
and propose an optimality criterion that leads to BC filtering. We
then propose efficient BC algorithms that can best represent the
complex distributions arising in the filtering process. The perfor-
mance of the proposed techniques is evaluated for two represen-
tative nonlinear/non-Gaussian problems, showing that the BC fil-
tering can provide accuracy approaching the theoretical bounds
and outperform existing techniques in terms of the accuracy versus
complexity tradeoff.

Index Terms— Nonlinear Filters, Filtering Algorithms, Infer-
ence Algorithms, Navigation.

I. INTRODUCTION

I NFERRING a sequence of variables from a sequence of ob-
servations (e.g., measurements of a time-evolving variable)

is a prevalent task in many applications. Examples include nav-
igation of mobile nodes [1]–[3], channel estimation and data
detection [4], [5], speech recognition [6], [7], time series anal-
ysis in econometrics [8], [9], and power grid state estimation
[10], [11]. Such inference tasks can be often described by a
hidden Markov model (HMM), where the variables of interest
are called hidden states and the observations are called measure-
ments.1 Filtering in HMMs is an inference process that aims to
determine posterior distributions of hidden states given present
and past measurements. The Markov assumption in HMMs to-
gether with Bayes’ rule enable recursive filtering implementa-
tion, where the posterior distribution of the current state can be
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1HMMs have been widely used to model complex real-world problems with
computational tractability [12]. For example, in the problem of navigation, the
hidden states and observations often correspond to time-varying positions of
agents and measurements related to the positions, respectively.

obtained from that of previous state using new measurements
and the system models. These models characterize the evolu-
tion of states (dynamic model) and the relationship between the
observations and the states (measurement model).
Inference using nonlinear and/or non-Gaussian system

models is extremely important since the behavior of many
practical scenarios cannot be captured by linear-Gaussian
models [13], [14]. For example, nonlinear and non-Gaussian
system models arise in navigation, which has attracted sub-
stantial research interest in recent years [15]–[21]. Navigation
systems aim to obtain the positional states of agents from inter-
and intra-node measurements. The relationship between these
measurements and positional states is nonlinear. Moreover, the
measurement errors cannot be accurately modeled by Gaussian
distributions in many environments such as urban and indoors
due to harsh propagation conditions.
Optimal algorithms for sequential Bayesian inference are

only known for restricted cases: 1) when system models are
linear and Gaussian [22], 2) when the number of states is finite
[7], and 3) when nonlinear models belong to certain subclasses
[23]. Corresponding algorithms for the three cases are the
Kalman filter (KF), grid-based methods, and Beneš-Daum
filters [2]. In general, the recursion given by Bayes’ rule re-
quires to propagate the complete posterior distribution, which
in many cases cannot be described using a finite number of pa-
rameters. Therefore, for general continuous-state HMMs2 with
nonlinear/non-Gaussian models, practical filtering techniques
must use approximations to track the posterior distributions
[13], [24].
Conventional filtering techniques can be grouped into local

and global methods [25], [26]. The former approximate poste-
rior distributions in the neighborhood of a reference point, e.g.,
extended KF (EKF) [2], unscented KF (UKF) [13], cubature KF
(CKF) [27], and quadrature KF (QKF) [28]; while the latter ap-
proximate posterior distributions over the region containing sig-
nificant probability mass, e.g., particle filters (PFs),3 Gaussian
sum filters, and Rao-Blackwellized PFs [33]–[36]. Kalman-like
filters have been widely applied for many important problems
and were the default option until the PFs were proposed in the
nineties [29]. PFs can achieve high accuracies with complexi-
ties comparable to EKF for low dimensional problems, but often
require prohibitive complexities for high dimensional problems
[14]. Other techniques such as Gaussian-sum filters and Rao-
Blackwellized PFs have been developed to improve the accu-
racy versus complexity trade-off. Gaussian-sum filters [25], [37]
use a bank of Kalman filters operating in parallel and approx-
imate posterior distributions by mixtures of Gaussians. While

2HMMs with continuous state variables are referred to as state-space models
[12]. Note that the observations can be either continuous or discrete.
3PFs include sampling importance resampling (SIR) filter [29], auxiliary SIR

(ASIR) filter [30], adaptive PF (APF) [31], [32], and regularized PF (RPF) [33].
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Gaussian-sum filters can outperform EKFs, their main limita-
tion is that the number of components in the mixture increases
exponentially with time [28]. Rao-Blackwellized PFs [36], also
known as marginalized PFs [26], can obtain accuracies compa-
rable to PFs but with smaller complexity; they require the as-
sumption that the state variables can be partition into two con-
ditionally independent sets. Finally, techniques based on vari-
ational methods (VM) and expectation propagation (EP) have
been recently proposed to exploit the usage of exponential fam-
ilies for obtaining parsimonious approximations of complex dis-
tributions [26], [38].
The fundamental question related to sequential Bayesian

filtering is how to design filters that can achieve high ac-
curacy under computational complexity constraints in non-
linear/non-Gaussian scenarios. Existing techniques use dif-
ferent filtering approaches, lacking a systematic way to deal
with the complexity versus accuracy trade-off. Hence, there is
an essential need for a unifying methodology to guide the design
and analysis of accurate and efficient nonlinear/non-Gaussian
filters. Such a methodology will lead to new families of filtering
techniques that can be employed in a wide range of modern
applications.
In this paper we present a new methodology for nonlinear/

non-Gaussian filtering called belief condensation (BC) filtering
based on the idea of properly representing the complex distribu-
tions in the filtering process. Specifically, the main contributions
of the paper are as follows.
• We establish a general framework for filtering and formu-
late an optimality criterion leading to the methodology of
BC filtering (BCF).

• We propose algorithms for BC that best represent complex
distributions by mixtures of exponential families (contin-
uous BC) and by discrete distributions (discrete BC).

• We develop BCF techniques for nonlinear/non-Gaussian
problems and compare them with existing filtering tech-
niques under the proposed framework.

• We demonstrate the accuracy and complexity improve-
ments of the BCFs over existing techniques in two repre-
sentative nonlinear/non-Gaussian filtering problems.

The rest of the paper is organized as follows. Section II de-
scribes sequential Bayesian filtering in HMMs and presents a
general framework for filtering, which leads to the methodology
of BCF. We develop algorithms for continuous and discrete
BC in Section III, and discuss existing filtering techniques in
the proposed framework in Section IV. Section V describes the
problem of navigation in harsh environments as a case study,
and Section VI provides simulation results describing the per-
formance of the proposed BCFs. Finally, conclusions are drawn
in Section VII.
Notations: denotes the sequence of random vectors

(RVs) , where for ;
denotes the set of all probability distributions in for

, denotes a family of probability distributions, i.e.,
, and depending on the context, we refer to a probability

distribution either by its Radon-Nikodym derivative (RND)
with respect to Lebesgue measure (e.g., the probability density
function (PDF) for continuous RVs) or by its cumulative dis-
tribution function CDF; we denote RNDs by and CDFs

Fig. 1. Bayesian network representing a Hidden Markov Model.

by ; denotes the expectation of with
respect to ; we denote a function on parameterized by
as or simply if no confusion is possible; de-

notes the transpose of its argument; if we denote by
the fact that for ; denotes the
identity matrix; and, finally, denotes the indicator

function of the set .

II. FRAMEWORK FOR BELIEF CONDENSATION FILTERING

In this section, we briefly review Bayesian inference in
HMMs, and then present a general framework for filtering
techniques as well as the methodology of BCF.

A. Sequential Bayesian Filtering in HMMs

A HMM is formed by a bivariate sequence of RVs
, satisfying the following conditions: (i) is

a Markov chain, (ii) conditioned on is a sequence
of independent RVs, and (iii) for each , the conditional
distribution of depends only on [12] (see Fig. 1). The
goal is to infer the variables of interest called hidden-state
variables, from the observations called measurements.4

A direct consequence of the conditions in the HMM is that
the joint distribution of all RVs can be factorized for as

(1)

where . Hence, only two relationships are
needed to completely describe a HMM:
• Dynamic model—the relationship between the state vector
at time and that at time , i.e., ;

• Measurements model—the relationship between the mea-
surements at time and the state vector at time , i.e.,

.
The task of inferring from , i.e., the set of observations

up to time , is referred to as filtering. In a Bayesian frame-
work, this corresponds to determining the posterior distribution

. By using Bayes’ rule and marginalization, the pos-
terior distribution for can be written as

(2)

4In this paper we consider continuous-state HMM, where the state vector
takes values in and its probability distribution is absolutely continuous with
respect to the Lebesgue measure in .
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Fig. 2. Block diagrams representing Bayesian filtering and the optimal tractable architecture of BCF. (a) Block diagram representing the recursion for Bayesian
filtering. (b) block diagram representing a BCF.

Once this posterior distribution is determined, point estimates
can be obtained by taking the expectation or by obtaining the
mode, corresponding respectively to minimum mean squared
error (MMSE) or maximum a posteriori (MAP) estimators.
This paper focuses on recursive filtering techniques that

obtain the posterior distribution at time , i.e., ,
from the previous posterior at time , the new measurements
, and dynamic and measurements models. Most of existing

filtering techniques are recursive in this sense, for instance
Kalman-like filters, Gaussian-sum filters, and PFs.5

B. Framework for Sequential Bayesian Filtering

In this section we present a general framework for filtering
techniques based on the characterization of the filtering process
as a mapping that transforms probability distributions. Under
this framework each filtering technique can be viewed as a
mapping that aims to approximate the exact mapping provided
by (2). Then, we define a relationship of dominance (partial
order) between filtering techniques that enables the formula-
tion of an optimality criterion leading to the methodology of
BCF.
The recursion given by (2) can be viewed as a mapping

depicted in Fig. 2(a) that maps the posterior
distribution to , i.e.,

for .6 When the system models are
linear-Gaussian and is Gaussian, then
is also Gaussian. In such cases, can be obtained in a
closed form and the recursion given by can be easily im-
plemented, leading to the KF [22], [39]–[41]. However, in
general when either dynamic or measurements models are
nonlinear or are non-Gaussian, cannot be implemented due
to the lack of closed-form solutions for (2),7 and practical

5The prevalent choice in the PFs literature is to use importance densities
that enable recursive implementation, i.e., importance densities of the form

.
6Note that the arguments of this mapping include both the previous pos-

terior distribution and the current measurement. In this paper, we suppress the
measurements in the notation for convenience.
7In this case, to evaluate the posteriors for requires

all of the measurements and the evaluation of nested integrals of
order .

nonlinear/non-Gaussian filtering techniques must resort to
approximations.
Each recursive filtering technique can be viewed as a map-

ping that approximates the exact mapping under tractability
constraints. The implementation constraints require that inputs
and outputs of such mapping belong to tractable families of
distributions , i.e., . In the following we
establish a hierarchy of filtering techniques, i.e., mappings ,
according to the closeness of the corresponding to . This hi-
erarchy enables the comparison of different filtering techniques
and the formulation of an optimality criterion.
Given a discrepancy between probability distributions,8

one can define a partial ordering of mappings and the opti-
mality criterion based on this ordering as follows.
Definition 1: A -filter is said to -dominate a

-filter if
1) , , and
2) , .
Remark 1: Given a discrepancy measure, this definition pro-

vides a partial order for filtering techniques: a filter dominates
another filter if the outputs of are always closer to the out-
puts of the exact filter .
Definition 2: A -filter is called -optimal if it
-dominates any -filter with , and .
We next show that better filters can be obtained by using more

general family of distributions, which agrees with the intuition
that filters employing more general distributions to represent
posterior distributions result in better performances.
Proposition 1: A -optimal -filter -dominates a
-optimal -filter if and .
Proof: If and are -optimal - and

-filters, respectively. Then, -dominates because
for any we have that
since .

C. Optimal Filtering via Belief Condensation

In this section, we provide the process to construct -op-
timal filters. We first define the concept of BC that refers to the

8Examples of discrepancy functions include Kullback-Leibler divergence,
Kolmogorov-Smirnov distance, L2 distance, etc.
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representation of a general distribution by a closest one in a
tractable family , and then show that a filter is optimal if and
only if it is a BC-based filter.
Definition 3: The mapping is called a -

condensation if for all in the domain of

(3)

Definition 4: A -filter is aBCF for if it is formed
by concatenating with a , )-condensation , that is,

.
Proposition 2: A -filter is -optimal if and only if

it is a BCF for given by a -condensation.
Proof (Sufficiency): If is -optimal, then

-dominates a BCF given by a -condensation , i.e.,

Since , it follows

and hence the inequality becomes equality. Therefore, is a
BCF given by a -condensation.

Proof (Necessity): Suppose is a BCF for
given by a -condensation, and that is not -optimal.
Then, there exists a mapping with and

that is not -dominated by . This implies that there
exists a distribution with

which contradicts that is a BCF for given by a
-condensation.

Proposition 2 shows that the BCF methodology depicted in
Fig. 2(b) is the best approach to perform filtering in terms of
the above optimality criterion, where specific BCFs depend on
the choice of family and discrepancy. Given a family and a
discrepancy , one can further classify the -BC filters
depending on the algorithm used to perform the minimization
in (3).
Notice that finding a global minimum in (3) can be difficult

and hence the accuracy and complexity of BC filters is deter-
mined by that of the specific algorithm used to perform BC. In
the following section, we present efficient algorithms for BC
that use tractable families of distributions.

III. ALGORITHMS FOR BELIEF CONDENSATION

In this section, we describe suitable families of distributions
and then propose BC algorithms to represent a complex distri-
bution by a member of such families.

A. Choice of Probability Distributions

The family of distributions for filtering must be capable of
representing the true posterior distributions with high accuracy,

meanwhile amenable to implementation with reasonable com-
plexity. Both mixtures of exponential families and discrete dis-
tributions are appropriate choices. In particular, mixtures of ex-
ponential families can offer more efficient representations and
discrete distributions can offer simpler implementations.9 In the
following we describe algorithms to perform BC with mixtures
of exponential families (continuous BC) as well as with discrete
distributions (discrete BC).

B. Continuous Belief Condensation

In this section we consider families of distributions
formed by mixtures of distributions belonging to exponential
families . That is, each member of
has the form

for , where , , and are the
natural parameters, sufficient statistics, and log-partition func-
tion of [42]. We say that a PDF belongs to , if
there exists such that

where and .
For continuous BC, we measure the discrepancy between the

probability distributions and by using
the Kullback-Leibler (KL) divergence , that is

In the following, we give a theorem describing a recursive
process that condenses a continuous probability distribution

, satisfying the following regularity conditions,10 into a
mixture of exponential families.
(A1) The differential entropy of is finite
(A2) is finite for each
(A3) is finite, where is the -th

component of the sufficient statistic , for

(A4) The set is open
and non-empty.

Theorem 1 (Continuous BC): If a continuous probability dis-
tribution satisfies the regularity conditions (A1-A4), then
the sequence is monotonically decreasing,

where the sequence is recursively determined
by

(4)

9PFs use discrete distributions and can obtain better accuracies than Kalman-
like filters when the true posterior distributions are far from Gaussian.
10Notice that these regularity conditions are very mild conditions regarding

the tractability of and the suitability of the family of distributions . These
conditions are satisfied in well-posed filtering problems. For instance, they are
satisfied if has finite differential entropy, first moment and second moment,
and is a mixture of Gaussians.
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and satisfying

(5)

for any initial parameter

Moreover, if the sequence converges to the global min-
imum of in .

Proof: See Appendix A.
Remark 2: Notice that expectation maximization (EM) [43]

is a special case of the Continuous BC Theorem in which the
expectations are evaluated as arithmetic averages using a set of
samples. Moreover, EP [38] is also a special case of the Con-
tinuous BC Theorem in which the mixture has only one compo-
nent, i.e., .
In the case where the exponential families are Gaussian, the

regularity condition (A3) is equivalent to having first and
second absolute moments. In this case, in (5) can be ob-
tained in a closed form as shown in the following corollary.
Corollary 1: Let be the family formed by mixtures of
Gaussian distributions, where each component of the mixture

is determined by a mean and a variance matrix . If
is a continuous probability distribution satisfying the regularity
conditions (A1-A4), then the natural parameters in (5) of
Theorem 1 can be obtained explicitly, since consists of

and , with

(6)

(7)

Proof: In this case, and . Thus,
the result follows from the previous theorem since

Remark 3: The values for means and covariances in (6) and
(7) are obtained as averaged values of first and second mo-
ments of weighted by for each

. Therefore, in the case , they become just
the mean and covariance of , and in the general case they
are weighted averages, with more emphasis near the modes of

for each .

The recursions in the Continuous BC Theorem and its corol-
lary are also applicable when the distribution is known
only up to a multiplicative constant. This fact is useful in the
implementation of continuous-BC filters since the normaliza-
tion step in (see (2) and Fig. 2(a)) is not required.
Remark 4: The main complexity of continuous BC lies in

evaluating expectations of the form , where
is the distribution to condense, is a distribution in an expo-
nential family, and is an elementary function. The fact that
the expectations are taken with respect to a member of an ex-
ponential family can be exploited for efficient numerical com-
putation. For example, if is a Gaussian distribution, effi-
cient quadrature rules are known, where for state vectors of
dimension , only or point-wise evaluations are
needed to obtain cubature formulae of degree 3 or 5, respec-
tively [27], [44].

C. Discrete Belief Condensation

In this section we consider families of distributions
formed by discrete distributions with support

points. We say that a CDF belongs to , if
there exists

such that ,
where , , and

.11

For discrete BC, we measure the discrepancy between the
probability distribution and by the
Kolmogorov-Smirnov (KS) distance ,12 that is

In the following, we derive the lower bound of the KS
distance and show how to find that achieve the lower
bound for the one-dimensional case.
Proposition 3: Let be the CDF of a continuous RV

and be the family of discrete distributions with support
points. Then

Proof: See Appendix B.
Proposition 4: Let be the CDF of a continuous one-

dimensional RV and satisfy for
, then

where with for
.

11Notice that the PDF corresponding to is a sum of delta functions,
i.e., , where are known as sup-
port points and the corresponding probabilities are known as
weights.
12Note that the KL divergence cannot be defined since the distribution is

continuous whereas the support of the distributions is finite.
Instead, KS distance is suitable for measuring discrepancies between continuous
and discrete distributions and has been widely used, for instance, to determine
if a set of samples follow a specific distribution through the KS hypothesis test.
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TABLE I
REPRESENTATIVE FILTERING TECHNIQUES IN TERMS OF FAMILIES OF DISTRIBUTIONS AND FILTERING APPROACHES

Proof: Let be the intervals ,
for , and .

The sets , form a partition of and hence

Then the result follows by observing that for all
and

since is a continuous function of .
Remark 5: Notice that finding that achieves the lower

bound of for multidimensional cases is complicated. Sub-
optimal approaches such as random sampling can be used for
any dimension. Random sampling provides the distribution as

, where
are i.i.d. samples drawn from the target distribution . These
approaches are currently used by PFs to approximate complex
posterior distributions. Glivenko-Cantelli Theorems [45] show
that the accuracy of the approximations in terms of KS distance
increases with the number of samples at a suboptimal rate on
the order of .
In this section, we have presented algorithms for both con-

tinuous and discrete BC where we use mixtures of exponential
families with KL divergence and discrete distributions with KS
distance, respectively. These efficient algorithms yield cost-ef-
fective BCF techniques that are optimal in the sense described
in Section II.

IV. RELATIONSHIP TO EXISTING TECHNIQUES

As described in Section II, any recursive filtering technique
can be viewed as a mapping . To discuss existing
filtering techniques under the proposed framework, we list the

families of distributions and the approaches used by represen-
tative techniques in Table I.13

The framework presented in Section II advocates the usage
of filtering techniques formed by the concatenation of the
exact mapping with a BC , i.e., . Note that
BC is performed after the mapping . This implies that BCF
represents the complex posterior distribution by a tractable one
only in the final stage of each recursive step (see Fig. 2(b)),
thus minimizing the loss of information. Moreover, unlike most
existing techniques,14 the methodology of BCF allows the use
of different families for inputs and outputs, thus adapting the
accuracy versus complexity trade-off at each time step.15

The methodology of BCF can lead to different families of
filtering techniques depending on the discrepancy function and
family of distributions, as well as on the algorithm used to per-
form BC. Several existing filtering techniques can be cast as
special cases of BCF: PFs use discrete distributions and random
sampling; VM-based techniques use separable distributions and
left sided KL minimization; and EP-based techniques use ex-
ponential families and right sided KL minimization. PFs corre-
spond to BCF since they approximate the posterior distribution
after the mapping ,16 whereas VM- and EP-based techniques
correspond to BCF in the case that they approximate the poste-
rior distribution after the mapping .
Note that the essential component for BCF is an algorithm to

accurately represent complex distributions, referred to as BC. In
this paper we also develop new algorithms for continuous and

13Probability distributions satisfying .
14Certain PFs are an exception since they adapt the number of particles for

different time steps [46], [47].
15These more general approaches are desirable in cases where ,

but cannot be accurately approximated by a distribution in or, con-
versely, where can be accurately approximated with a distribution in
a simpler family than .
16Note that given by (16) is equivalent to the “empirical filtering

density” given by (4) in [30].
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discrete BC.17 The former minimize right sided KL divergence
using mixtures of exponential families generalizing EP, while
the latter minimize KS distance using discrete distributions out-
performing random sampling.
The discrepancy functions, families of distributions, and BC

algorithms described above are by no means exhaustive, and the
proposed methodology puts forward important research direc-
tions in two fronts. In the theoretical front, it is of interest to
understand the dependence of filtering performance on discrep-
ancy functions and families of distributions. In the algorithmic
front, it is of interest to develop additional BC algorithms with
guaranteed accuracy for general distributions.

V. CASE STUDY: NAVIGATION IN HARSH ENVIRONMENTS

In this section, we investigate the filtering problem for nav-
igation in harsh environments as a case study to evaluate the
performance of BCF. We consider a scenario in which an agent
node obtains range measurements with respect to several anchor
nodes as well as inertial measurements from an inertial measure-
ment unit (IMU). In the following, we describe the dynamic and
measurement models.

A. Dynamic Model

Let and denote the position and orientation of the agent
node at time .18 If is the state vector formed by
position, orientation, as well as several of their time derivatives
at time , the dynamic model can be written as

(8)

where is the state transition matrix and the error is com-
monly modeled as a zero-mean Gaussian random vector (i.e.,
discrete Wiener process) [50].

B. Measurements Models

The set of measurements obtained by an agent at each time
instant form the vector . The relationship between the po-
sitional state vector and the measurements can be described by
the likelihood . Here we focus on the case in which the
agent obtains range and IMU measurements in harsh environ-
ments. In the following we describe realistic models for these
measurements.
Range Measurements: A range measurement at time

between the agent at position and the anchor at position
can be written as

(9)

where is additive noise, and is the positive bias due to
non-line-of-sight (NLOS) and multipath propagation.
Note that the relationship between the range measurements

and the state vector is nonlinear. Moreover, the distribution
is generally non-Gaussian in harsh environments

due to the existence of NLOS and multipath [51], [52].

17Notice that BC can be performed simply by evaluating some characteristics
of , e.g., statistical moments and percentiles, as shown in Section III.
18The orientation can be represented by a rotation vector, if

and if [48], [49].

IMU Measurements: An IMU device makes two kinds of
measurements: the angular velocity about the body frame
and the force [53]. Angular velocity measured by gyroscopes
at time instant is given by

(10)

where is the true angular velocity, and is a
noise vector.
The angular velocity is related to the state vector by [49]

(11)

where is given by

in which is the skew-symmetric form of the rotation
vector

Hence, the relationship between and is nonlinear.19

Similarly, the force measured by accelerometers at time in-
stant is given by

(12)

where is the force vector written in the body frame
reference, and is a noise vector. The force vector in
the body frame is related to the state vector by

(13)

where are the acceleration and the gravity written in
the fixed frame reference. Moreover, is given
by the Rodrigues’ rotation formula [48] as20

Hence, the relationship between and is nonlinear.
More sophisticated models have been developed for range

measurements and IMU inertial measurements [53]. Such
models take also into account drifts and biases. In this paper we
use the compact models described above for simplicity, while
more advanced models can be analogously incorporated by
adding the corresponding variables to the state vector.

VI. PERFORMANCE EVALUATION

In this section, we show the performance of the proposed con-
tinuous BCFs for the navigation example described in Section V

19Notice that the measurement model for angular velocity in 2D scenarios is
linear.
20The matrix is the direction cosine matrix which transform the co-

ordinates of vectors with respect to the body frame to those with respect to the
fixed reference frame. Hence, it is a matrix formed from the rotation vector
that represents the rotation like a linear transformation.
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Algorithm 1: Continuous Belief Condensation Filter.

1: INITIALIZATION:

2: Set equal to the prior distribution of .

3: IMPLEMENTATION:

4: for do

5: (i) Choose a family of mixtures of exponential families
and an initial distribution

6: (ii) CONDENSATION: Repeat until convergence,21
for ,

where

(14)

7: (iii) Approximate as

8: end for

and that of discrete BCFs for a widely explored 1-D filtering
problem [29], [36].

A. Continuous BCF

In the following, we illustrate the performance of the pro-
posed continuous BCF in the navigation filtering problem
through simulations with measurements emulating sensors’
behavior in harsh propagation environments. We considered
a scenario in which one agent moves in the horizontal plane
and obtains both GPS and IMU measurements. In this ex-
ample, the state vector is eight dimensional and is given by

, where , ,
, , and are the position, velocity, acceleration,

orientation, and derivate of orientation at time , respectively.
The dynamic model is given by (8) with matrix

21The simulation results in this paper are obtained after 3 iterations.

Fig. 3. Comparison of EKF, PF, and proposed continuous BCF in one
instantiation.

where . The measurements model is given by
(9)–(13), where the first two components of the rotation vector
are zero for 2-D navigation in the horizontal plane.
We simulated range measurements from 4 GPS satellites in

NLOS conditions. The additive noise associatedwith thesemea-
surements is modeled as a zero mean Gaussian RV with stan-
dard deviation of 2 m, while the positive bias introduced by
the NLOS propagation is modeled as an exponential RV with
mean 6 m, 8 m, 10 m, and 14 m for each satellite. The errors
in the force and angular velocity measurements made by IMU
are modeled as zero mean Gaussian RVs with standard devia-
tions of 0.07 N and 0.02 rad/sec, respectively. The motion of the
agent was simulated in 100 positions as shown in Fig. 3 with a
mean and maximum velocity of 1.02 m/sec and 2.6 m/sec, re-
spectively; mean and maximum acceleration of 0.122
and 0.267 , respectively; and mean and maximum an-
gular velocity of 0.04 rad/sec and 0.077 rad/sec, respectively.
The positional state of the agent is estimated using the

proposed BCF with one Gaussian distribution (BCF1G) and
mixtures of three Gaussian distributions (BCF3G), as well as
commonly used techniques: EKF, UKF, SIR PF (Algorithm
4 in [33]), and APF (Section D.2 in [31]). Furthermore, we
evaluated the Cramer-Rao lower bound (CRLB) as a theoret-
ical benchmark [3], [54] and compared the root mean squared
error (RMSE) of the BCF with the bound. We then quanti-
fied the performance of the proposed BCF both in terms of
accuracy and complexity, comparing such performances to the
above representative existing nonlinear/non-Gaussian filtering
techniques.
Algorithm 1 summarizes the key steps needed for the imple-

mentation of continuous BC filters. We obtain the parameters
of the Gaussian mixtures using the recursions (4), (6), and (7).22

Note that in this example, the integrands in (4), (6), and (7) can
be easily evaluated because a function proportional to
in (14) can be obtained in a closed form at each time step since

22We use integration rules specific for Gaussian weights as in [27], [44].
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Fig. 4. Comparison of the CRLB and the RMSEs for EKF, PF, and proposed
continuous BCFs.

Fig. 5. Comparison of the CDFs for EKF, PF, and proposed continuous BCFs.

the dynamic model in (8) is linear and Gaussian, and the fami-
lies of distributions for BC are mixtures of Gaussians.23

The positions inferred by different filters are shown in Fig. 3
for one specific instantiation. Figure 4 shows theRMSEobtained
by the different filters for each time step based on Monte Carlo
simulation with 16,000 instantiations, as well as the CRLB.
We can observe that the proposed BCF can achieve remarkable
RMSE performance in comparison with representative existing
techniques and theCRLB. In addition, Fig. 5 shows the empirical
CDFs of the positional errors and the overall RMSE are given in
Table II.24 In these simulation results, we observe that BCF1G
outperforms other techniques that use Gaussian distributions25

and obtains accuracies comparable to PFs that use a considerable

23In this example, mixtures of Gaussian distributions are suitable due to the
conjugacy property of Gaussians with respect to the dynamic model. In other fil-
tering problems, different exponential families may be more suitable depending
on the system models.
24These results are obtained from the errors after 25 seconds of filtering.
25Notice that although BCF1G, EKF, and UKF all use Gaussian distributions,

BCF1G does not approximate the KF equations but performs .

TABLE II
ACCURACY AND COMPLEXITY COMPARISON OF CURRENT FILTERING

TECHNIQUES WITH CONTINUOUS BCF IN TERMS OF RMSE, PROCESSING
TIME, AND REQUIRED MEMORY

Fig. 6. Comparison of EKF, PF, and proposed discrete BCF in one instantia-
tion.

number of particles (30k particles for PF30k and 15k particles
for APF15k), whereas BCF3G obtains accuracies close to the
CRLB and comparable with PFs that use a large number of par-
ticles (60k particles for PF60k and 30k particles for APF30k).
Finally, the processing time and memory used by each fil-

tering technique are shown in Table II. One can observe that the
complexity, both in terms of processing time and memory, of
the proposed BCFs is several orders of magnitude smaller than
that of PFs with a similar level of accuracy.26

B. Discrete BCF

We next evaluate the performance of proposed discrete BCF
for a widely explored 1-D filtering problem [29], [36]. Specif-
ically, the dynamic and measurement models for this example
are given by

26To achieve the same level of accuracy as continuous BCF, PFs need to use a
large number of particles and hence require a higher computational complexity
even though the computation of each particle is simple.



4412 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 18, SEPTEMBER 15, 2013

Algorithm 2: Discrete Belief Condensation Filter.

1: INITIALIZATION:

2: Set equal to a prior distribution of .

3: IMPLEMENTATION:

4: for do

5: (i) Choose a number of discrete points

6: (ii) CONDENSATION: For , obtain
as the value satisfying

(15)

where

(16)

7: (iii) Approximate as

8: end for

where follows a Gaussian distribution with mean 0 and vari-
ance , and follows a Gaussian distribution with
mean 0 and variance . Notice that this filtering example
is highly nonlinear and the measurements are not affected by
changes in the sign of the state.27

We estimated the sequence of states using the
proposed discrete BCF, as well as UKF and SIR PF. We utilized
different number of particles or support points, specifically

, 100, 500 and 1000.We then quantified the performance
of the proposed BCF both in terms of accuracy and complexity,
and compared such performance with those of UKF and SIR PF.
Algorithm 2 summarizes the key steps needed for the imple-

mentation of discrete BC filters, where the only non-straight-
forward step is the evaluation of the quantile function in (15).
This equation can be solved numerically under accuracy and
complexity tradeoff, where the following results were obtained
using Monte Carlo integration.
The states inferred by different filters are shown in Fig. 6 for

one specific instantiation, where it can be observed that UKF
loses track when the state change its sign due to the ambiguity
in the measurement model and the unimodality of Gaussian dis-
tributions. Figure 7 shows the RMSE obtained by the different
filters for each time step based on Monte Carlo simulation with
30,000 instantiations. We can observe that the proposed BCF
can achieve remarkable RMSE performance with less than 100
support points. In addition, Fig. 8 shows the empirical CDFs of
the errors and the overall RMSE are given in Table III. From
these results, we observe that the accuracies of the proposed
discrete BCFs are comparable to PFs despite the fact that the
discrete BCFs require a much smaller number of support points
than that of PFs.
Finally, the processing time and memory used by each fil-

tering technique are shown in Table III. Similarly to the con-
tinuous case, from this table one can observe that the proposed

27In this example the CRLB is not a meaningful performance metric due to
the ambiguity induced from the measurement model.

Fig. 7. Comparison of the RMSEs for UKF, PF, and proposed discrete BCF.

Fig. 8. Comparison of the CDFs for UKF, PF, and proposed discrete BCF.

TABLE III
ACCURACY AND COMPLEXITY COMPARISON OF CURRENT FILTERING

TECHNIQUES WITH DISCRETE BCF IN TERMS OF RMSE, PROCESSING TIME,
AND REQUIRED MEMORY

discrete BCFs require a smaller complexity than the one needed
by SIR PFs with a similar level of accuracy.
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VII. CONCLUSION

In this paper, we proposed a new methodology for nonlinear/
non-Gaussian filtering called BCF. We first established a gen-
eral framework for filtering, based on which we formulated an
optimality criterion leading to BCF. Moreover, we developed
efficient continuous and discrete BC algorithms to condense the
complex distributions arising in the filtering process. We com-
pared the accuracy and complexity of the proposed BCFs with
representative existing techniques for the filtering problem in
navigation as well as for a highly nonlinear problem widely ex-
plored in the literature. Our results suggest the advantages of
the BCF methodology for broad filtering problems and show
that the proposed techniques can obtain accuracies comparable
to those of PFs, but with complexities much smaller than PFs.
This paper provides a new methodology for the design and anal-
ysis of nonlinear/non-Gaussian filters that can be employed in a
wide range of modern applications.

APPENDIX A
PROOF OF THEOREM 1

Proof: For a given ,
we show that a parameter with

can be obtained as the solution of convex optimiza-
tion problems by decomposing and using Gibb’s
inequality [55].
We first obtain the decomposition of . It is clear

that for

Together with the fact that , and

, we have that

where

Taking the expectation over in the above equation, we
obtain

where is the differential entropy of , which is finite
by assumption. Therefore, in order to find a parameter
such that , it is sufficient that

since , by Gibbs’ inequality
[55].
In the remaining of the proof, we show that for any , the

value that minimizes can be obtained
by convex optimization, leading to the recursion given in the
theorem.
Note that

(17)

It can be observed that (17) is the sum of convex functions
in because is a concave function, and each
is logconcave in since they are members of exponential
families and are natural parameters [42]. Moreover, the sets

and
are convex [42].
Since each parameter and for ap-

pears in a different term, the parameter minimizing (17) can
be obtained by separately minimizing over ,
and for . The Lagrangian of the optimization
problem corresponding to the first term in the right-hand side of
(17) is

Recall that the primal is a convex problem with an affine con-
straint, and

satisfies the Karush-Kuhn-Tucker conditions. Then, we obtain
(4) as the solution to the convex problem [56], where one can
check that

since .
For the optimization problems corresponding to the second

term, it can be proved that

(18)

is differentiable with respect to and its derivative is

Then, we can obtain (5) by using the fact that
[42].
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We have shown that , with
given by (4) and (5), is monotonically decreasing and hence
converging. Finally, the result for the case can be directly
obtained observing that in this case is convex in
since vanishes.

APPENDIX B
PROOF OF PROPOSITION 3

Proof: Let be a distribution in with
. Without loss of generality

we assume that for , since the components
of can be rearranged to satisfy this condition.
Now we let

Note that at least one is larger than or equal to since
. Let with

, and be the set

we have that

Calling and ,
since is monotonically increasing and continuous, we have
that
(1) if , since , ,

(2) if , since , ,

(3) if , since , ,

Therefore, in all cases .
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