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Spatiotemporal Information Coupling
in Network Navigation
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Abstract— Network navigation, encompassing both spatial and
temporal cooperation to locate mobile agents, is a key enabler
for numerous emerging location-based applications. In such
cooperative networks, the positional information obtained by
each agent is a complex compound due to the interaction among
its neighbors. This information coupling may result in poor per-
formance: algorithms that discard information coupling are often
inaccurate, and algorithms that keep track of all the neighbors’
interactions are often inefficient. In this paper, we develop a
principled framework to characterize the information coupling
present in network navigation. Specifically, we derive the equiv-
alent Fisher information matrix for individual agents as the sum
of effective information from each neighbor and the coupled
information induced by the neighbors’ interaction. We further
characterize how coupled information decays with the network
distance in representative case studies. The results of this paper
can offer guidelines for the development of distributed techniques
that adequately account for information coupling, and hence
enable accurate and efficient network navigation.

Index Terms— Fisher information, localization, navigation,
spatiotemporal cooperation, information coupling, inference.

I. INTRODUCTION

NETWORK NAVIGATION is an emerging paradigm for
providing location awareness of mobile nodes in a net-

work with unprecedented accuracy and reliability [1]–[3].
This new paradigm will enable numerous future location-
based applications such as healthcare monitoring, personnel/
asset tracking, emergency evacuation, search/rescue opera-
tions, autonomous vehicles, and military operations [4]–[12].
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Fig. 1. A network navigation scenario where blue dots represent different
states, while edges represent pairs of states that share information. Positional
information for state ι is obtained from neighbors i1, i2, i3, and i4 that
likewise obtain information from states in components C1, C2, C3, and C4,
respectively. The double slash denotes an interaction set, as will be defined
in Section III.

These potential applications have motivated increasing
research interest in localization and tracking technologies in
the past decade [13]–[26].

In classic localization techniques, the states of the
mobile agents are inferred from the measurements between
anchors (with known positions) and agents [27]–[30]. The
state usually includes the agent position and possibly other
mobility parameters such as velocity and acceleration, while
typical measurements for localization are inter-node distances
and angles-of-arrival. However, in harsh propagation environ-
ments without sufficient line-of-sight measurements between
the anchors and agents, these techniques yield unsatisfactory
performance or even completely fail [31]–[34]. For exam-
ple, the global positioning system (GPS)-based navigation
hardly works in indoor environments [35]–[37]. Other local-
ization techniques use intra-node inertial measurements of an
agent to determine its moving trajectory [38]–[42], which
is commonly known as dead-reckoning. These techniques
suffer from cumulative errors (positional drift) and thus lose
localization accuracy over time. The above limitations have
resulted in remarkable ongoing research efforts to overcome
the drawbacks of harsh propagation environments for anchor-
based techniques [43]–[46] and cumulative errors for inertial-
based techniques [38]–[40]. However, the performance of such
techniques still relies on high-density anchor deployment,
high-power anchors, or high-grade inertial measurement
units—none of which are cost-effective solutions—to achieve
reliable and accurate ubiquitous localization.

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-6608-8581
https://orcid.org/0000-0002-9396-1964
https://orcid.org/0000-0002-8573-0488


7760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 12, DECEMBER 2018

Driven by the success in wireless communica-
tions [47]–[50], cooperative techniques have been introduced
to improve the localization accuracy by sharing information
and performing measurements among spatial neigh-
bors [51]–[63]. In particular, network navigation provides
a new framework in which agents exploit both spatial and
temporal cooperation to infer their states [1]–[3]. Under this
framework, each agent obtains information about its state
from prior knowledge, inter- and intra-node measurements,
and messages from neighbors (see Fig. 1). It was shown that
the spatiotemporal cooperation can significantly improve the
localization accuracy by providing additional information.

In terms of implementation, distributed algorithms that do
not rely on a central processor are often preferred for network
navigation since they can reduce communication requirements
and increase system robustness [64]–[66]. The main difficulty
for the distributed schemes lies in that the information for
each state depends not only on its interaction with neigh-
boring states but also on the interaction of those neigh-
bors among themselves [67]–[71].1 The interaction among
neighbors causes information coupling, that is, the positional
information of a state is not the sum of effective informa-
tion obtained from each neighbor. Such information coupling
hinders the development of efficient and accurate distributed
algorithms since monitoring completely the interaction among
neighbors requires a difficult network coordination.

Most current distributed algorithms either simply discard the
information coupling or use ad-hoc methods to keep track of
neighbors’ interaction, resulting in sub-optimal performances.
For instance, techniques based on belief propagation (BP)
may fail to obtain accurate solutions due to the presence of
cycles in the associated inference graph [51]–[53] (see also
Section VI-A). In fact, loopy BP algorithms only obtain
approximate beliefs since the underlying independence
assumptions do not hold in general and iterative algorithms
may use the same measurements repeatedly. The information
coupling phenomenon has also been observed using other
algorithms and some mitigation techniques have been pro-
posed. Specifically, it was observed in [72]–[74] that ignoring
the cross-correlations among positional estimates can have
a negative effect, often leading to biased position estimates.
Those studies explore mitigation methods that either prevent
certain cooperations [53] or perform a careful bookkeeping
of cross-correlations and the origins of the used data [74].
To fully unleash the potential of network navigation, the design
of distributed algorithms requires a principled characterization
of the information coupling due to the complex information
dynamics induced by spatiotemporal cooperation.

Based on Fisher information analysis, the fundamental
limits or the performance bounds of localization accuracy for
network localization are derived in [55] and then the results
are extended to network navigation in [2].2 In particular, since

1A neighboring state refers to the state of either a spatial neighbor or a
temporal neighbor, where a temporal neighbor means the same agent at a
consecutive time step.

2The Fisher information is the most common metric to characterize the
performance limit of inference problems in terms of the information inequal-
ity or Cramér-Rao lower bound (CRLB) [75].

the Fisher information matrix (FIM) for network navigation
is non-diagonal [55], the equivalent FIM (EFIM) for a state
is not the sum of effective information obtained from each
neighbor, and depends also on the coupled information due to
the interaction among neighbors. Recent studies analyzed the
position error propagation in spatial and temporal domains
for cooperative localization [68], [69], where the recursive
expressions of the EFIM are obtained by approximating part of
the non-diagonal terms in the FIM. To the best of the authors’
knowledge, the only works that have studied information
coupling are [70] and [71], which focus on simple networks
with three or four cooperating agents.

In this paper, we characterize the effect of information
coupling arising from neighbors’ interaction in general net-
works, and derive the closed-form expressions for the coupled
information. Specifically, the main contributions of the paper
are as follows.

• We derive the EFIM for individual states in navigation
networks and the effective information obtained from
each neighbor.

• We characterize the coupled information induced by
sets of pair-wise information links and determine how
information coupling decays with the network distance.

• We derive the closed-form expression of the coupled
information arising from neighbors’ interaction through
one information link.

• We determine the effect of the information coupling in
representative case studies through analytical expressions
and numerical results.

• We show the impact of information coupling in the
performance of distributed algorithms, and outline design
guidelines for coupling-aware algorithms inspired by the
theoretical results.

The rest of the paper is organized as follows. Section II
describes the FIM for network navigation and the graph
structure induced by the FIM in the set of states. Section III
derives the EFIMs for individual states and characterizes the
information coupling. Section IV specifies the expressions for
coupled information in representative case studies. Section V
provides numerical results for coupled information in several
scenarios, and Section VI shows the relevance of the results
presented for distributed algorithms. Finally, conclusions are
drawn in Section VII.

Notations: The notation [ · ]T denotes the transpose of its
argument. Random variables are shown in sans serif, upright
fonts; their realizations in serif, italic fonts. Vectors are
denoted by bold lowercase letters. For example, a random
variable (RV) and its realization are denoted by x and x; a
random vector and its realization are denoted by x and x. The
function fx(x) and, for brevity when possible, f(x) denote
the probability density function (PDF) of a continuous RV x;
fx|y(x|y) and, for brevity when possible, f(x|y) denote the
PDF of x conditional on y = y. eS

i denotes the S-dimensional
vector with all zeros except a one at ith element. I denotes
a generic identity matrix and IS denotes a S × S identity
matrix. ⊗ denotes the Kronecker product. ‖A‖∗ denotes
the nuclear norm of a matrix A. diag{M1, M2, . . . , Mk}
denotes the block diagonal matrix formed by concatenating the
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matrices Mi, i = 1, 2, . . . , k. S
D
+ and S

D
++ denote the set of

D×D real positive semi-definite and positive definite matrices,
respectively. For A, B ∈ S

D
+ , A ≺ B, A � B, A � B, and

A � B denote, respectively the fact that B − A ∈ S
D
++,

B − A ∈ S
D
+ , A − B ∈ S

D
++, and A − B ∈ S

D
+ .

II. FISHER INFORMATION IN NETWORK NAVIGATION

This section describes the FIM for network navigation
and the graph structure that such FIM induces in the set of
states. These matrices and graph structure are used in the
subsequent sections to characterize the information coupling
via the EFIMs.

A. Preliminaries

Consider a cooperative network consisting of K nodes.
Let x

(n)
k ∈ R

D be the state of node k at time tn for
k = 1, 2, . . . , K and n = 1, 2, . . . , N . The goal of network
navigation is to infer the states of the nodes from measure-
ments and prior knowledge.3 Let S = {1, 2, . . . , S} with
S = KN be an index set of all the states. For notational
convenience, we refer to the state of node k at time step tn
either by x

(n)
k or by its index i ∈ S.

It has been proven [2] that the FIM for the S states can be
decomposed as

J =
∑

(i,j)∈S2,i�j

GS
i,j ⊗ Ki,j (1)

where

GS
i,j =

{(
eS

i − eS
j

)(
eS

i − eS
j

)T
, i �= j

eS
i

(
eS

i

)T
, i = j.

(2)

The matrix Ki,j ∈ S
D
+ accounts for the pair-wise positional

information from the measurements or prior knowledge related
jointly to the states i and j. For example, if yi,j are the
measurements related to states xi and xj , i, j ∈ S,

Ki,j = E

{
−∂2 ln f(yi,j |xi, xj)

∂xi∂xT
i

}
. (3)

As special cases, Ki,j is the zero matrix in the absence of
such measurements or prior knowledge, and Ki,i accounts
for the self positional information related only with state i,
e.g., prior knowledge or information from anchors. Moreover,
we assume that measurements and prior knowledge are related
to the states pair-wise differences, and hence Ki,j = Kj,i.

Proposition 1: Each term GS
i,j ⊗ Ki,j in (1) is a positive

semidefinite matrix that has rank equal to the rank of Ki,j .
In addition, if Ki,i � 0 for all i ∈ S then J � 0.4

Proof: See Appendix A. �
Let A be a subset of the natural numbers, M be a matrix

of size |A|D × |A|D, so that we can associate each element

3The state includes position and possibly other mobility parameters such
as velocity, acceleration, orientation, and angular velocity; examples of
measurement sensors include RF radios and inertial devices; and examples
of prior knowledge include positions of certain nodes and mobility models.

4In the following, we assume Ki,i � 0 for all i ∈ S , while Ki,j for i �= j
are not necessarily full rank.

in A with a D× |A|D block-row or |A|D×D block-column
of M . We denote by MA1,A2 the sub-matrix of M formed
by the blocks corresponding to rows associated with A1 and
columns associated with A2 for A1,A2 ⊆ A. For instance,
in a navigation network with three states, J{1},{2,3} denotes
the upper right D × 2D block of the FIM.

In the example of Fig. 1, the FIM for all the states can be
written as

J =

⎡

⎢⎢⎢⎢⎣

Jι,ι Jι,C1 Jι,C2 Jι,C3 Jι,C4

JC1,ι JC1,C1 JC1,C2 0 0
JC2,ι JC2,C1 JC2,C2 0 0
JC3,ι 0 0 JC3,C3 0
JC4,ι 0 0 0 JC4,C4

⎤

⎥⎥⎥⎥⎦
(4)

where

Jι,ι = Kι,ι +
4∑

k=1

Kι,ik
(5)

Jι,Ck
= JT

Ck,ι = −[ Kι,ik
0 · · · 0 ] (6)

for k = 1, 2, 3, 4, and

[JC1,C2 ]j1,j2
= [JC2,C1 ]j2,j1

= −Kj1,j2

[JC1,C2 ]i,j = [JC2,C1 ]j,i = 0 (7)

for (i, j) �= (j1, j2).
Based on the structure of the FIM, we next introduce a

graph structure for the set of states, which will be used to
determine the interrelationship among the different informa-
tion components.

B. Structure of the States from FIM

The FIM induces a graph-structure for the set of states
that we refer to as the navigation information graph (NIG).
Its vertices correspond to the states, and its edges (links)
correspond to the pairs of states (i, j) ∈ S2 for which Ki,j �= 0
(see Fig. 1).5 Based on the terminologies in graph theory,
we next give several definitions for the NIG.

Definition 1: The matrix GS
i,j ⊗Ki,j is the information link

related to the states i and j for (i, j) ∈ S2, and the matrix
Ki,j ∈ S

D
+ is the capacity of the link. Two states i �= j are

neighbors if Ki,j �= 0, and Ni denotes the set of states that
are neighbors of state i.

Definition 2: Two states i and j are connected in a set of
states S̄ ⊂ S if there exists a path between i and j in S̄,
i.e., a sequence of states {k1, k2, . . . , kr+1} ⊂ S̄ with k1 = i
and kr+1 = j such that Kks,ks+1 �= 0 for s = 1, 2, . . . , r.
The network distance between two connected states i and j,
denoted by ND(i, j), is the length of the shortest path between
i and j. A connected component of S̄ is a maximal subset of
states connected in S̄.

In this paper, without loss of generality we focus on a
specific state ι ∈ S. The set S̄ = S \ {ι} can be uniquely
partitioned as the disjoint union of connected components.
In the network example shown in Fig. 1, S̄ has three connected
components (i.e., (C1∪C2), C3, and C4) if Kj1,j2 �= 0 and four

5Notice that the FIM in (1) corresponds to the Laplacian of the undirected
graph with vertices corresponding to the states and edges weighted by the
semidefinite matrices Ki,j [76].
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connected components (i.e., C1, C2, C3, and C4) if Kj1,j2 = 0.
In the former case the component (C1 ∪ C2) contains two
neighbors of ι, and in the latter case each component contains
only one neighbor of ι.

In the next section, we characterize the effective information
obtained from each neighbor as well as the coupled informa-
tion due to neighbors’ interaction.

III. INFORMATION COUPLING IN NETWORK NAVIGATION

This section first derives the EFIM for individual states and
characterizes the effect of the information coupling induced
by sets of information links. Then, we determine the decay
of information coupling with the network distance and the
closed-form EFIM for networks coupled by one information
link.

A. EFIM for Individual States

The FIM J in (1) captures the information for all the states
in S, and thus determines the performance bound for joint
estimation of the states. To further study information coupling,
we will next adopt the notion of the EFIM [32]. Such matrix
represents the equivalent information for states’ subsets and
shows how coupled information arises as a consequence of
other states’ interaction.

Definition 3 (EFIM [32]): Given a parameter vector
θ = [ θT

1 θT
2 ]T and the FIM Jθ of the form

Jθ =
[

A B

BT C

]
(8)

where θ ∈ R
N , θ1 ∈ R

n, A ∈ R
n×n, B ∈ R

n×(N−n), and
C ∈ R

(N−n)×(N−n) with 1 � n < N , the EFIM for θ1 is
given by

Je(θ1) := A − BC−1BT. (9)

Note that the right-hand side of (9) is known as the Schur
complement of block-matrix A in matrix Jθ [77]. It is
clear that the EFIM retains all the necessary information to
derive the information inequality for the parameter θ1. In other
words, the CRLB for θ1 can be obtained by the inverse
of Je(θ1) rather than directly inverting a high-dimensional
matrix Jθ . More importantly, the use of the EFIM allows to
characterize all the information components of each individual
state, which is essential for studying the effect of information
coupling.

The following theorem shows that the EFIM Je for a generic
state ι ∈ S can be decomposed as a sum of terms, each
corresponding to a connected component of S̄ that contains
neighbors of ι.

Theorem 1: Let S̄ = C1∪C2∪. . .∪Cn be a disjoint partition
of S̄ as a union of connected components, where only the first
m components have nonempty intersection with Nι, i.e., Ck ∩
Nι = ∅ for m < k � n. Then the EFIM for state ι is

Je = Kι, ι +
m∑

k=1

[ ∑

i∈Nι∩Ck

Kι, i − Jι,Nι∩Ck
Λk JT

ι,Nι∩Ck

]

(10)

where Λk =
[
J−1
Ck,Ck

]
Nι∩Ck,Nι∩Ck

.

Proof: From the definition of the EFIM, we have that

Je = Kι,ι +
∑

i∈Nι

Kι,i − [ Jι,C1 Jι,C2 · · · Jι,Cn ]

· J−1
S̄,S̄ [ Jι,C1 Jι,C2 · · · Jι,Cn ]T

= Kι,ι +
∑

i∈Nι

Kι,i − [ Jι,C1 Jι,C2 · · · Jι,Cm ]

· diag
{
J−1
C1,C1

, J−1
C2,C2

, . . . , J−1
Cm,Cm

}

· [ Jι,C1 Jι,C2 · · · Jι,Cm ]T

= Kι,ι +
∑

i∈Nι

Kι,i −
m∑

k=1

Jι,Ck
J−1
Ck,Ck

JT
ι,Ck

(11)

where the second equality is due to

JS̄,S̄ = diag
{
JC1,C1 , JC2,C2 , . . . , JCn,Cn

}
(12)

and Jι,Ci = 0 for i > m. The result (10) is obtained by
observing that

Jι,Ck
J−1
Ck,Ck

JT
ι,Ck

= Jι,Nι∩Ck
Λk JT

ι,Nι∩Ck
(13)

and that the non-zero blocks of Jι,Ck
are those corresponding

to Jι,Nι∩Ck
. �

The theorem shows that the information obtained by state ι
is the sum of the self positional information and that obtained
from each connected component, where the latter is the
difference between the capacity of the links to the neighbors in
such a component and a term that accounts for the uncertainty
of neighbors in the component.

Definition 4: The neighbors of a state ι ∈ S in Nι are
isolated if each connected component of S̄ contains at most
one neighbor of ι, i.e., for each connected component Ck, |Ck∩
Nι| � 1.

In the network example in Fig. 1, the neighbors of state ι are
isolated if Kj1,j2 = 0. The following result shows that when
the neighbors are isolated, the information obtained through
cooperation can be decoupled as the sum of the information
obtained from each neighbor.

Corollary 1: If the neighbors of state ι are isolated, then
the EFIM for state ι is

Je = Kι,ι +
∑

i∈Nι

(I − Kι,iΛki)Kι,i (14)

where ki is the index of the component corresponding to
neighbor i, i.e., Cki ∩Nι = {i}.

Proof: The proof is a direct consequence of Theorem 1
since Jι,Nι∩Cki

= Jι,i = −Kι,i if i ∈ Nι and Nι ∩ Cki = ∅

in other case. �
This result shows that when the neighbors are isolated,

the information obtained through cooperation is the sum of the
information obtained from each neighbor. In addition, each of
those terms depends on the capacity of the link to the neighbor,
i.e., Kι,i, and on the neighbor’s uncertainty induced by its
component, i.e., Λki . Such amenable situation characterizes
uncoupled neighbors.

Definition 5: The neighbors of state ι ∈ S in Nι are
uncoupled if

Je = Kι,ι +
∑

i∈Nι

Ki→ι (15)
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with

Ki→ι � (I − Kι,iΛki) Kι,i (16)

representing the effective information that can be obtained
from neighbor i taking into account its own uncertainty. In
addition, we say that a state is subject to information coupling
when its neighbors are not uncoupled.

B. Information Coupling and Effective Information

The results below further characterize the terms correspond-
ing to the information that can be effectively obtained from
each neighbor as well as the information coupling.

Definition 6: Let B be a set of links between the states, the
B-reduced FIM is defined as

JB =
∑

(i,j)∈S2\B,i�j

GS
i,j ⊗ Ki,j

= J −
∑

(i,j)∈B,i�j

GS
i,j ⊗ Ki,j . (17)

Then, the B-effective information from i ∈ Nι to ι is defined
as

KB
i→ι =

(
I − Kι,i ΛB

ki

)
Kι,i (18)

where

ΛB
ki

=
[(

JB
Cki

,Cki

)−1
]

i,i
(19)

and i ∈ Cki ∩ Nι. Moreover, Ki→ι = KB
i→ι when B = ∅.

Definition 7: A set of links between the states in S̄,
B ⊂ S̄2, is an interaction set for state ι if the neighbors of
state ι are isolated for the FIM JB but not for the FIM J .

Remark 1: This definition characterizes the sets of links
such that their removal isolates the neighbors of a state,
since the matrix JB corresponds with the FIM for S when
Kj1,j2 = 0 for all (j1, j2) ∈ B [see (17)]. For instance, in the
network shown in Fig. 1, the set (j1, j2) is an interaction set
containing a single link.

Proposition 2: Let B be an interaction set for state ι. The
EFIM for state ι is bounded as

Kι,ι +
∑

i∈Nι

KB
i→ι � Je � Kι,ι +

∑

i∈Nι

Kι,i. (20)

Proof: The first inequality is a consequence of Corollary 1
since J � JB implies that Λk � ΛB

k for any k. The second
inequality is a direct consequence of Theorem 1 since the
matrices Λk are positive definite. �

Proposition 2 shows that the information obtained from
cooperation by each state is upper bounded by the sum of
the capacities of the neighboring links and lower bounded by
the sum of the B-effective information from neighbors for any
interaction set B. Moreover, such lower bound becomes an
equality for B = ∅ if the neighbors of state ι are isolated. Note
that the effective information for cooperative localization was
first introduced in [55], B-effective information proposed in
this paper is a generalization of that in [55], which corresponds
to the specific interaction set B = {(i, j) ∈ (S \ {ι})2 for
i > j}.

Remark 2: Proposition 2 has the following operational
meaning: discarding several measurements or prior knowl-
edges, i.e., letting several link capacities Ki,j = 0, decouples
the neighbors of state ι. Although such an operation reduces
the total information for state ι, it decomposes the information
for state ι as a sum of that from each neighbor, which is
amenable for distributed algorithms.

The next proposition shows that the effective information
is always smaller than or equal to the link capacity and that
the effective information increases when the interaction set B
decreases.

Proposition 3:

1) If B and B′ are two sets of links between the states with
B ⊆ B′, then for any i ∈ Nι

0 � KB′
i→ι � KB

i→ι � Ki→ι � Kι,i. (21)

2) If Ki,i = ξiI , for any set of links B
lim

ξi→∞
KB

i→ι = Kι,i. (22)

Proof: See Appendix C. �
Proposition 4: If Kι,i is rank-one, i.e., Kι,i = vι,iv

T
ι,i for

vι,i ∈ R
D, the B-effective information KB

i→ι is proportional
to Kι,i, KB

i→ι = ξBι,i Kι,i with 0 < ξBι,i < 1 for any set B, and
given by

ξBι,i = 1 − vT
ι,iΛ

B
ki

vι,i. (23)

Proof: Using the definition of effective information,
we have that

KB
i→ι =

(
I − vι,iv

T
ι,iΛ

B
ki

)
vι,iv

T
ι,i

=
(
1 − vT

ι,i ΛB
ki

vι,i

)
Kι,i. (24)

The remaining part of the corollary, i.e., ξBι,i > 0, is proven
using the Lemma 1 in Appendix B with C = JB

Cki
,Cki

and

A = vι,iv
T
ι,i + Ki,i. Then, the matrix [(JB

Cki
,Cki

)−1]i,i can be
written as (vι,iv

T
ι,i+Ki,i+R)−1 with Ki,i +R � 0 for some

matrix R. Hence, the result is obtained since

ξBι,i =
(
1 + vT

ι,i(Ki,i + R)−1vι,i

)−1
(25)

by using the matrix inversion lemma. �
Remark 3: The effective information a state obtains from a

neighbor is a positive semidefinite matrix smaller than or equal
to the link capacity, and it is proportional to such capacity if
it is a rank-one matrix. In addition the B-effective information
increases with smaller sets B. Finally, the effective information
equals the link capacity when the self positional information
of the neighbor tends to infinity.6

The next definition quantifies the information coupling
induced by an interaction set as the difference between the
actual EFIM and the sum of effective information from each
neighbor.

6We refer to the matrices Ki,j as link capacities since they play a similar
role to the capacities of network flows as upper bounds of flows through
links [78].
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Definition 8: Let B be an interaction set for state ι, the cou-
pled information for state ι induced by the links B is the
positive semidefinite matrix

ΞB = Je − JB
e = Je − Kι,ι −

∑

i∈Nι

KB
i→ι � 0. (26)

where JB
e is the EFIM for state ι based on the B-reduced

FIM JB .

C. Information Coupling Decay with Network Distance

This section shows how the information induced by a link
changes with the network distance. These results will be used
in Section IV-D to show the exponential decay of information
coupling with the network distance in a simple network. Here,
the first result shows the difference in the EFIM, caused by the
presence of a specific link, for states with increasing network
distance to such link. The second result shows how the EFIM
difference decreases with the network distance.

We consider subsets of the states with increasing network
distance to a link B = {(j1, j2)}. Specifically, Sk is the set of
the states at network distance at least k to j1 and j2, and Ek is
the set of the states in Sk at network distance k to j1 or j2, i.e.,

Sk =
{
i ∈ S : ND(i, j1) � k, ND(i, j2) � k

}

Ek =
{
i ∈ S : min{ND(i, j1), ND(i, j2)} = k

}
. (27)

The EFIM difference due to information link B is given in the
following theorem.

Theorem 2: Let Jk and JB
k be the EFIMs of states Sk for

J and JB, respectively. Then

[Jk]i,j =

{[
JB

k

]
i,j

if (i, j) /∈ E2
k[

JB
k

]
i,j

+ [Dk]i,j if (i, j) ∈ E2
k

(28)

with

Dk = ΓkUj1,j2

(
I + UT

j1,j2ΔkUj1,j2

)−1
UT

j1,j2Γ
T
k

� ΓkKj1,j2Γ
T
k (29)

where Uj1,j2 is a square root of Kj1,j2 , i.e., Kj1,j2 =
Uj1,j2U

T
j1,j2 , Γ0 = [I,−I]T, Δ0 = 0, and

Γk = JEk,Ek−1

([
JB

k−1

]
Ek−1,Ek−1

)−1

Γk−1

Δk = Δk−1 + Γ T
k−1

([
JB

k−1

]
Ek−1,Ek−1

)−1

Γk−1 (30)

for k = 1, 2, . . . , n, with n being the largest integer for which
Sn �= ∅.

Proof: See Appendix D. �
Remark 4: Theorem 2 shows that the difference between

the EFIMs with and without a specific link (j1, j2) depends
on the link capacity Kj1,j2 and the network distance k to the
link (j1, j2) through the recursively defined matrices Γk.

The following result shows that the difference between
EFIMs for a network distance k + 1 is smaller than the
difference between EFIMs for a network distance k multiplied
by the matrices that define the recurrence for Γk.

Corollary 2: Under the conditions of Theorem 2, we have
that for k = 0, 1, . . . , n

Dk+1 � JEk+1,Ek

([
JB

k

]
Ek,Ek

)−1

Dk

([
JB

k

]
Ek,Ek

)−1

JEk,Ek+1 .

(31)

Proof: The result is a straightforward consequence of the
previous result taking into account that
(
I + UT

j1,j2Δk+1Uj1,j2

)−1 �
(
I + UT

j1,j2ΔkUj1,j2

)−1
(32)

since Δk � Δk+1. �
These two results illustrate how the information induced by

sets of links decay with the network distance in the network.
The next section further explores information coupling for
networks where there is one coupling link.

D. Information Coupling for One-Link Coupled Neighbors

The detailed closed-form expression of the EFIM for gen-
eral networks is too complex. We present such EFIM for the
case where there is an interaction set formed by one link.

Theorem 3: Let B = {(j1, j2)} be an interaction set for
state ι and C1, C2, . . . , Cn be a partition of S̄ into connected
components for the structure induced by the B-reduced FIM
JB. If {i1, i2} ⊆ Nι with i1, j1 ∈ C1 and i2, j2 ∈ C2, then the
EFIM for state ι is

Je = Kι,ι +
∑

i∈Nι

KB
i→ι + Ξ

(j1,j2)
i1,i2

(33)

where

Ξ
(j1,j2)
i1,i2

= Γ
[
K

(
Φ−1 + K

)−1
Φ−1

]
Γ T (34)

with

K = Kj1,j2

Φ =
[(

JB
C1,C1

)−1
]

j1,j1
+

[(
JB
C2,C2

)−1
]

j2,j2

Γ = Kι,i1

[(
JB
C1,C1

)−1
]

i1,j1
− Kι,i2

[(
JB
C2,C2

)−1
]

i2,j2
. (35)

Proof: See Appendix E. �
Note that the coupled information Ξ

(j1,j2)
i1,i2

in (34) is a func-

tion of K, Φ and Γ , and we rewrite it as Ξ
(j1,j2)
i1,i2

(K, Φ, Γ )
in the following corollary to show the monotonicity of the
coupled information with the variables.

Corollary 3: Under the conditions of Theorem 3,
1) if K′ � K,

Ξ
(j1,j2)
i1,i2

(
K ′, Φ, Γ

)
� Ξ

(j1,j2)
i1,i2

(
K, Φ, Γ

)
; (36)

2) if Φ′ � Φ,

Ξ
(j1,j2)
i1,i2

(
K, Φ′, Γ

)
� Ξ

(j1,j2)
i1,i2

(
K, Φ, Γ

)
; (37)

3) if Γ ′ = λΓ with λ � 1,

Ξ
(j1,j2)
i1,i2

(
K, Φ, Γ ′) � Ξ

(j1,j2)
i1,i2

(
K, Φ, Γ

)
. (38)

Proof: For the first two cases, notice that
(
I − Kj1,j2

(Φ−1 + Kj1,j2)−1
)
Kj1,j2 is the Schur complement of the

matrix

M =
[

Kj1,j2 Kj1,j2

Kj1,j2 Φ−1 + Kj1,j2

]
.

Then the results are obtained by observing that K′
j1,j2 �

Kj1,j2 or Φ′ � Φ implies that the corresponding matrix
M ′ satisfies M ′ � M . The last case is straightforward
since λ2 � 1. �

Remark 5: Theorem 3 and Corollary 3 show that the infor-
mation obtained from cooperation is the sum of effective
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Fig. 2. Three representative simple scenarios of network navigation.
(a): Three nodes cooperate via inter-node measurements; (b): Two nodes
cooperate at two different times via inter- and intra-node measurements;
(c): Three nodes cooperate at two different times via inter- and intra-node
measurements. The double slash denotes the interaction set.

information from each neighbor plus the coupled information
by the link in the interaction set. Such coupled information
depends on the link capacities between state ι and the coupled
neighbors, as well as on the link capacity of the interac-
tion set. In addition, the coupled information increases when
1) the capacity of the link in the interaction set increases,
2) the uncertainty of the interaction set decreases, and 3) the
capacities of the links to the coupled neighbors increase
proportionally with the same ratio.

Corollary 4: Under the conditions of Theorem 3, if Kι,i1 =
vι,i1v

T
ι,i1

, Kι,i2 = vι,i2v
T
ι,i2

, and Kj1,j2 = vj1,j2v
T
j1,j2

, then

Ξ
(j1,j2)
i1,i2

= δj1,j2(μi1vι,i1 − μi2vι,i2)(μi1vι,i1 − μi2vι,i2)
T

(39)

where

δj1,j2 =
(
1 + vT

j1,j2 Φ vj1,j2

)−1

μi1 = vT
ι,i1

[(
JB
C1,C1

)−1
]

i1,j1
vj1,j2

μi2 = vT
ι,i2

[(
JB
C2,C2

)−1
]

i2,j2
vj1,j2 . (40)

Proof: See Appendix F. �
Remark 6: This result shows that when the information

capacities of the coupled neighbors and interaction set are
rank-one matrices, the coupled information is also a rank-
one matrix. In addition, such matrix is the outer product of
a combination of the vectors forming the link capacity from
the neighbors weighted by the coefficients μi1/

√
δj1,j2 and

−μi2/
√

δj1,j2 .

The next section focuses on four representative cases and
derives the corresponding EFIMs. In Section V these scenarios
are further examined and the coupled information is numeri-
cally quantified.

IV. CASE STUDIES

This section presents the EFIMs for a state in the scenarios
depicted in Fig. 2 and Fig. 3 to provide insights into the
spatiotemporal information coupling arising in network navi-
gation. These scenarios are composed by small-scale networks
with 3, 4, and 5 states as well as by a simple network with
2n + 1 states.

In the following, the link capacities Ki,j for i �= j
account for the positional information obtained from the inter-
or intra-node measurements. When inter-node measurements

Fig. 3. A simple scenario of network navigation in which all the nodes are
linked by a single loop. The double slash denotes a potential interaction set.

are related to the distances between pairs of nodes and
intra-node measurements are related to the speed of nodes,
each Ki,j for i �= j is a rank-one matrix. Specifically,
Ki,j = vi,jv

T
i,j , and vi,j is a vector with direction joining

states i and j and norm
√

λi,j ∈ R+, where λi,j is called the
ranging information intensity (RII) [32] and speed information
intensity (SII) [71] for inter- and intra-node measurements,
respectively.

A. Scenario A

Three nodes cooperate to determine their positions via inter-
node measurements, e.g., time-of-arrival (TOA) or angle-of-
arrival (AOA), as described in Fig. 2(a). In this case, the states
are x1, x2, and x3 (denoted by states 1, 2, and 3, respectively),
which represent the positions of the three nodes, and the FIM
becomes7

J =

⎡

⎣
J{1},{1} −K1,2 −K1,3

−K1,2 J{2},{2} −K2,3

−K1,3 −K2,3 J{3},{3}

⎤

⎦ (41)

where

J{1},{1} = K1,1 + K1,2 + K1,3

J{2},{2} = K2,2 + K1,2 + K2,3

J{3},{3} = K3,3 + K1,3 + K2,3. (42)

As a special case of Theorem 3 with interaction set B =
{(2, 3)}, the EFIM for x1 in Scenario A is (see Appendix G)

Je = K1,1 + K
(2,3)
2→1 + K

(2,3)
3→1 + Ξ

(2,3)
2,3 (43)

where

Ξ
(2,3)
2,3 = Γ

(
K2,3

(
Φ−1 + K2,3

)−1
Φ−1

)
Γ T

Γ = K1,2(K2,2 + K1,2)−1 − K1,3(K3,3 + K1,3)−1

Φ = (K2,2 + K1,2)−1 + (K3,3 + K1,3)−1 (44)

and

K
(2,3)
i→1 =

(
I − K1,i(Ki,i + K1,i)−1

)
K1,i

= K1,i(Ki,i + K1,i)−1Ki,i. (45)

The EFIM in (43) is the sum of four terms. The first term
corresponds to the information that depends only on node 1,
and the remaining three terms correspond to the informa-
tion obtained through spatial cooperation. The second and

7Notice that in this scenario for notational convenience we do not specify
the time index because there is only one time step involved.
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third terms correspond to the decoupled effective information
obtained from neighbor nodes 2 and 3, respectively, while
the last term represents the coupled information due to the
cooperation between neighbor nodes 2 and 3. The coupled
information depends on the capacity of the link between
nodes 2 and 3 as well as the uncertainties of nodes 2 and 3.

If the link capacities are rank-one matrices, i.e., Ki,j =
vi,jv

T
i,j with vi,j ∈ R

D for i, j ∈ {1, 2, 3}, i �= j, then the
EFIM Je can be simplified as (see Appendix G)

Je = K1,1 + ξ1,2K1,2 + ξ1,3K1,3

+ δ2,3(μ2v1,2 − μ3v1,3)(μ2v1,2 − μ3v1,3)T (46)

where

ξ1,i =
(
1 + vT

1,iK
−1
i,i v1,i

)−1

μi = ξ1,i

(
vT

1,iK
−1
i,i v2,3

)

δ2,3 =
(
1+vT

2,3

(
(K2,2+K1,2)−1+(K3,3 + K1,3)−1

)
v2,3

)−1
.

(47)

In this special case, each effective information for node 1 is
proportional to the corresponding link capacity. The coupled
information is also a rank-one matrix with positive eigen-
value δ2,3‖μ2v1,2 − μ3v1,3‖2 and corresponding eigenvector
μ2v1,2−μ3v1,3, both depending on the RIIs, the uncertainties
of nodes 2 and 3, and the nodes’ spatial topology.

B. Scenario B

Two nodes cooperate at two consecutive time steps to deter-
mine their positions via inter- and intra-node measurements,
as described in Fig. 2(b). In this case, the states are x

(2)
1 , x

(2)
2 ,

x
(1)
1 , and x

(1)
2 (denoted by states 1, 2, 3, and 4, respectively),

which represent the states of the two nodes at two time steps.
Note that K1,4 = K2,3 = 0, and hence the FIM becomes

J =

⎡

⎢⎢⎣

J{1},{1} −K1,2 −K1,3 0
−K1,2 J{2},{2} 0 −K2,4

−K1,3 0 J{3},{3} −K3,4

0 −K2,4 −K3,4 J{4},{4}

⎤

⎥⎥⎦ (48)

where

J{1},{1} = K1,1 + K1,2 + K1,3

J{2},{2} = K2,2 + K1,2 + K2,4

J{3},{3} = K3,3 + K1,3 + K3,4

J{4},{4} = K4,4 + K2,4 + K3,4. (49)

As a special case of Theorem 3 with interaction set B =
{(4, 3)},8 the EFIM for x

(2)
1 in Scenario B is (see Appendix G)

Je = K1,1 + K
(4,3)
2→1 + K

(4,3)
3→1 + Ξ

(4,3)
2,3 (50)

where

Ξ
(4,3)
2,3 = Γ

(
K4,3

(
Φ−1 + K4,3

)−1
Φ−1

)
Γ T

Γ = K1,2Ω
−1
2 K2,4(K4,4 + K2,4)−1

−K1,3(K3,3 + K1,3)−1

Φ = Ω−1
4 + (K3,3 + K1,3)−1

8Note that one can also consider the interaction set to be B = {(4, 2)}
which leads to analogous results.

K
(4,3)
2→1 =

(
I − K1,2Ω

−1
2

)
K1,2

K
(4,3)
3→1 =

(
I − K1,3(K3,3 + K1,3)−1

)
K1,3 (51)

and
Ω2 = K2,2 + K1,2 +

(
I − K2,4(K4,4 + K2,4)−1

)
K2,4

Ω4 = K4,4 +
(
I − K2,4(K2,2 + K1,2 + K2,4)−1

)
K2,4.

(52)
The EFIM in (50) is the sum of four terms. The first term

corresponds to the information that depends only on node 1
at time step t2, and the remaining three terms correspond to
the information obtained through spatiotemporal cooperation.
The second and third terms correspond to the effective infor-
mation obtained from spatial neighbor (node 2 at time step t2)
and temporal neighbor (node 1 at time step t1), respectively,
while the last term represents the coupled information due
to the cooperation between neighbors (nodes 1 and 2 share
information at time step t1). The coupled information depends
on the capacity of the link between nodes 1 and 2 at time
step t1 as well as the uncertainties of node 2 at time t2 and
node 1 at time t1.

If the link capacities are all rank-one matrices, i.e., K1,2 =
v1,2v

T
1,2, K1,3 = v1,3v

T
1,3, and K3,4 = v3,4v

T
3,4, then the

EFIM Je can be simplified as (see Appendix G)

Je = K1,1 + ξ1,2K1,2 + ξ1,3K1,3

+ δ3,4(μ2v1,2 − μ3v1,3)(μ2v1,2 − μ3v1,3)T (53)

where

ξ1,2 =
(
1+vT

1,2

(
K2,2+

(
1 + vT

2,4K
−1
4,4 v2,4

)−1
K2,4

)−1

v1,2

)−1

ξ1,3 =
(
1 + vT

1,3K
−1
3,3 v1,3

)−1

μ2 = ξ1,2

(
1 + vT

2,4K
−1
4,4 v2,4

)−1(
vT

2,4K
−1
4,4 v3,4

)

·vT
1,2

(
K2,2 +

(
1 + vT

2,4K
−1
4,4 v2,4

)−1
K2,4

)−1

v2,4

μ3 = ξ1,3

(
vT

1,3K
−1
3,3 v3,4

)

δ3,4 =
(
1 + vT

3,4

(
Ω−1

4 + (K3,3 + K1,3)−1
)
v3,4

)−1

. (54)

In this special case, each effective information for node
1 is proportional to the corresponding link capacity. The
coupled information is a rank-one matrix with positive eigen-
value δ3,4‖μ2v1,2 − μ3v1,3‖2 and corresponding eigenvec-
tor μ2v1,2 − μ3v1,3 both depending on the RIIs, the SIIs,
the uncertainties of nodes 1 and 2 at different time steps, and
the nodes’ spatial topology.

C. Scenario C

Node 1 cooperates with nodes 2 and 3 at time step t2 while
nodes 2 and 3 have cooperated at time step t1, as described
in Fig. 2(c). In this case, the states are x

(2)
1 , x

(2)
2 , x

(2)
3 , x

(1)
2 ,

and x
(1)
3 (denoted by states 1, 2, 3, 4, and 5, respectively),

which represent the states of three nodes at time step t2 and
two nodes at time step t1. Then, the FIM becomes

J =

⎡

⎢⎢⎢⎢⎣

J{1},{1} −K1,2 −K1,3 0 0
−K1,2 J{2},{2} 0 −K2,4 0
−K1,3 0 J{3},{3} 0 −K3,5

0 −K2,4 0 J{4},{4} −K4,5

0 0 −K3,5 −K4,5 J{5},{5}

⎤

⎥⎥⎥⎥⎦
(55)
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where

J{1},{1} = K1,1 + K1,2 + K1,3

J{2},{2} = K2,2 + K1,2 + K2,4

J{3},{3} = K3,3 + K1,3 + K3,5

J{4},{4} = K4,4 + K2,4 + K4,5

J{5},{5} = K5,5 + K3,5 + K4,5. (56)

As a special case of Theorem 3 with interaction set B =
{(4, 5)},9 the EFIM for x

(2)
1 in Scenario C is (see Appendix G)

Je = K1,1 + K
(4,5)
2→1 + K

(4,5)
3→1 + Ξ

(4,5)
2,3 (57)

where

Ξ
(4,5)
2,3 = Γ

(
I − K4,5

(
Φ−1 + K4,5

)−1
)
K4,5Γ

T

Γ = K1,2Ω
−1
2 K2,4(K4,4 + K2,4)−1

−K1,3Ω
−1
3 K3,5(K5,5 + K3,5)−1

Φ = Ω−1
4 + Ω−1

5 (58)

K
(4,5)
2→1 =

(
I − K1,2Ω

−1
2

)
K1,2

K
(4,5)
3→1 =

(
I − K1,3Ω

−1
3

)
K1,3

Ωi = Ki,i + K1,i

+
(
I − Ki,i+2(Ki+2,i+2 + Ki,i+2)−1

)
Ki,i+2 (59)

for i = 2, 3, and

Ωi = Ki,i +
(
I − Ki−2,i(Ki−2,i−2 + K1,i−2 + Ki−2,i)−1

)

·Ki−2,i (60)

for i = 4, 5.
The EFIM in (57) is the sum of four terms. The first term

corresponds to the information that depends only on node 1 at
time step t2, and the remaining 3 terms correspond to the infor-
mation obtained through spatiotemporal cooperation. The sec-
ond and third terms correspond to the decoupled effective
information obtained from spatial neighbors (nodes 2 and 3 at
time step t2), respectively, while the last term represents the
coupled information due to the cooperation between neighbors
(nodes 2 and 3 share information at time step t1). The coupled
information depends on the capacity of the link between
nodes 2 and 3 at time step t1 as well as the uncertainties
of nodes 2 and 3 at time t2.

If the link capacities are all rank-one matrices, i.e., K1,i =
v1,iv

T
1,i, Ki,i+2 = vi,i+2v

T
i,i+2 for i = 2, 3, and K4,5 =

v4,5v
T
4,5, then the EFIM Je can be simplified as (see

Appendix G)

Je = K1,1 + ξ1,2K1,2 + ξ1,3K1,3

+ δ4,5(μ2v1,2 − μ3v1,3)(μ2v1,2 − μ3v1,3)T (61)

where

ξ1,i

=
1

1+vT
1,i

(
Ki,i+

(
1+vT

i,i+2K
−1
i+2,i+2vi,i+2

)−1
Ki,i+2

)−1

v1,i

μi

9Note that one can also consider the interaction set to be B = {(4, 2)} and
B = {(3, 5)}, which lead to analogous results.

= ξ1,i

(
1+vT

i,i+2K
−1
i+2,i+2vi,i+2

)−1(
vT

i,i+2K
−1
i+2,i+2v4,5

)

·vT
1,i

(
Ki,i+

(
1+vT

i,i+2K
−1
i+2,i+2vi,i+2

)−1
Ki,i+2

)−1

vi,i+2

(62)

for i = 2, 3, and

δ4,5 =
(
1 + vT

4,5

(
Ω−1

4 + Ω−1
5

)
v4,5

)−1

. (63)

In this case, each effective information for node 1
is proportional to the corresponding link capacity. The
coupled information is a rank-one matrix with positive eigen-
value δ4,5‖μ2v1,2 − μ3v1,3‖2 and corresponding eigenvec-
tor μ2v1,2 − μ3v1,3 both depending on the RIIs, the SIIs,
the uncertainties of nodes 1, 2 and 3 at different time steps,
and the nodes’ spatial topology.

D. Scenario D

Finally, we characterize the exponential decay of informa-
tion coupling with respect to the network distance for the
simple network shown in Fig. 3. This behavior is also observed
in Section V for more general networks.

In Fig. 3, the subset of the states with network distance at
least k to B = {i0, j0} is

Sk = {ι} ∪ {(ir, jr)}r�k, k = 0, 1, . . . , n (64)

and the subset of the states with network distance k to
B = {(i0, j0)} is

Ek =

{
{(ik, jk)}, k = 0, 1, . . . , n − 1
{ι}, k = n.

(65)

Then, as a consequence of Theorem 2 and Corollary 2 we
have the following result.

Corollary 5: Let S be a set of the states with NIG described
by Fig. 3, (64), and (65), with Ks,r = Kr,s = λr,sI for
r, s ∈ {i0, i1, . . . , in−1, j0, j1, . . . , jn−1}. Then, the coupled
information for state ι induced by B = {(i0, j0)} is upper
bounded as

Ξ(i0,j0) � 4λi0,j0ε
nI (66)

where ε = (λ2/(λ1 + λ2))2 < 1, λ1 = min{λr,r}, and λ2 =
max{λr,s} for r, s ∈ {i0, i1, . . . , in−1, j0, j1, . . . , jn−1}.

Proof: See Appendix H. �
Remark 7: This result shows that when two neighbors are

linked by a single loop {in−1, in−2, . . . , i0, j0, j1, . . . , jn−1}
and the link capacities are “isotropic,” the information cou-
pling induced by the interaction set {i0, j0} decays exponen-
tially with the network distance of the interaction set. This
exponential decay as a function of the distance of the links
forming the interaction set is further examined in Section V
for more general networks through numerical results.

The exponential decay of coupled information implies that
only close links induce a significant information coupling.
This locality of the information coupling can be exploited by
distributed algorithms since the effect of information coupling
can be safely discarded when the neighbors are coupled by
distant links. Hence, distributed algorithms that track the
information coupling induced only by close links can result
in near-optimal implementations.
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Fig. 4. Quantification of the coupled information for Scenario A. (a): Vectors v2→1, v3→1, and vc representing the effective information and the coupled
information from cooperation with nodes 2 and 3; (b): Intensity of information coupling for different values x1, measured by the norm of vector vc

(nuclear norm of Ξ
(2,3)
2,3 ).

Fig. 5. Quantification of the coupled information for Scenario B. (a): Vectors v2→1, v3→1, and vc representing the effective information and the coupled
information from cooperation with node 2 at time step t2 and node 1 at time step t1 ; (b): Intensity of information coupling for different values x1, measured
by the norm of vector vc (nuclear norm of Ξ

(4,3)
2,3 ).

V. NUMERICAL RESULTS

This section presents numerical results quantifying the cou-
pled information. We first assess the effect of information
coupling for scenarios A, B, and C studied in the previous
section, then we describe the effect of information coupling for
large networks and how it decreases with the network distance
of the links inducing the coupling.

A. Representative Scenarios

We simulate the three specific scenarios in the square
[−5 m, 5 m]× [−5 m, 5 m] and quantify the terms correspond-

ing to the effective information from neighbors as well as the
coupled information.

1) Scenario A: In this scenario, the positions of nodes
2 and 3 are (−1.66 m, 0 m) and (1.66 m, 0 m), the matrices
Ki,i = I , for i = 1, 2, 3, and the RIIs λi,j = 50/d2

i,j

for i �= j [32].10 Fig. 4(a) shows the vectors v2→1, v3→1,
and vc where K

(2,3)
2→1 = v2→1v

T
2→1, K

(2,3)
3→1 = v3→1v

T
3→1,

and Ξ
(2,3)
2,3 = vcv

T
c for a grid of 36 different values of x1

10For simplicity, we illustrate the numerical results of the information
coupling using the free-space path-loss model for the wireless ranging signals.
Similar observations can be made with other distributions for fading models.
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Fig. 6. Quantification of the coupled information for Scenario C. (a): Vectors v2→1, v3→1, and vc representing the effective information and the coupled
information from cooperation with nodes 2 and 3 at time step t2; (b): Intensity of information coupling for different values x

(2)
1 , measured by the norm of

vector vc (nuclear norm of Ξ
(4,5)
2,3 ).

in the square area. Fig. 4(b) shows the norm of vector vc,
which corresponds to the square root of the nuclear norm of
the matrix Ξ

(2,3)
2,3 , for different positions of x1 in the square

area.
From these figures we can observe that the coupled informa-

tion increases when node 1 is far from neighbors. Moreover,
the direction corresponding to the coupled information aligns
with one of the directions of neighbors’ cooperation when v1,i

and v2,3 are orthogonal for i = 2 or i = 3.

2) Scenario B: In this scenario, the position of node 2 at
time step t2 is (1.66 m, 0 m), the position of node 1 at time
step t1 is (−1.66 m, 0 m), and the position of node 2 at
time step t1 is (0 m,−5 m). The matrices Ki,i = I for
i ∈ {1, 2, 3, 4}, and the RIIs and SIIs λi,j = 50/d2

i,j for i, j ∈
{1, 2, 3, 4}, where di,j is the Euclidean distance between states
i and j. Fig. 5(a) shows the vectors v2→1, v3→1, and vc

where K
(4,3)
2→1 = v2→1v

T
2→1, K

(4,3)
3→1 = v3→1v

T
3→1, and

Ξ
(4,3)
2,3 = vcv

T
c for a grid of 36 different positions of x1 in

the square area. Fig. 5(b) shows the norm of vector vc, which
corresponds to the squared root of the nuclear norm of the
matrix Ξ

(4,3)
2,3 , for different positions of x

(2)
1 in the square

area.
From these figures, we can observe that the coupled

information decreases when the node 1 at time step t2 is
far from neighbors. Moreover, the coupled information also
decreases when the direction formed by node 1 at times t1 and
t2 is orthogonal to the direction formed by node 1 at time t1
and node 2 at time t1, that is, when the direction with neighbor
x

(1)
1 is orthogonal to the direction formed by the interaction

set {x(1)
1 , x

(1)
2 }. Conversely, the information coupling is more

severe when the direction with neighbor x
(1)
1 is the same as

the interaction set and when node 1 at time t2 is closer to such
neighbor. Finally, the direction corresponding to the coupled

information is closer to the direction of cooperation with
node 1 at time t1. These results agree with the intuition that the
coupling directly affects neighbor x

(1)
1 since this state is in the

interaction set, and this effect comes mainly in the direction
with the other state in the interaction set (node 2 at time t1)
while its effect is negligible in the orthogonal direction.

3) Scenario C: In this scenario, the position of
nodes 2 and 3 at time step t2 are (−1.66 m, 0 m) and
(1.66 m, 0 m), respectively, and the positions of nodes 2 and 3
at time step t1 are (1.66 m,−5 m) and (−1.66 m,−5 m),
respectively. The matrices Ki,i = I for i ∈ {1, 2, 3, 4, 5},
and the RIIs and SIIs λi,j = 50/d2

i,j for i, j ∈ {1, 2, 3, 4, 5},
where di,j is the Euclidean distance between states
i and j. Fig. 5(a) shows the vectors v2→1, v3→1, and
vc where K

(4,5)
2→1 = v2→1v

T
2→1, K

(4,5)
3→1 = v3→1v

T
3→1, and

Ξ
(4,5)
2,3 = vcv

T
c for a grid of 36 different values of x

(2)
1 in the

square area. Fig. 6(b) shows the norm of vector vc, which
corresponds to the square root of the nuclear norm of the
matrix Ξ

(4,5)
2,3 , for different positions of x

(2)
1 in the square

area.
From these figures we can observe that the information

coupling is much less severe than in previous scenarios and
decreases when the node 1 at time step t2 is far from neigh-
bors. Moreover, the coupled information also decreases when
the direction formed by node 1 at time t1 and each neighbor
is orthogonal to the direction formed by each neighboring
node with itself at previous time step. Conversely, the coupled
information increases when the node 1 at time step t2 is in
the same direction as the direction formed by each neighboring
node with itself, and hence the information coupling is more
severe when node 1 at time step t2 is in the intersection of both
directions. These results agree with the intuition that firstly,
the information coupling is much less severe because the
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Fig. 7. Localization network formed by 100 nodes. Magenta, light blue, and
dark green edges represent different connected components while red dashed
edges represent an interaction set.

coupling affects both neighbors indirectly (none of them are
in the interaction set). In addition, the information coupling
affects the neighbors in the direction they form with their
neighbors in the interaction set, and hence, the information
coupling affects node 1 at time step t2 mainly in such direc-
tions while its effect is negligible in the orthogonal directions.

B. Large Networks

This section evaluates the intensity of information coupling
over the total EFIM for large networks in terms of the nuclear
norm of the corresponding matrices. In particular, we study
how the closeness of the interaction set affects the coupled
information. In addition, we show that close information links
in terms of network distance are the truly relevant ones.

In this set of numerical simulations, we carried
10,000 Monte Carlo network emulations where 100 and
200 nodes are deployed uniformly at random in the square
[−50 m, 50 m] × [−50 m, 50 m] and the node ι is located in
the origin (see Fig. 7). Each pair of nodes obtains range
measurements with probability 0.5 if their distance is smaller
than 16m and the prior knowledge of nodes is set to Ki,i = I,
Ki,i = 4I, or Ki,i = 10I.

In the first simulations, we study the relationship between
information coupling and network distance of the interaction
set. In these simulations the interaction set is formed by one
link with different network distances to state ι. In Fig. 8 we
show the ratio between the nuclear norms of the coupled
information Ξ and the total EFIM Je as a function of the
network distance between the interaction set and state ι for
networks formed by 100 and 200 nodes. In both figures,
it can be observed that coupled information sharply decays
with the network distance of the interaction set and also that
information coupling is more severe in cases with small prior
knowledge.

In the second simulations, we study how the information
induced by a set of links decays with the network distance.
In these simulations we compare the EFIM for state ι using

all the information links Je with that obtained using the infor-
mation links between nodes with network distances at most
k, JBk

e , where Bk = {(i, j) ∈ S2: max{ND(ι, i), ND(ι, j)} >
k}. Then, Fig. 9 shows the information intensities obtained
from the nodes with network distances at most k normalized
by the total information intensity and the number of links to
nodes with network distances at most k for k = 1, 2, . . . , 10.
From this figure we can observe that the information intensity
provided by each link in a network with network distances at
most k decays sharply with the network distance k.

VI. INFORMATION COUPLING AND ALGORITHMS

In network navigation, nodes obtain position estimates from
spatial and temporal cooperation with neighbors. In previous
sections, we have shown that the information an node obtains
from its neighbors is often coupled since it depends not only
on the information obtained from the links to each neighbor
(e.g., links (ι, i1) and (ι, i2) in NIG shown in Fig. 1) but
also on how those neighbors share information among them-
selves (e.g., link (j1, j2) in NIG shown in Fig. 1). In this
section, we show how such information coupling affects the
performance of distributed algorithms and how our theoretical
results can aid the design of such algorithms.

A. Impact of Information Coupling on Algorithms

In centralized algorithms, one processor collects all the
information and determines jointly the positional estimates
for all nodes. Such implementations can take full account
of the information coupling since the centralized processor
can have access to all pair-wise states’ cooperations. That is,
the processor can have complete access to the NIG formed by
the pair-wise information links, and thus it can determine the
coupled information for each state. For instance, in cases with
linear and Gaussian models for measurements, a centralized
processor can determine the posterior distribution of the states
given all measurements as a joint Gaussian distribution. The
mean of such distribution μ represents the minimum mean-
squared error (MMSE) positional estimates for all states and
the covariance matrix Σ represents the joint uncertainty for all
state estimates. In particular, the diagonal blocks in such joint
covariance matrix represent the uncertainty of each state, while
each non-diagonal block represents the correlation between
pairs of states estimates. Note that a non-diagonal block Σi,j

corresponding to states i and j is non-zero when there is path
connecting states i and j in the NIG [79]. Such non-diagonal
blocks quantify the interrelation between the estimates of
states i and j.

In distributed algorithms, several processors collect different
subsets of information and determine in parallel positional
estimates of subsets of nodes. In such implementations, it is
difficult to account for information coupling since each proces-
sor has access to only a subset of pair-wise states cooperations.
That is, each processor has access to a subgraph of the
NIG formed by pair-wise information links. The most com-
mon current distributed implementations are based on belief
propagation [51]–[53]. In these approaches, each processor
keeps track of the positional estimate and uncertainty for each
node separately, and individual estimates and uncertainties
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Fig. 8. Coupled information sharply decays with the network distance of the interaction set and is more severe in cases with small prior knowledge. The
y-axis represents averaged ratios between the nuclear norms of coupled information and the total equivalent information, while the x-axis represents different
network distances of the interaction link. (a) Networks with 100 nodes. (b) Networks with 200 nodes.

Fig. 9. The impact of the links in the total information decays sharply with the network distance and increases with the amount of prior knowledge. The
y-axis represents averaged nuclear norms of the EFIMs J

Bk
e obtained from nodes with network distances at most k normalized by the total EFIM intensity

and the number of links with network distances at most k, while the x-axis represents network distance k. (a) Networks with 100 nodes. (b) Networks with
200 nodes.

are updated by means of messages among different proces-
sors. For instance, in cases with linear and Gaussian models
for measurements, each processor approximates the marginal
posterior of each individual state given all measurements as
a Gaussian distribution. Each mean μi of such distributions
represents the positional estimate of each individual state and
the corresponding covariance Σi,i represents the individual
uncertainty of each state. Both means and covariances are
updated through messages communicated with other proces-
sors through an iterative process. Note that those techniques
are unaware of the interrelations among nodes’ uncertainties
and each processor does not keep track of how neighbors share
information among themselves.

In the following we show the impact of information
coupling in the algorithms performance via both analytical
expressions and numerical results using linear and Gaussian

models for measurements for the ease of closed-form
expressions. In particular, we consider a localization system
that uses inter-node measurements related to the differences
of positions and velocities, i.e., an inter-node measurement
related to nodes i and j is yi,j given by

yi,j =
[
pi − pj

vi − vj

]
+ εi,j (67)

with instantiation of pi ∈ R
d and vi ∈ R

d being position
and velocity of node i, and εi,j being additive white noise
following a zero-mean Gaussian distribution with covariance

Qi,j = diag
{
σ2

p Id, σ
2
v Id

}
(68)

The state of node k at time tn is x
(n)
k =

[
(p(n)

k )T, (v(n)
k )T

]T ∈
R

2d. Let x(n) =
[
(x(n)

1 )T, (x(n)
2 )T, . . . , (x(n)

K )T
]T ∈
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R
2dK be the concatenation of all states, and y(n) =[
(y(n)

i1,j1
)T, (y(n)

i2,j2
)T, . . . , (y(n)

im,jm
)T]T ∈ R

2dM be a set of
inter-node measurements. Then, we have that

y(n) = H(n)x(n) + ε(n) (69)

where

H(n) =
[
eK

i1 − eK
j1 , e

K
i2 − eK

j2 , . . . , e
K
im

− eK
jm

]T ⊗ I2d (70)

with ε(n) additive white noise that follows a zero-mean
Gaussian distribution with covariance

Q(n) = diag
{
Q

(n)
i1,j1

, Q
(n)
i2,j2

, . . . , Q
(n)
im,jm

}
. (71)

We also assume that the nodes move with constant
velocities, that is x

(n)
k = Ex

(n−1)
k with

E =
[

1 Δ
0 1

]
⊗ I2d (72)

and Δ = tn − tn−1 is a constant observation interval.
Therefore, x(n) = F x(n−1) with F = IK ⊗ E.

Under such assumptions, if μ(n) and Σ(n) denote
the mean and covariance of x(n) given measurements
{y(1), y(2), . . . , y(n)}, the usual Kalman filtering recursion
(see e.g., [80]–[86]) give us that

μ(n) = μ̃ + Σ̃
(
H(n)

)T
(
Q(n) + H(n)Σ̃

(
H(n)

)T
)−1

z (73)

Σ(n) =
(
Σ̃

−1
+

(
H(n)

)T(
Q(n)

)−1
H(n)

)−1

(74)

where

μ̃ = Fμ(n−1)

Σ̃ = FΣ(n−1)F T

z = y(n) − H(n)μ̃. (75)

In the specific case where only one measurement is obtained

at time tn (i.e., y(n) = y
(n)
i,j ), (73) and (74) lead to

(see Appendix I)

μ
(n)
i = W1(W1 + W2)−1Eμ

(n−1)
i

+W2(W1 + W2)−1
(
y

(n)
i,j + Eμ

(n−1)
j

)
(76)

[
Σ(n)

]
i,i

= W1(W1 + W2)−1E
[
Σ(n−1)

]
i,i

ET

+W2(W1 + W2)−1E
[
Σ(n−1)

]
j,i

ET (77)

with

W1 = Q
(n)
i,j + E

([
Σ(n−1)

]
j,j

− [Σ(n−1)]j,i
)
ET

W2 = E
([

Σ(n−1)
]
i,i

− [
Σ(n−1)

]
i,j

)
ET. (78)

In this simple case, at time tn node i cooperates with
two neighbors: node i at time tn−1 (temporal cooperation)
and node j at time tn (spatial cooperation). Both the state
estimates and its covariance in (76) and (77) become the
weighted sum of estimates and covariances due to the temporal
cooperation and spatial cooperation. Note that both weighted
sums depend on the uncertainty of the two neighbors but also
on how those uncertainties are interrelated. If the neighbors
have interacted, then the non-diagonal term [Σ(n−1)]i,j in the
covariance matrix is non-zero. Discarding such information

Fig. 10. The RMSE per node in a navigation network for centralized
algorithm that estimates the states and joint nodes uncertainties versus a
distributed algorithm based on BP, and a centralized algorithm that estimate
the states and individual nodes’ uncertainties. Position errors can rapidly
increase if the information coupling among nodes’ estimates are discarded.

coupling leads to an inaccurate positional estimate in (76) and
a wrong covariance in (77). Such covariances lead to a harmful
cascade effect since they are used by other neighbors in next
time steps.

We next quantify the localization performance loss due to
discarding information coupling. In particular, we compare
the position error of algorithms that keep only the individual
uncertainties of each state with that of algorithms that keep the
joint uncertainty of all the states. We simulate a navigation net-
work composed of 100 nodes and three anchors deployed uni-
formly at random in the square [−50 m, 50 m]×[−50 m, 50 m].
Nodes move with constant velocities with components sam-
pled uniformly in the interval [−1 m/s, 1 m/s]. The states
are estimated using inter-node measurements for positions
and velocities differences as described in (67). In particular,
in every second each pair of nodes i, j obtain measurements
with probability 0.5 if their distance di,j is smaller than 20 m,
and σ2

p = σ2
v = d2

i,j/50 m2. Positions are estimated using
three algorithms:

1) a centralized algorithm that obtains MMSE estimates for
the states using (73) and (74);

2) a distributed algorithm that estimates the states using BP
(see e.g., [67]);11

3) a centralized algorithm that estimates the states
using (73) and (74) but discard the non-diagonal blocks
in the covariance matrix.

These three algorithms are the most relevant for this evaluation
since the first one is optimal in the mean-squared error (MSE)
sense, the second one is the most common distributed algo-
rithm, and the third one is the same as the optimal algorithm
except that it discards the information coupling.

Fig. 10 shows the RMSE per node for the position estimates
obtained by the three algorithms used during 30 seconds. It can

11We use four iterations for message passing as this is a common practice
used for cooperative localization [51].
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Fig. 11. Ratio between RMSEs of BP-based and MMSE algorithms for nodes
with different number of neighbors. The performance gap of algorithms that
discard information coupling increases with the number of neighbors.

be observed that the three algorithms obtain accurate position
estimates for the first time steps, but that the algorithms
that are not aware of the interrelations among estimates for
different nodes (non-diagonal blocks in covariance matrix)
quickly become highly inaccurate. In addition, Fig. 11 shows
the RMSE ratio between the BP-based and MMSE algorithms
for nodes with different number of neighbors. It can be
observed that the performance gap between the BP-based and
MMSE algorithms increases with the number of neighbors.
As shown by these results, algorithms that discard the infor-
mation coupling among different nodes can result in poor
performances, especially in sequential implementations where
the positions and uncertainties estimates are based on those
obtained in previous steps.

B. Design Insights Toward Coupling-Aware Algorithms

The paper characterizes the information coupling in network
navigation via Fisher information analysis, and shows how
the accuracy bound for each state depends on the effective
information obtained from neighbors and also on the coupled
information by neighbors’ interaction. Specifically,

• Theorem 1 shows that the information obtained by each
node through cooperation is the sum of that obtained
from each connected component in the NIG. In addi-
tion, it shows that the information obtained from each
component depends on the capacity of the links to the
neighbors in such component and a term that accounts
for the joint uncertainty of neighbors in the component.
Corollary 1 shows that when neighbors are isolated,
i.e., belong to different components, the information
obtained through cooperation is the sum of the effective
information obtained from each neighbor. Such effective
information accounts for the individual uncertainty of the
neighbor in its component.

• Neighbors in the same connected component can be
uncoupled by removing the information links in an
interaction set. Proposition 2 shows that the information
obtained through cooperation can be decoupled as the

sum of the effective information from each neighbor by
discarding the information links in an interaction set.
Propositions 3 and 4 further characterize the effective
information that can be obtained from neighbors in terms
of the interaction set, neighbors uncertainty, and informa-
tion links to neighbors.

• Theorem 2 with Corollaries 2 and 5 describes how
coupled information decreases with the network distance
to the interaction set. In particular Corollary 5 and the
numerical results in Section V-B show the sharp decay of
coupled information with network distance. Such decay
of coupled information implies that only close links
induce a significant information coupling.

• Theorem 3 with Corollary 3 shows that the coupled
information increases with the capacity of the link in
the interaction set, and decreases with the uncertainty
of the interaction set. In addition, the analytical expres-
sions for specific simple representative networks shown
in Section IV and the corresponding numerical results
shown in Section V-A describe how information coupling
also depends on the spatial topology among the states.

Our results show how interrelations among neighbors result
in information coupling, how such coupling affects positional
accuracy bounds, and the main aspects influencing information
coupling. Several insights derived from such results can yield
specially useful guidelines for the design of coupling-aware
distributed algorithms.

• Algorithms that discard the information provided by
interaction sets can directly lead to efficient distributed
implementations. Such techniques can exploit a trade-off
between positional accuracy and implementation effi-
ciency where the information provided by interaction sets
can be sacrificed in order to enable simple distributed
implementations (see Propositions 2, 3, and 4).

• Algorithms that keep track of the most relevant infor-
mation coupling can result in near optimal implemen-
tations. Our results show in what circumstances the
information coupling is negligible depending on 1) the
network distance to the interaction set (see Corollary 5
and Section V-B); 2) the interaction set uncertainties and
link capacities (see Theorem 3 and Corollary 3); and
3) the spatial topology of neighbors and the interaction
set (see Section V-A).

Efficient distributed estimation is critical not only for net-
work navigation but also for a diverse set of applications
in fields such as digital communications and sensor net-
works [87], [88]. Dependencies among different information
sources hinder the development of effective distributed estima-
tion techniques for general problems. For instance, BP-based
distributed algorithms fail to take into account the dependences
between messages from neighbors by assuming conditional
independences, which are valid for tree-structured inference
graphs but fail for graphs with loops. Capturing the dependen-
cies among different information sources in distributed settings
is challenging. Generalized BP techniques assemble variables
in groups, and hence can keep the intra-group dependences but
not inter-group dependences [88]. Other works suggest to keep
track of the path followed by messages exchanged in oder to
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capture dependences between messages [87]. The theoretical
results and design insights presented in this paper for network
navigation can also be useful for general distributed estimation
problems.

VII. CONCLUSION

In this paper, we characterized the information coupling
arising in network navigation via Fisher information analysis.
In particular, we derived the EFIM for individual states,
characterizing the effective information obtained from each
neighbor and the coupled information induced by neighbors’
interaction. In addition, we determined how the coupled infor-
mation decays with network distance, analyzed information
coupling in representative case studies, and showed the impact
of information coupling in the performance of current distrib-
uted algorithms.

The results show that the information coupling depends on
the links capacities, the node uncertainties, the spatiotemporal
topology of the nodes, and the network distance of neighbors
interaction. Information coupling can highly impact the per-
formance of network navigation algorithms. The theoretical
findings in the paper characterize how information coupling
arises and which factors determine the intensity of informa-
tion coupling. Our results can serve as guidelines for the
design of efficient and accurate coupling-aware algorithms for
network navigation that enable numerous emerging location-
based applications.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: The matrix GS
i,j ⊗ Ki,j is positive semidefinite

because GS
i,j ⊗Ki,j = Ci,jKi,jC

T
i,j where Ci,j is a SD ×D

matrix given by

Ci,j =

{
eS

i ⊗ ID, i = j

eS
i ⊗ ID − eS

j ⊗ ID, i �= j.
(79)

Then, the rank of Ci,jKi,jC
T
i,j is equal to that of Ki,j because

Ci,j has rank D which is larger than or equal to the rank
of Ki,j .

The second part of the proposition follows since using (1)
we have that

J �
∑

i∈S
GS

i,i ⊗ Ki,i (80)

where the right-hand side is full rank since it is block diagonal
and Ki,i ∈ S

D
++ for all i ∈ S. �

APPENDIX B
LEMMA

Lemma 1: Let

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

A +
∑n

i=1 Ai −A1−A2 . . . −An

−A1

−A2

. . . diag{A1, A2, . . . , An} + B

−An

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(81)

where A1, A2, . . . , An ∈ S
D
+ , A ∈ S

D
++, and B ∈ S

Dn
++.

Then, the matrix C is positive definite and the Schur comple-
ment of A +

∑n
i=1 Ai in C is A + R with R � 0.

Proof: The matrix C can be rewritten as

C =
n∑

i=1

(
en

1 ⊗ Ui − en
i ⊗ Ui

)(
en

1 ⊗ Ui − en
i ⊗ Ui

)T

+
[

A 0
0 B

]
(82)

where Ai = UiU
T
i . Then, C is positive definite because

the first term in that decomposition is the sum of positive
semidefinite matrices and the last term is a positive definite
matrix.

Finally, the Schur complement of A +
∑n

i=1 Ai in C is
A + R where R is the Schur complement of

n∑

i=1

(
en

1 ⊗ Ui − en
i ⊗ Ui

)(
en

1 ⊗ Ui − en
i ⊗ Ui

)T +
[

0 0
0 B

]

(83)

and hence, the result is obtained by observing that R is the
Schur complement of a positive semidefinite matrix. �

APPENDIX C
PROOF OF PROPOSITION 3

Proof:
1) The inequality KB

i→ι � Kι,i is trivial since ΛB
ki

is a
positive semidefinite matrix. The inequality KB′

i→ι � 0 is
obtained by observing that it is the Schur complement of

[
Kι,i Kι,i

Kι,i

([(
JB′
C′

ki
,C′

ki

)−1
]

i,i

)−1

]
(84)

which is a positive semidefinite matrix since
([(

JB′
C′

ki
,C′

ki

)−1
]

i,i

)−1

� Kι,i (85)

using the Lemma 1 with C = JB′
C′

ki
,C′

ki

and A = Kι,i +

Ki,i. Finally, the inequality KB′
i→ι � KB

i→ι is obtained
by observing that JB � JB′

.
2) The result is obtained by using the Lemma 1 with C =

JB′
C′

ki
,C′

ki

and A = Ki,i. Notice that the result for B can
be obtained analogously.

�
APPENDIX D

PROOF OF THEOREM 2

Proof: The fact that [Jk]i,j =
[
JB

k

]
i,j

= Ji,j for
(i, j) /∈ E2

k is straightforward by the definition of Sk and Ek.
The remaining of the theorem can be proven by induction over
k as follows.

The result for k = 0 is straightforward. Suppose the
result holds for k = r � 0. Since [Jr+1]Er+1,Er+1 and[
JB

r+1

]
Er+1,Er+1

are the Schur complement of the upper left
block of [

JEr+1,Er+1 JEr+1,Er

JT
Er+1,Er

[Jr]Er ,Er

]
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[(
JS̄,S̄

)−1
]

i1,j1
=

[(
JB
C1,C1

)−1
]

i1,i1
−

[(
JB
C1,C1

)−1
]

i1,j1
Uj1,j2ΔUT

j1,j2

[(
JB
C1,C1

)−1
]

i1,j1
(91)

[(
JS̄,S̄

)−1
]

i1,j2
=

([(
JS̄,S̄

)−1
]

i2,j1

)T
=

[(
JB
C1,C1

)−1
]

i1,j1
Uj1,j2ΔUT

j1,j2

[(
JB
C2,C2

)−1
]

i2,j2
(92)

[(
JS̄,S̄

)−1
]

i2,j2
=

[(
JB
C2,C2

)−1]

i2,i2
−

[(
JB
C2,C2

)−1
]

i2,j2
Uj1,j2ΔUT

j1,j2

[(
JB
C2,C2

)−1
]

i2,j2
(93)

and [
JEr+1,Er+1 JEr+1,Er

JT
Er+1,Er

[
JB

r

]
Er,Er

]

respectively, then

[Jr+1]Er+1,Er+1 −
[
JB

r+1

]
Er+1,Er+1

= JEr+1,Er

[([
JB

r

]
Er ,Er

)−1

−
(
[Jr]Er,Er

)−1
]
JT
Er+1,Er

(86)

and the result is obtained since by the induction hypothesis

[Jr]Er ,Er =
[
JB

r

]
Er ,Er

+ΓrUj1,j2

(
I + UT

j1,j2ΔrUj1,j2

)−1
UT

j1,j2Γ
T
r

(87)

and hence
([

JB
r

]
Er,Er

)−1 − ([Jr]Er,Er)
−1

=
([

JB
r

]
Er ,Er

)−1
ΓrUj1,j2

·
[
I + UT

j1,j2

(
Δr + Γ T

r

([
JB

r

]
Er,Er

)−1

Γr

)
Uj1,j2

]−1

·UT
j1,j2Γ

T
r

([
JB

r

]
Er,Er

)−1

(88)

using the matrix inversion lemma. �

APPENDIX E
PROOF OF THEOREM 3

Proof: Note that

JS̄,S̄ = J B̄
S,S̄ + V V T (89)

where V =
(
eS−1
j1

− eS−1
j2

) ⊗ Uj1,j2 and Kj1,j2 =
Uj1,j2U

T
j1,j2 . Then, using the matrix inversion lemma

(JS̄,S̄)−1 =
(
J B̄
S,S̄

)−1 − (
J B̄
S,S̄

)−1
V ΔV T(

J B̄
S,S̄

)−1
(90)

where Δ =
(
I + V T(

J B̄
S,S̄

)−1
V

)−1
. Since J B̄

S,S̄ is block
diagonal with each block corresponding to a different compo-
nent of the partition of S̄, all the components of (JS̄,S̄)−1 and(
J B̄
S,S̄

)−1
are equal except for those corresponding to (i1, j1),

(i1, j2), (i2, j1), and (i2, j2) shown by (91), (92), and (93)
respectively, at the top of this page.

Then the result is obtained since

Uj1,j2ΔUT
j1,j2 = Uj1,j2

(
I + UT

j1,j2ΦUj1,j2

)−1
UT

j1,j2

=
(
I − Kj1,j2

(
Φ−1 + Kj1,j2

)−1
)
Kj1,j2

= Kj1,j2

(
Φ−1 + Kj1,j2

)−1
Φ−1 (94)

where the second equality is obtained using the matrix inver-
sion lemma. �

APPENDIX F
PROOF OF COROLLARY 4

Proof: Note that using (34) we have that

Ξ
(j1,j2)
i1,i2

= Γ
(
I − Kj1,j2

(
Φ−1 + Kj1,j2

)−1
)
Kj1,j2Γ

T (95)

and by the hypothesis of this corollary we have that(
I − Kj1,j2

(
Φ−1 + Kj1,j2

)−1
)
Kj1,j2

=
(
1 −

(
vT

j1,j2

(
Φ−1 + vj1,j2v

T
j1,j2

)−1
)
vj1,j2

)
vj1,j2v

T
j1,j2

=
(
1 + vT

j1,j2Φvj1,j2

)−1
vj1,j2v

T
j1,j2

=
(
1 + vT

j1,j2Φvj1,j2

)−1
Kj1,j2 (96)

where the second equality is a consequence of the matrix
inversion lemma. Then, using the expression for Γ in (35),
we have that

ΓKj1,j2 =
(
vT

ι,i1

[(
JB
C1,C1

)−1
]

i1,j1
vj1,j2vι,i1

)
vT

j1,j2

−
(
vT

ι,i2

[(
JB
C2,C2

)−1
]

i2,j2
vj1,j2vι,i2

)
vT

j1,j2

= (μi1vι,i1 − μi2vι,i2)v
T
j1,j2 (97)

and the result is obtained observing that

vT
j1,j2Γ

T = (μi1vι,i1 − μi2vι,i2)
T. (98)

�

APPENDIX G
DERIVATIONS FOR SECTIONS IV-A, IV-B, AND IV-C

The EFIM in (43) is obtained from Theorem 3 since in
Scenario A, i1 = j1 = 2, i2 = j2 = 3, C1 = {2}, and
C2 = {3}. Hence

(
JB
C1,C1

)−1 = (K2,2 + K1,2)−1

(
JB
C2,C2

)−1 = (K3,3 + K1,3)−1 (99)

which leads to (43) using the expressions in
Theorem 3 and (18).

The EFIM for the case with rank-one link capacities in (46)
is obtained from Corollary 4 since from (18)

ξ1,i = 1 − vT
1,i(Ki,i + K1,i)−1v1,i

=
(
1 + vT

1,iK
−1
i,i v1,i

)−1
(100)

using the matrix inversion lemma. The expression for μi is
obtained since

vT
1,i(Ki,i + K1,i)−1 = ξ1,iv

T
1,iK

−1
i,i (101)

using again the matrix inversion lemma. The expression for
δ2,3 is a direct consequence of Corollary 4 and (43).
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(
JB
C1,C1

)−1 =
[

K2,2 + K1,2 + K2,4 −K2,4

−K2,4 K4,4 + K2,4

]−1

=
[

Ω−1
2 Ω−1

2 K2,4(K4,4 + K2,4)−1

(K4,4 + K2,4)−1K2,4Ω
−1
2 Ω−1

4

]
(108)

(
JB
C2,C2

)−1 =
[

K3,3 + K1,3 + K3,5 −K3,5

−K3,5 K5,5 + K3,5

]−1

=
[

Ω−1
3 Ω−1

3 K3,5(K5,5 + K3,5)−1

(K5,5 + K3,5)−1K3,5Ω
−1
3 Ω−1

5

]
(109)

The EFIM in (50) is obtained from Theorem 3 since in
Scenario B, i1 = 2, j1 = 4, i2 = j2 = 3, C1 = {2, 4}, and
C2 = {3}. Hence,

(
JB
C1,C1

)−1
is given by (108), shown at the

top of this page, and

(
JB
C2,C2

)−1 = (K3,3 + K1,3)−1 (102)

which leads to (50) using the expressions in Theorem 3
and (18).

The EFIM for the case with rank-one link capacities in (53)
is obtained from Corollary 4. The derivations for ξ1,3 and
μ2 are the same as those in Scenario A. The expression for
δ3,4 is a direct consequence of Corollary 4 and (50), and
ξ1,2 is obtained since from (18) and the matrix inversion
lemma

ξ1,2 = 1 − vT
1,2Ω

−1
1,2 v1,2 =

(
1 + vT

1,2(Ω2 − K1,2)v1,2

)−1

(103)

and

Ω2 − K1,2 = K2,2 + K2,4(K4,4 + K2,4)−1K2,4

= K2,2 +
(
1 + vT

2,4K
−1
4,4 v2,4

)−1
K2,4. (104)

The expression for μ2 is obtained since from Corollary 4
and (43)

μ2 = vT
1,2Ω

−1
2 K2,4(K4,4 + K2,4)−1v3,4 (105)

and using the matrix inversion lemma

vT
1,2Ω

−1
2

= vT
1,2(Ω2 − K1,2)−1

(
1 + vT

1,2(Ω2 − K1,2)−1v1,2

)−1

= ξ1,2v
T
1,2(Ω2 − K1,2)−1 (106)

and similarly

K2,4(K4,4+K2,4)−1 =v2,4v
T
2,4K

−1
4,4

(
1+vT

2,4K
−1
4,4 v2,4

)−1
.

(107)

The EFIM in (57) is obtained from Theorem 3 since in
Scenario C, i1 = 2, j1 = 4, i2 = 3, j2 = 5, C1 = {2, 4},
and C2 = {3, 5}. Hence, (JB

C1,C1
)−1 and (JB

C2,C2
)−1 are given

by (108) and (109), respectively, shown at the top of this
page, which leads to (57) using the expressions in Theorem 3
and (18).

The EFIM for the case with rank-one link capacities in (61)
is obtained from Corollary 4. The derivations for ξ1,i and μi

are the same as those of ξ1,2 and μ2 in Scenario B. The
expression for δ4,5 is a direct consequence of Corollary 4
and (57).

APPENDIX H
PROOF OF COROLLARY 5

Proof: The proof is divided into two steps: we first prove
that for k = 0, 1, . . . , n − 1,

JB
Ek,Ek

� diag
{
(λik ,ik

+ λik,ik+1) I, (λjk,jk
+ λjk,jk+1) I

}

(110)

where we let in = jn = ι for notational convenience.
In the second step, we prove that for k = 0, 1, . . . , n − 1,
Dk � 2λi0,j0ε

k I . Finally, the result is obtained by observing
that Ξ(i0,j0) = Dn � 4λi0,j0ε

n I .
First step: notice that

JB
E0,E0

= diag
{
(λi0,i0 + λi0,i1) I, (λj0,j0 + λj0,j1) I

}
(111)

and then the result is obtained by induction since

JB
Ek+1,Ek+1

=
[

(λik+1,ik+1 + λik+1,ik+2)I 0
0 (λjk+1,jk+1 + λjk+1,jk+2)I

]

+
[

λik+1,ik
I 0

0 λjk+1,jk
I

]
−

[
λik+1,ik

I 0
0 λjk+1,jk

I

]

· (JB
Ek,Ek

)−1
[

λik+1,ik
I 0

0 λjk+1,jk
I

]

(112)

and hence, if the inequality in (110) is true for k we have that
it is also true for k + 1 using (110) in (112) and since

λik+1,ik
− λ2

ik+1,ik

λik,ik
+ λik+1,ik

> 0

λjk+1,jk
− λ2

jk+1,jk

λjk,jk
+ λjk+1,jk

> 0. (113)

Second step: notice that

D0 = λi0,j0 [1,−1]T[1,−1]⊗ I � 2λi0,j0I (114)

and then Dk � 2λi0,j0ε
kI for k = 0, 1, . . . , n−1, by induction

using Corollary 2 and the fact that
(
JB
Ek,Ek

)−2 � diag
{
(λik,ik

+ λik ,ik+1)
−2 I,

(λjk ,jk
+ λjk,jk+1)

−2 I
}

(115)

and
λik+1,ik

λik,ik
+ λik,ik+1

<
λ2

λ1 + λ2

λjk+1,jk

λjk,jk
+ λjk,jk+1

<
λ2

λ1 + λ2
. (116)

Finally, from Corollary 2

Dn � J1,En−1

(
JB
En−1,En−1

)−1
Dn−1

(
JB
En−1,En−1

)−1
JEn−1,1

� 4 λi0,j0ε
nI (117)
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where the second inequality is obtained using (110) and
J1,En−1 = (λ1,in−1 , λ1,jn−1) ⊗ I = JT

En−1,1 �

APPENDIX I
DERIVATIONS FOR EQUATIONS (76) AND (77)

Since y(n) = y
(n)
i,j , we have that H(n) =

[
eK

i −eK
j

]T ⊗ I2d

and hence

z = y
(n)
i,j −E

(
μ

(n−1)
i −μ

(n−1)
j

)
(118)

Q(n)+H(n)Σ̃
(
H(n)

)T = W1 + W2 (119)

with W1 and W2 given in (78). Therefore, using (73) we
obtain

μ
(n)
i = Eμ

(n−1)
i + W2(W1 + W2)−1

·
(
y

(n)
i,j − E

(
μ

(n−1)
i − μ

(n−1)
j

))
(120)

that directly leads to (76) after rearranging. Finally, (77)
is obtained similarly after using the matrix inversion
lemma in (74).
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