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ABSTRACT | Situation-aware technologies enabled by multi-

target tracking will lead to new services and applications in 

fields such as autonomous driving, indoor localization, robotic 

networks, and crowd counting. In this tutorial paper, we advo-

cate a recently proposed paradigm for scalable multitarget 

tracking that is based on message passing or, more concretely, 

the loopy sum�product algorithm. This approach has 

 advantages regarding estimation accuracy, computational com-

plexity, and implementation flexibility. Most importantly, it pro-

vides a highly effective, efficient, and scalable solution to the 

probabilistic data association problem, a major challenge in 

multitarget tracking. This fact makes it attractive for emerging 

applications requiring real-time operation on resource-limited 

devices. In addition, the message passing approach is intuitive-

ly appealing and suited to nonlinear and non-Gaussian models. 
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We present message-passing-based multitarget tracking 

 methods for single-sensor and multiple-sensor scenarios, 

and for a known and unknown number of targets. The pre-

sented methods can cope with clutter, missed detections, 

and an unknown association between targets and measure-

ments. We also discuss the integration of message-passing-

based probabilistic data association into existing multitarget 

tracking methods. The superior performance, low complexi-

ty, and attractive scaling properties of the presented meth-

ods are verified numerically. In addition to simulated data, 

we use measured data captured by two radar stations with 

overlapping fields-of-view observing a large number of tar-

gets simultaneously.

KEYWORDS | Data association; data fusion; factor graph; 

message passing; multitarget tracking; sum�product algorithm

I .  IN TRODUCTION

A new era of real-time pervasive situational awareness 
will be enabled by emerging inexpensive sensors and scal-
able data fusion algorithms. Situation-aware technolo-
gies are key to innovative products and services that are 
profoundly changing various aspects of our daily life. For 
example, safe autonomous navigation is based on a clear 
understanding of static and mobile objects in the environ-
ment. Multitarget tracking (MTT) can infer the states of 
these objects (or “targets”) from measurements provided 
by one or more sensors even if their number is unknown 
[1]–[4]. The state of a target usually includes its posi-
tion and possibly other quantities such as its velocity. A  
complicating factor in many MTT applications is the 
measurement origin uncertainty or data association (DA) 
problem, i.e., the unknown association of measurements 
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with targets. Since the first MTT methods were introduced 
for aerospace surveillance some 40 years ago [5], [6], the field 
has experienced an intense development, and MTT methods 
have proven useful in further surveillance scenarios [7]–[9] 
as well as in biomedical analytics [10]–[12]. Emerging MTT 
applications such as autonomous driving [13]–[15], indoor 
localization [16]–[18], robotic networks [19]–[21], and 
crowd counting [22]–[24] are especially challenging since 
they require real-time operation on resource-limited devices.

A. The Message Passing Approach to Multitarget 
Tracking

The existing MTT methods can be grouped in two broad 
categories that may be referred to as “vector-type” and “set-
type” methods. The former describe the multitarget states 
and measurements as random vectors [1], whereas the latter 
describe the multitarget states and measurements by random 
finite sets (RFSs) [3]. Many of these MTT methods have a high 
complexity and do not scale well with relevant system param-
eters. Thus, they are often impractical for applications involv-
ing a large number of inexpensive sensors and/or targets.

Here, we demonstrate that MTT methods with low 
complexity and good scalability can be obtained by using 
the methodology of message passing, also known as belief 
propagation, or, more concretely, the sum–product algo-
rithm (SPA). The SPA provides a principled approximation 
of optimum Bayesian inference that achieves an attrac-
tive performance-complexity compromise [25]–[33]. It is 
intuitively appealing, suited to nonlinear and non-Gaussian 
system models, and able to cope with unknown and time-
varying hyperparameters.

In the last 25 years, message passing has been success-
fully used in many applications including iterative decod-
ing of channel codes [34]–[37], communication receivers 
[38]–[40], and cooperative localization [41]–[43]. Early 
work on message passing in the context of MTT [44]–[47] 
focused on the calculation of “hard” measurement-to-
target associations using the max-product algorithm. 
Only recently it was discovered that the “loopy” SPA is 
particularly attractive for MTT [48]–[55]. More specifi-
cally, the loopy SPA approach to MTT has the following 
advantages:

•  it enables an efficient calculation of association prob-
abilities for “soft” measurement-target associations;

•  it provides a principled, general technique for deriv-
ing MTT methods within the Bayesian inference 
framework;

•  it generalizes previously proposed MTT methods such 
as the joint probabilistic data-association (JPDA) filter; 

•  it enables the development of scalable MTT meth-
ods that are suitable for scenarios involving a 
large number of targets and/or sensors and/or 
measurements.

B. Contributions, Paper Organization, Notation

This tutorial paper presents SPA-based methods for 
MTT and discusses their properties and advantages in rela-
tion to other MTT methods. We will present three distinct 
types of SPA-based MTT methods: 1) vector-type methods 
for a known, fixed number of targets; 2) vector-type meth-
ods for an unknown, time-varying number of targets; and 
3) set-type methods for an unknown, time-varying number 
of targets.

The paper’s main contributions and organization are as 
follows. In the remainder of this section, we introduce some 
basic notation and formulate certain assumptions that are 
common to all presented methods. In Section II, we survey 
existing MTT methods. An introduction to factor graphs 
and the SPA is given in Section III. Section IV describes a 
vector-type system model and a corresponding statistical 
formulation for the case where the number of targets is 
fixed and known. The corresponding posterior distributions 
and their graphical representation using factor graphs are 
derived in Section V. Section VI discusses the solution of the 
probabilistic DA problem using the loopy SPA. In Section 
VII, SPA-based methods for vector-type MTT are presented 
for the case of a known, fixed number of targets. Section 
VIII describes a vector-type system model, statistical for-
mulation, and factor graph for the case where the number 
of targets is time-varying and unknown. For that case, new 
SPA-based methods for vector-type MTT are developed in 
Section IX. Section X commences our treatment of set-type 
MTT methods by giving an introduction to RFSs. In Section 
XI, we describe a set-type system model and a correspond-
ing statistical formulation. Section XII develops multitarget 
state propagation relations for the set-type system model. 
Building on these relations, Section XIII derives SPA-based 
methods for set-type MTT. In Section XIV, we evaluate the 
performance and complexity of the presented SPA-based 
MTT methods in comparison to state-of-the-art meth-
ods. In addition to simulated data, we use measured data 
acquired by two radar stations observing a large number of 
targets simultaneously. Our results demonstrate substantial 
 advantages—regarding both performance and complexity—
of SPA-based methods over other methods.

We will use the following basic notation. Random vari-
ables are displayed in sans serif, upright fonts; their realiza-
tions in serif, italic fonts. Vectors and matrices are denoted 
by bold lowercase and uppercase letters, respectively. For 
example,  x  is a random variable and  x  is its realization, and  x  
is a random vector and  x  is its realization. Random sets and 
their realizations are denoted by upright sans serif and cal-
ligraphic font, respectively. For example,  X  is a random set 
and    is its realization. The expectation of a random vari-
able or random vector is denoted by  E {⋅}  . The probability 
of an event is denoted by  ℙ {⋅}  . We denote probability den-
sity functions (pdfs) as  f (⋅)  and probability mass functions 
(pmfs) as  p(⋅) . We write  k  for the discrete time index,  i  for 
the index of a target,  m  for the index of a measurement, and  
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s  for the index of a sensor. Integrals are over the entire space 
of the integration variable. The symbol  ∝  indicates equality 
up to a constant factor. A consecutive list of  i  integers, i.e.,  
1, 2, …, i , is briefly denoted as  1, …, i .

C. Basic Assumptions

We consider scenarios where in order to reduce the data 
flow of the sensors and the overall complexity, measure-
ments are produced by a detector performing a threshold-
ing and, possibly, some further preparatory processing of 
the raw sensor data [1]. The measurement corresponding to 
a target can be missed by the detector if its signal-to-noise 
ratio is below the detection threshold. Another premise is 
that both the targets and the measurements are “points” 
and, at any particular time, at most one detection can be due 
to any particular target [1]. There is a measurement origin 
uncertainty, i.e., it is unknown which measurement origi-
nated from which target, or if a measurement is a false alarm 
(due to clutter). This leads to a nontrivial DA problem.

In the following, we state some basic assumptions under-
lying both the vector-type and set-type MTT methods to be 
presented. At (discrete) time  k , there are   i k    targets  i ∈ { 1, …,  
i k   } . The state   x  k  (i)   of the  i th target at time  k  consists of the 
position of the target and possibly further parameters, and 
it is a random vector of dimension   d x   , i.e.,   x  k  (i)  ∈  ℝ    d x    . There 
are   n s    sensors  s ∈ { 1, …,  n s   } . At time  k , sensor  s  produces   m k,s    
measurements   z  k,s  

(m)  ,  m ∈ { 1, …,  m k,s   } . Each measurement is 
a random vector of dimension   d z   , i.e.,   z  k,s  

(m)  ∈  ℝ    d z    . We make 
the following further assumptions [1].

A1)  The multitarget state (defined as an ordered or 
unordered list of all the single-target states   x  k  (i)  ) 
evolves according to a first-order Markov process.

A2)  The single-target states   x  k  
(i)   evolve independently. 

The evolution of state   x  k  (i)   is described by the single-
target state-transition pdf  f ( x  k  (i)  |  x  k−1  

(i)  ) .
A3)  The measurements   z  k,s  

(m)   produced by sensor  s  at  
time  k  have no order, i.e., they are randomly 
shuffled.

A4)  Each measurement   z  k,s  
(m)   originates from a target 

or from clutter (false alarm), and it cannot origi-
nate from more than one target simultaneously. 
Conversely, at time  k , one target can generate at 
most one measurement   z  k,s  

(m)   at sensor  s .
A5)  The a priori probability that a measurement origi-

nates from target  i  (i.e., that sensor  s  “detects target  
i ” at time  k ) is independent across the targets  i  and 
a known function of the target state   x  k  (i)  , denoted 
as   p  d  (s)  ( x  k  (i) ) . Consequently, the probability that no 
measurement originates from target  i  (i.e., that sen-
sor  s  “misses target  i ” at time  k ) is  1 −  p  d  (s)  ( x  k  (i) ) . We 
assume that  0 ≤  p  d  (s)  ( x  k  (i) ) < 1 .

A6)  The number of clutter measurements at sensor  s  
and time  k  is Poisson distributed with mean   μ  c  (s)  . 

     It is furthermore independent across the sensors  s  
and independent of the number of targets that are 
detected at sensor  s .

 A7)  At sensor  s  and time  k , the clutter measure-
ments are independent of the target-originated 
measurements.

 A8)  The clutter measurements at sensor  s  and time  k  
are independent and identically distributed (iid) 
with pdf   f   c  

(s)  ( z  k,s  
(m) ) ≠ 0 .

 A9)  At sensor  s  and time  k , given all the target states   
x  k  (i)  , the target-originated measurements are con-
ditionally independent of each other and also 
conditionally independent of all the clutter meas-
urements. Furthermore, a target-originated meas-
urement   z  k,s  

(m)  , given the respective target state   x  k  (i)  ,  
is distributed according to  f ( z  k,s  

(m)  |  x  k  (i) ) .
A10)  At time  k , the measurements of different sensors  s  

are conditionally independent given all the target 
states   x  k  (i)  . (Here, the measurement of sensor  s  at 
time  k  is defined as a randomly ordered list or a set 
of all the single measurements   z  k,s  

(m)  .)
A11)  At time  k , given all the target states   x  k  (i)  , the meas-

urements   z  k,s  
(m)   are conditionally independent of all 

the past and future measurements   z   k ′  ,s  
(m)   and target 

states   x   k ′    
(i)  ,   k ′  ≠ k .

II .  SU RV EY OF STATE- OF-THE-A RT 
METHODS

The basic setting of most MTT methods is sequential 
Bayesian estimation (or “filtering”) [56], which consists 
of a prediction step based on the Chapman–Kolmogorov 
equation

  f ( x k   |  z 1:k−1  ) =  ∫     f  ( x k   |  x k−1  ) f ( x k−1   |  z 1:k−1  ) d x k−1    (1)

and an update step based on Bayes’ rule 

  f ( x k   |  z 1:k  ) ∝ f ( z k   |  x k  ) f ( x k   |  z 1:k−1  ).  (2)

Here,   x k    is the state of a single target and   z k    is a corre-
sponding measurement, both at time  k , and   z 1:k    is short for   
[ z  1  

T ⋯ z  k  T ]   T  . Based on the posterior pdf  f ( x k   |  z 1:k  ) , Bayesian 
state estimation can be performed, e.g., by means of the 
minimum mean square error (MMSE) estimator [57] 

     ̂  x   k  MMSE  ≜  ∫     x k    f ( x k   |  z 1:k  ) d x k  .  (3)

The Kalman filter [58] exploits the fact that for linear-
Gaussian system models, the operations (1) and (2) can be 
performed in closed form. For nonlinear/non-Gaussian sys-
tem models, computationally feasible approximate methods 
for sequential Bayesian estimation include the extended 
Kalman filter [58], the unscented Kalman filter [59], the 
Gaussian sum filter [60], and the particle filter [56], [61]. 
However, all these methods assume that the number of 
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targets and the association between targets and measure-
ments are known. Next, we discuss Bayesian  methods for 
MTT that do not require knowledge of the association 
between targets and measurements.

A. Vector-Type MTT Methods

Vector-type MTT methods describe the multitarget 
states and measurements by random vectors. They are able 
to explicitly maintain track continuity, i.e., they associate a 
state estimate with a previous state estimate or declare the 
appearance of a new target. Many vector-type methods use 
heuristics to take into account the appearance and disap-
pearance of targets [1]. Others model the discovery of new 
targets but not target disappearance [6], [62], or use target 
existence states to capture target disappearance while lack-
ing a fully Bayesian approach to initiating tracks based on 
measurements [63]–[65].

1) Methods Based on Probabilistic DA: Probabilistic DA 
(PDA) methods for single-target tracking treat the DA 
parameter as a nuisance variable that is “marginalized out” 
[1, Sec. 3.4]. The PDA filter subsequently fits a Gaussian 
pdf to the resulting posterior target state pdf, whereas other 
methods (e.g., [66]) retain a more detailed representation. 
Joint PDA (JPDA) extends PDA to the case of multiple 
targets [1, Sec. 6.2]. The joint association parameters are 
marginalized out under the constraint that each measure-
ment relates to at most one target. Like PDA, JPDA then 
fits a Gaussian pdf to the posterior state pdf for each target, 
whereas methods such as [67] retain a Gaussian mixture 
distribution.

JPDA assumes that the number of targets is known. 
This limitation is removed in joint integrated PDA (JIPDA) 
[2], [64], which extends JPDA to incorporate a probability 
of target existence. Target existence is modeled as a binary 
Markov chain, and new target tracks are initialized based on 
measurements that are not in the neighborhood (the “gate”) 
of an existing track. A similar model along with a parti-
cle filter implementation was presented in [65]. A second 
limitation of JPDA, the high computational complexity of 
summing over all the joint associations, has been addressed 
by various heuristic approximations [68]–[70], by effi-
cient hypothesis management [71], [72], or by using likely 
measurement-target associations to find approximations of 
the marginal posterior state pdfs [73], [74]. A third limita-
tion, known as coalescence, arises when targets become 
closely spaced and the filter is no longer aware which target 
is in which position. As a result, the marginal pdfs become 
strongly multimodal. Possible solutions include a pruning of 
the association hypotheses [75], [76] and approximate cal-
culation of marginal pdfs via optimization of information-
theoretic measures [77], [78] or the use of mean-field for-
mulations [79], [80].

Multisensor extensions of MTT filters based on JPDA 
were presented in [81] and [82]. The measurements of 

different sensors are either processed in a sequential 
 manner—known as the “iterated-corrector” approach—or 
in parallel. The performance of sequential processing may 
strongly depend on the order in which the measurements 
are processed.

2) MHT Methods: Multiple hypothesis tracking (MHT) 
methods seek to find the most likely measurement-target 
association over a sliding window of consecutive time steps 
[6]. A decision is made only on the association at the old-
est time step. The original MHT formulation [6]—known 
as hypothesis-oriented MHT—forms an expanding tree of 
association hypotheses, where each leaf represents a parti-
tioning of all the measurements acquired until the current 
time into subsets believed to correspond to the same tar-
get. The computational complexity is problematic but can 
be reduced by considering only likely hypotheses, which 
are identified by an efficient  m -best assignment algorithm 
[83]–[86]. The more efficient track-oriented MHT methods 
[87]–[89] represent global association hypotheses—i.e., for 
all targets and measurements—implicitly via a series of tree 
structures. Each tree structure represents the possible asso-
ciation histories for a single target. The most likely hypoth-
esis is found by choosing a leaf node for each single-target 
tree. An enumeration of hypotheses is avoided through com-
binatorial optimization techniques [90]–[93].

The original MHT formulation in [6] assumes a Poisson 
distribution of the number of newly detected targets. 
Calculations are simplified by disregarding targets that 
have not been detected so far. This idea is refined in [62], 
which assumes a fixed but unknown number of targets, 
with a Poisson prior, and in [94], which accommodates an 
unknown, time-varying number of targets. We note that 
MHT methods can also be derived in the set framework [95].

Multisensor MHT methods include iterated-corrector 
versions performing a sequential processing of the measure-
ments [96], and versions that perform a parallel processing 
of the measurements by solving a multidimensional assign-
ment problem [91]. In the multistage MHT approach [96], a 
first MHT stage is used for each sensor individually to reject 
clutter measurements, and a second MHT stage processes 
all the measurements using the iterated-corrector principle.

A key challenge in MHT methods is to retain sufficiently 
diverse association hypotheses until clarifying information 
is received. Graph-based methods have been proposed as an 
alternative solution to this problem in circumstances where 
association likelihoods are well approximated as Markovian 
[97], [98]. In [99] and [100], these methods have been 
adapted to problems in which sporadic identity information 
is available.

B. Set-Type MTT Methods

Set-type MTT methods describe the multitarget states 
and measurements by RFSs [3]. (An introduction to RFSs 
will be given in Section X.) The RFS approach facilitates 
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the modeling of target appearance and disappearance in a 
Bayesian setting, and introduces tools for handling complex, 
hybrid continuous/discrete distributions. Some set-type 
methods are unable to maintain track continuity [3], [78], 
[101]–[106], others maintain it implicitly [51], [107], and 
yet others maintain it explicitly by augmenting the states by 
distinct labels [108], [109].

1) PHD Filter and CPHD Filter: The probability 
hypothesis density (PHD) filter [106], [110] approxi-
mates the predicted posterior pdf of the target states,  
 f (   k  | Z 1:k−1  ) , by a Poisson RFS pdf. The intensity func-
tion (also known as PHD) of that Poisson RFS is chosen 
such that the RFS Kullback–Leibler divergence relative to  
 f (  k  | Z 1:k−1  )  is minimized [106]. The cardinalized PHD 
(CPHD) filter [111] uses a similar principle but approxi-
mates  f (  k  | Z 1:k−1  )  by the pdf of an iid cluster RFS [78]. 
Multisensor extensions of the PHD and CPHD filters 
[110] use the iterated-corrector approach, i.e., they 
sequentially perform a separate (C)PHD approximation 
for each sensor [112], or they perform a single (C)PHD 
approximation for all sensors jointly [104]. The perfor-
mance of the latter strategy is superior and moreover 
invariant to the ordering of the sensors. (C)PHD filters 
cannot maintain track continuity.

2) Multi-Bernoulli Filters: Multi-Bernoulli (MB) filters 
approximate the posterior pdf  f  (  k  | Z 1:k  )  by an MB RFS pdf. 
The original MB filter (abbreviated as MeMBer filter) [3] 
uses approximations of an RFS representation known as the 
probability generating functional. The MeMBer filter was 
found to have a cardinality bias, which was compensated in 
[103]. The track-oriented marginal MB/Poisson (TOMB/P) 
filter and the measurement-oriented marginal MB/Poisson 
(MOMB/P) filter [51], [113] are two MB filter variants that 
are based on the observation that the exact pdf  f (  k  | Z 1:k  )   
involves an MB mixture. Each MB pdf in this MB mixture 
corresponds to one of the global association hypotheses in 
MHT methods. Similar to [62], the TOMB/P and MOMB/P 
filters model undetected targets by a Poisson RFS, so that 
the overall multitarget state RFS is the union of independ-
ent Poisson and MB mixture RFSs. However, in contrast to 
[62] and other MHT variants, the TOMB/P and MOMB/P 
filters also model target appearance and disappearance. In 
the case of the TOMB/P filter, a computationally feasible 
MB filtering algorithm is obtained by approximating the 
DA pmf by the product of its marginals and by calculat-
ing the marginals using a scalable SPA-based algorithm. 
Although the TOMB/P filter is based on Bernoulli compo-
nents without an explicit order or label, track continuity 
can be obtained implicitly, similar to the JIPDA filter. A 
sequential Monte Carlo implementation of the TOMB/P 
filter was presented in [107] and applied to static source 
localization in [114]. The MeMBer and MOMB/P filters 
cannot maintain track continuity. A multisensor extension 
of the MB filter was presented in [105].

3) Labeled RFS-Based Methods: Using labels allows RFS-
based MTT filters to explicitly maintain track continuity, 
i.e., to obtain entire trajectories of consecutive target states. 
In the MTT context, the elements of a labeled RFS are the 
target state vectors augmented by a distinct label that iden-
tifies the respective target. The  δ  -GLMB filter [108] models 
the multitarget state by a generalized labeled MB (GLMB) 
RFS, where each GLMB component corresponds to one pos-
sible target-measurement association history. In contrast to 
the TOMB/P and MOMB/P filters, the number of hypoth-
esized targets per GLMB component is deterministic, simi-
larly to traditional MHT methods. To avoid an exponential 
increase of the number of GLMB components with time, 
components with a low weight are pruned and the genera-
tion of new components is limited by an  m -best assignment 
algorithm. The LMB filter [109] is a reduced-complexity 
approximation of the  δ  -GLMB filter. The GLMB RFS is 
approximated by a labeled MB (LMB) RFS, which is chosen 
such that its PHD matches the PHD of the GLMB RFS. This 
approximation is analogous to that underlying the TOMB/P 
filter. However, in [109], the DA problem is solved by means 
of the  m -best assignment algorithm rather than a scalable 
SPA-based algorithm.

C. MTT Methods Using Message Passing

In the context of MTT, message passing techniques were 
first studied for DA in sensor networks where each sensor 
has a narrow field of view [44]–[47]. Association variables 
were used to hypothesize joint association events for all 
targets and measurements within certain nonoverlapping 
regions and to perform “hard” DA by means of the max-
product algorithm. For such multisensor problems, calculat-
ing the marginal DA probabilities using exhaustive hypoth-
esis enumeration is typically infeasible. Related techniques 
were studied in [115] and [116], and a tree-based approxima-
tion of DA messages was developed in [117]. The efficient 
hypothesis management method proposed in [71] and [72] 
exploits the redundancy present in many cases to achieve an 
exact evaluation with reduced complexity. This method is 
effectively a highly tailored version of the junction tree algo-
rithm [25], [32]. Still, the complexity remains exponential 
in some extreme scenarios.

Message passing methods provide approximate mar-
ginal probabilities (using the SPA) and maximum a poste-
riori (MAP) estimates (using the max-product algorithm) 
with reduced complexity [25], [26]. The max-product algo-
rithm is guaranteed to converge to the optimum MAP solu-
tion in single-scan DA problems (i.e., DA problems where 
the measurements of a single sensor and a single time step 
are considered) [118]. Max-product algorithms for multi-
ple-scan DA were considered for MTT [49], [119], [120] 
and track association [121]. Dual decomposition methods 
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[122], [123] provide a convergent alternative to the max-
product algorithm, and were applied to multiple-scan DA 
in [119].

For estimation of marginal DA probabilities, an 
SPA-based method involving so-called mutual exclusion 
 constraints [124], [32, Box 12.D] was shown in [49] to be 
outperformed by the bipartite SPA-based algorithm pro-
posed in [125] and [126] and subsequently studied in [48] 
and [127]. This algorithm was developed independently and 
evaluated in the MTT context in [49] and [128]. It was used 
in set-type MTT methods [51], [78], [107], [114], in vector-
type multisensor MTT methods [52]–[55], [79], [80], and 
in vector-type methods for indoor localization [129]–[131]. 
This bipartite SPA-based algorithm for probabilistic DA will 
be discussed in Section VI. The underlying bipartite graphi-
cal model was also used for group tracking [132] and batch 
filtering performing MTT [133] (both based on the expecta-
tion–maximization algorithm), and for multipath tracking 
[134], [135].

In [52]–[54], the SPA was used not merely for proba-
bilistic DA but for the entire multisensor MTT problem. 
These “total-SPA” MTT methods, which will be discussed 
in Sections VII and IX, integrate the bipartite SPA-based 
DA algorithm in the overall SPA formulation. In [53], 
a total-SPA MTT method was proposed in which target 
appearance and disappearance are modeled by “augmented 
target states” including a binary target existence indicator, 
and a particle implementation of the method was devel-
oped. An adaptive extension in which the probabilities of 
detection for the individual sensors are estimated jointly 
with the augmented target states was presented in [54]. A 
reformulation of [53] was used in SPA-based methods for 
indoor localization [129] and for simultaneous localization 
and mapping (SLAM) [130], [131]; these methods exploit 
the information provided by multipath components in 
ultrawideband signals.

III .  IN TRODUCTION TO THE  
SUM–PRODUCT A LGOR ITHM

Many important algorithms—such as sequential Bayesian 
estimation, the Kalman filter, the particle filter, the forward–
backward algorithm, the Viterbi algorithm, the turbo decod-
ing algorithm, and fast Fourier transform algorithms—can be 
viewed as instances of the SPA. In addition, the SPA has been 
used to develop numerous new, high-performing algorithms 
in a wide range of applications [34]–[43], [136], [137].

In detection and estimation problems, the SPA can be 
used for an efficient calculation of marginal posterior pdfs 
[25], [27]. Consider the estimation of random parameter 
vectors   x i   ,  i = 1, …,  n t    from an observation  z  of a random 
measurement vector  z . Most Bayesian estimation meth-
ods require the posterior pdfs  f ( x i   |z)  [57]. These pdfs are 
marginal pdfs of the joint posterior pdf  f (x | z) , where  x ≜  
[ x  1  

T ⋯ x   n t    
T  ]   

T
  . In many cases, the SPA is able to calculate the 

marginal posterior pdfs  f ( x i   |z) , or accurate approxima-
tions thereof, at a small fraction of the computational cost 
of direct marginalizations. In particular, the computational 
cost of the SPA typically scales significantly better with rel-
evant system parameters than that of direct marginaliza-
tions. This advantage makes an SPA-based solution feasible 
for many large-scale problems where other solutions are 
infeasible, including MTT problems with a large number of 
targets, sensors, and/or measurements.

A. Factor Graphs

The use of the SPA for marginalizing the joint posterior 
pdf  f (x | z)  presupposes that  f (x | z)  is the product of lower 
dimensional factors, i.e., 

  f (x | z) ∝  ∏ 
l
    ψ  l    ( x   (l) ).  (4)

Here, each argument   x   (l)   comprises certain parameter vec-
tors   x i   , where each   x i    can appear in several   x   (l)  . Note that 
the factors   ψ  l   ( x   (l) )  generally depend also on  z . The fac-
torization (4) can be represented by a factor graph [25], 
[28]. (Alternative graphical models include Markov ran-
dom fields [138] and Bayesian networks [139].) In a factor 
graph, each parameter variable   x i    is represented by a vari-
able node, and each factor   ψ  l   (⋅)  by a factor node. Variable 
node “  x i   ” and factor node “  ψ  l   ” are adjacent, i.e., connected 
by an edge, if   x i    is an argument of   ψ  l   (⋅) . This is visualized in  
Fig. 1 for the factorization  f (x | z) ∝  ψ  1   ( x 1  )  ψ  2   ( x 1  ,  x 2  )  ψ  3   ( x 2  ) , 
where  x =  [ x  1  

T   x  2  T ]   
T
  .

A useful modification of factor graphs is provided by 
the principle of “stretching” or “opening” factors [25], [40]. 
Here, one introduces additional variables that may depend 
deterministically on certain variables in the original factor 
graph. This causes certain factor nodes to be “stretched” 
into a larger number of factor nodes. The variable nodes 
adjacent to these new factor nodes tend to have lower 
dimensions than those adjacent to the original factor nodes. 
Accordingly, some of the messages in the SPA are replaced 
with lower dimensional messages, which results in reduced 
computational complexity and improved scalability.

B. The SPA

The SPA [25], [29] is a message passing algorithm that 
calculates certain messages for each node and passes each of 

Fig. 1. Factor graph representing the factorization  f(x | z) ∝  ψ  1   ( x 1  )  
× ψ  2   ( x 1   ,  x 2  )  ψ  3   ( x 2  ) . Variable nodes and factor nodes are represented 
by circles and squares, respectively.
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these messages to one of the adjacent nodes. Messages leav-
ing or entering a variable node are functions of the associ-
ated variable. Let   V l    be the set of the indices  i  of all variable 
nodes “  x i   ” adjacent to factor node “  ψ  l   ,” or equivalently, of 
all variables   x i    that appear in the argument of   ψ  l   ( x   (l) )  in (4). 
Furthermore, let   ℱ i    be the set of the indices  l  of all factor 
nodes “  ψ  l   ” adjacent to variable node “  x i   ,” or equivalently, of 
all factors   ψ  l   ( x   (l) )  that involve   x i    in their argument. Then, 
the message passed from factor node “  ψ  l   ” to an adjacent vari-
able node “  x i   ,”  i ∈  V l    is given by 

   ζ   ψ  l  → x i     ( x i  ) =  ∫     ψ  l    ( x   (l) )   ∏ 
 i ′  ∈ V i  \{i}

   η   x  i ′    → ψ  l      ( x  i ′    ) d x ~i  .  (5)

Here,   ∫    …  d x ~i    denotes integration with respect to all vec-
tors   x  i ′     ,   i ′   ∈  V l    except   x i   . For factorizations involving discrete 
variables, the integration is replaced with a summation. 
Furthermore, the message   η   x i  → ψ  l     ( x i  )  passed from variable 
node “  x i   ” to an adjacent factor node “  ψ  l   ”,  l ∈ ℱi  is given by 

   η   x i  → ψ  l     ( x i  ) =   ∏ 
 l ′  ∈ ℱ i  \{l}

   ζ   ψ   l ′    → x i     ( x i  ) .  (6)

In the case of a tree-structured factor graph, such as in 
Fig. 1, the message updates (5) and (6) are performed once 
for each variable node and factor node. This process starts 
at the variable and factor nodes with only one edge (which 
pass a constant message and the corresponding factor, 
respectively), and proceeds with any node whose incoming 
messages are already available. After all messages have 
been calculated, a belief   f ̃  ( x i  )  is calculated for each variable 
node “  x i   ” as 

   f ̃  ( x i  ) =  C i    ∏ 
l∈ ℱ i  

    ζ   ψ  l  → x i      ( x i  )  (7)

with   C i    such that   ∫      f ̃    ( x i  ) d x i   = 1 . For a tree-structured fac-
tor graph, it can be shown [25], [32] that each belief   f ̃  ( x i  )  is 
exactly equal to the respective marginal posterior pdf  f ( x i   |z) . 
In our example (see Fig. 1), the message passed from “  ψ  2   ” to  
“ x 2   ” is   ζ   ψ  2  → x 2     ( x 2  ) =  ∫     ψ  2    ( x 1  ,  x 2  )  η   x 1  → ψ  2     ( x 1  ) d x 1    (here,   x   (2)  =  
[ x  1  

T   x  2  T ]   
T
  ), the message passed from “  x 1   ” to “  ψ  2   ” is   η   x 1  → ψ  2     ( x 1  )  

=  ζ   ψ  1  → x 1     ( x 1  ) =  ψ  1   ( x 1  ) , and the belief for “  x 2   ” is   f ̃  ( x 2  ) =  
C 2    ζ   ψ  2  → x 2     ( x 2  )  ζ   ψ  3  → x 2     ( x 2  ) =  C 2    ζ   ψ  2  → x 2     ( x 2  )  ψ  3   ( x 2  ) , where   C 2   =  
1 /  ∫     ζ   ψ  2  → x 2      ( x 2  )  ψ  3   ( x 2  ) d x 2   . With   ψ  1   ( x 1  ) = f ( x 1  | z 1  ) ,   ψ  2   ( x 1  ,  x 2  )  
= f ( x 2   |  x 1  ) , and   ψ  3   ( x 2  ) = f ( z 2   |  x 2  ) , it can be verified that  
  f ̃  ( x 2  ) = f ( x 2   |  z 1:2  ) . Thus, running the SPA on the factor graph 
in Fig. 1 is equivalent to performing prediction step (1) and 
update step (2).

In the case of a factor graph with loops, the SPA is applied 
in an iterative manner, i.e., the entire message update pro-
cess is repeated several times. The resulting beliefs   f ̃  ( x i  )  are 
then generally only approximations of the marginal poste-
rior pdfs  f ( x i   |z) . Theoretical analysis [26], [30], [31], [33] 
showed that this “loopy” SPA can be interpreted as a vari-
ational approach to approximate inference that corresponds 

to a constrained optimization problem, and that the iterative 
message updating process seeks to converge to a stationary 
point of that optimization problem. Although the optimiza-
tion problem is typically nonconvex, the approximation of the  
 f ( x i   |z)  provided by the loopy SPA has been observed to be 
very accurate in many applications [34]–[36], [38]–[43], 
[136], [137]. Intuitively, the loopy SPA converges and pro-
vides a good approximation of the marginal posterior pdfs 
if the optimization problem is locally convex in a region 
containing the starting point and the optimal solution. 
Alternative optimization problems that are convex can be 
constructed [140], [141]. The resulting iterative message 
passing algorithms converge to a global optimum and may 
lead to more accurate beliefs than the loopy SPA. However, 
they are typically significantly more complex.

In an iterative loopy SPA, there is no canonical order of 
message calculation, and different orders may lead to dif-
ferent beliefs. Specifying the order (schedule) and using 
the “stretching factors” principle discussed in Section III-
A gives a certain freedom in the design of message passing 
algorithms. We will take advantage of this design freedom 
in our development of SPA-based MTT methods in later 
sections.

For linear-Gaussian system models, the message passing 
equations (5)–(7) can be evaluated in closed form (see [27] 
for details). The resulting equations generalize the Kalman 
filter recursion [58] to more complex factorization struc-
tures. For nonlinear/non-Gaussian models, computationally 
feasible approximate implementations of (5)–(7) include 
nonparametric belief propagation [41] and sigma point 
belief propagation [142], which generalize the particle filter 
[56], [61] and the unscented Kalman filter [59], respectively.

I V.  V ECTOR-T Y PE SYSTEM MODEL 
FOR A K NOW N, FI X ED N UMBER OF 
TA RGETS

In this section, following [1], we present a system model 
and a basic statistical formulation for the vector-type DA 
and MTT methods considered in Sections VI and VII, 
respectively. We assume that the number of targets is 
fixed and known. A vector-type MTT system model for an 
unknown, time-varying number of targets will be presented 
in Section VIII.

A. State-Transition pdf and Prior Distribution

The vector-type system model is based on the assump-
tions A1)–A11) listed in Section I-C and on the following 
additional assumptions [1].

Vk1) The number of targets   i k   =  n t    is fixed and known.
Vk2)  The target states are ordered according to 

their arrangement in a joint state vector   x k   ≜  
[ x  k  (1)T ⋯  x  k  ( n t  )T ]   T  .
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Vk3)  At time  k = 1 , the target states   x  1  
(i)   are independent 

and distributed (generally nonidentically) accord-
ing to the prior pdfs  f ( x  1  

(i) ) .

Using Vk1) and Vk2) along with A1) and A2), the joint state-
transition pdf is obtained as 

  f ( x k   |  x k−1  ) =  ∏ 
i=1

  
 n t  

   f  ( x  k  (i)  |  x  k−1  
(i)  ),  k = 2, 3, ….  (8)

Similarly, using Vk3), the joint prior pdf at time  k = 1  is 

  f ( x 1  ) =  ∏ 
i=1

  
 n t  

   f  ( x  1  
(i) ).  (9)

B. Likelihood Function

The measurements produced by sensor  s  at time  k  are 
described by the vector   z k,s   ≜  [ z  k,s  

(1)T ⋯  z  k,s  
( m k,s  )T ]   

T
  , where the 

components (subvectors)   z  k,s  
(m)  ,  m = 1, …,  m k,s    have a random 

order [cf. A3)]. The (unknown) association between meas-
urements and targets can be described by the DA vector  
  a k,s   =  [ a  k,s  

(1) ⋯  a  k,s  
( n t  ) ]   T   with entries [1] 

  a  k,s  
(i)   ≜  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

m ∈ { 1, …,  m k,s   },

  

if at time k , target i generates

     
 
  

measurement m at sensor s 
     0,  if at time k, target i  does not     

 
  

generate a measurement at
     

 

  

sensor s.

     

If   a k,s    was known, we would be able to identify clutter 
measurements and to associate measurements with targets. 
However,   a k,s    is unknown and thus considered as a latent 
random variable in the inference problem. It will be conven-
ient to express the constraint A4) by the indicator function 

 ψ ( a k,s  ) ≜  
⎧

 
⎪

 ⎨ 
⎪

 
⎩

 
0,

  
∃ i, i ′   ∈ { 1, …,  n t   }

      such that  i ≠ i′ and  a  k,s  
(i)   =  a  k,s  

( i ′  )  ≠ 0    
 1,

  
otherwise.

    

Using A3)–A6), the prior pmf of the DA vector   a k,s    and 
the number of measurements   m k,s    conditioned on the multi-
target state   x k    is obtained as [1] 

 p( a k,s  ,  m k,s   |  x k  )  

 = ψ ( a k,s  )   
 e   − μ  c  

(s)    ( μ  c  
(s) )   

 m 
k,s

  
 
 _________  m k,s   !

   ( ∏ 
i=1

  
 n t  

  (  1 −  p  d  (s)  ( x  k  (i) )))  

   ×   ∏ 
j∈   a k,s  

 
  
    

 p  d  (s)  ( x  k  (j) )
 ____________  

 μ  c  
(s)  (1 −  p  d  (s)  ( x  k  (j) ))

     (11)

where     a k,s      is the set of “detected targets” corresponding to   
a k,s   , i.e.,     a k,s     ≜ { i ∈ { 1, …,  n t   } :  a  k,s  

(i)   ≠ 0} . The detailed deriva-
tion of expression (11) is reviewed in [143]. Note that the 
factor  ψ ( a k,s  )  guarantees that  p( a k,s  ,  m k,s   |  x k  ) = 0  for vectors   
a k,s    violating A4) (e.g., if one measurement is associated 
with two targets). In addition,  ψ ( a k,s  )  introduces a coupling 
of the different DA variables   a  k,s  

(i)   , which implies that per-
forming inference independently on single-target states is 

suboptimum. Note that  p( a k,s  ,  m k,s   |  x k  )  in (11) is a valid pmf 
in the sense that   ∑  m k,s  =0  ∞    ∑  a k,s    

    p( a k,s  ,  m k,s   |  x k  ) = 1      for arbi-

trary   x k   ; here,   ∑  a k,s    
        is short for   ∑  a k,s  ∈ {0,1,…, m k,s  }    n t     

       .

To gain further insights into the structure of  p( a k,s  ,  m k,s   |  
x  k  ) , we next investigate three special cases. In the no-detec-
tions, no-clutter case, i.e.,   m k,s   = 0  and   a k,s   = 0 , expression 
(11) reduces to 

 p( a k,s   = 0,  m k,s   = 0|  x k  ) =  e   − μ  c  
(s)    ∏ 

i=1
  

 n t  
  (  1 −  p  d  (s)  ( x  k  (i) )). 

Here,   e   − μ  c  
(s)    is the Poisson pmf of the number of clutter 

measurements evaluated at 0, and   ∏ i=1  
 n t     (1 −  p  d  (s) ( x  k  (i) ))      is 

the probability that no target is detected by sensor  s . In the 
no-detections, all-clutter case, i.e.,   m k,s   > 0  and   a k,s   = 0 , 
we obtain

 p( a k,s   = 0,  m k,s   |  x k  ) =   
 e   − μ  c  

(s)    ( μ  c  
(s) )   

 m k,s  
 
 _________  m k,s   !

    ∏ 
i=1

  
 n t  

  (  1 −  p  d  (s)  ( x  k  (i) )) 

where   e   − μ  c  
(s)    ( μ  c  

(s) )   
 m k,s  

  /  m k,s  !  is the Poisson pmf of the num-
ber of clutter measurements evaluated at   m k,s   . Finally, in the 
all-detections, no-clutter case, i.e.,   m k,s   =  n t    and   a k,s   =  a  k,s  

d   , 
where   a  k,s  

d    is any DA vector that assigns exactly one meas-
urement to each target, we have

 p( a k,s   =  a  k,s  
d  ,  m k,s   =  n t   |  x k  ) =   1 ___  n t   !

    e   − μ  c  
(s)    ∏ 

i=1
  

 n t  
    p  d  (s)   ( x  k  (i) ). 

Here,   e   − μ  c  
(s)    is again the Poisson pmf of the number of clut-

ter measurements evaluated at 0,   ∏ i=1  
 n t       p  d  (s) ( x  k  (i) )     is the prob-

ability that all targets are detected by sensor  s , and the factor  
1 /  n t  !  arises because there are   n t  !  different measurement-
target associations and, thus,   n t  !  different   a  k,s  

d   .
Next, using A7)–A9), the dependence of the measure-

ment vector   z k,s    on   x k   ,   a k,s   , and   m k,s    is described by the 
pdf [1] 

  f ( z k,s   |  x k  ,  a k,s  ,  m k,s  ) =  (  ∏ 
m=1

  
 m k,s  

    f   c  
(s)   ( z  k,s  

(m) ))    

    ×   ∏ 
i∈   a k,s  

  
   f   (s)   ( z  k,s  

( a  k,s  
(i)  )  |  x  k  (i) )  (12)

with   f   (s)  ( z  k,s  
(m)  |  x  k  (i) ) ≜ f ( z  k,s  

(m)  |  x  k  (i) ) /  f   c  
(s)  ( z  k,s  

(m) ) . [Note that 
expression (12) presupposes that   a k,s    is consistent with 
A4).] Again, we investigate  f ( z k,s   |  x k  ,  a k,s  ,  m k,s  )  for the three 
special cases considered earlier. In the no-detections, no-
clutter case, i.e.,   m k,s   = 0  and   a k,s   = 0 ,   z k,s    is not defined; 
however, an expression of  f ( z k,s   |  x k  ,  a k,s  ,  m k,s  )  replacing (12) 
can be formally introduced as  f ( z k,s   |  x k  ,  a k,s   = 0,  m k,s   = 0) = 
1 . In the no-detections, all-clutter case, i.e.,   m k,s   > 0  and   a k,s   
= 0 , expression (12) reduces to 

 f ( z k,s   |  x k  ,  a k,s   = 0,  m k,s  ) =   ∏ 
m=1

  
 m k,s  

    f   c  
(s)   ( z  k,s  

(m) ).  

Here, since all the measurements are clutter measurements,   
z k,s    is independent of   x k   . Finally, in the all-detections, no-
clutter case, i.e.,   m k,s   =  n t    and   a k,s   =  a  k,s  

d   , we obtain

(10)
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 f ( z k,s   |  x k  ,  a k,s   =  a  k,s  
d  ,  m k,s   =  n t  ) =  ∏ 

i=1
  

 n t  
   f  ( z  k,s  

( a  k,s  
d(i) )  |  x  k  (i) ). 

Here, each target state   x  k  (i)   generates one measurement   z k,s   , 
which is distributed according to  f ( z  k,s  

( a  k,s  
d(i) )  |  x  k  (i) ) .

The pdf of   z k,s   ,   a k,s   , and   m k,s    conditioned on   x k    is now 
obtained as 

 f ( z k,s  ,  a k,s  ,  m k,s   |  x k  ) = f ( z k,s   |  x k  ,  a k,s  ,  m k,s  ) p( a k,s  ,  m k,s   |  x k  ) 

and further, inserting (11) and (12)

  
f ( z k,s  ,  a k,s  ,  m k,s   |  x k  ) =

  
   e   − μ  c  

(s)   ____  m k,s   !
   (  ∏ 

m=1
  

 m k,s  
   μ  c  

(s)    f   c  
(s)  ( z  k,s  

(m) )) 
     

 
  

× ψ ( a k,s  )  ∏ 
i=1

  
 n t  

  g  ( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )  

   

with 

 g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  ) 

(14)
≜  

{
 
  1 ___ 
 μ  c  

(s) 
    p  d  (s)  ( x  k  (i) )  f   (s)  ( z  k,s  

(m)  |  x  k  (i) ),
  

 a  k,s  
(i)   = m ∈ { 1, …,  m k,s   }

     
1 −  p  d  (s)  ( x  k  (i) ),

  
 a  k,s  

(i)   = 0.
       

In (13) and hereafter, it is assumed that the value of   m k,s    is 
consistent with   z k,s   , i.e., equal to the number of subvectors   
z  k,s  

(m)   in   z k,s   .
Finally, we use A10) and the fact that since the meas-

urements   z k,s    of different sensors  s  are conditionally inde-
pendent given   x k   , also the DA vectors   a k,s    are condition-
ally independent. We thus obtain for the joint pdf of the 
all-sensors vectors   z k   ≜  [ z  k,1  

T  ⋯  z  k, n s    
T  ]   

T
  ,   a k   ≜  [ a  k,1  

T  ⋯  a  k, n s    
T  ]   

T
  , and  

  m k   ≜  [ m k,1  ⋯  m k, n s    ]   
T   conditioned on   x k   

  f ( z k  ,  a k  ,  m k   |  x k  ) =   ∏ 
s=1

  
 n s  

   f  ( z k,s  ,  a k,s  ,  m k,s   |  x k  ).  (15)

The global (all-sensors) likelihood function  f ( z k  ,  m k   |  x k  )  
 follows via marginalization, i.e., 

  f ( z k  ,  m k   |  x k  ) =  ∑ 
 a k  

    f  ( z k  ,  a k  ,  m k   |  x k  )  (16)

where the sum is over all   a k   ∈  { 0, 1, …,  m k,1  }    n t    × ⋯ ×  
{ 0, 1, …,  m k, n s    }    n t     [note that there are    ( ∏ s=1  

 n s      m k,s   )     n t           different 
DA vectors   a k   ].

For completeness and future reference, we also present 
the single-sensor likelihood function without   a k,s   

  

f ( z k,s  ,  m k,s   |  x k  ) =

  

  ∑ 
 a k,s  

   f  ( z k,s  ,  a k,s  ,  m k,s   |  x k  ) 

                         =     e   − μ  c  
(s)   ____  m k,s   !

   (  ∏ 
m=1

  
 m k,s  

   μ  c  
(s)    f   c  

(s)  ( z  k,s  
(m) ))       

 

  

×   ∑ 
 a k,s  

  ψ  ( a k,s  )  ∏ 
i=1

  
 n t  

   g  ( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )    

  

where (13) was used. The sum is over all possible DA vectors   
a k,s   ∈  { 0, 1, …,  m k,s   }    n t    , and thus the computational complex-
ity of evaluating  f ( z k,s  ,  m k,s   |  x k  )  scales exponentially with the 

number of targets   n t   . Expression (17) is invariant to a per-
mutation of the subvectors   z  k,s  

(m)   in   z k,s    and of the subvectors   
x  k  (i)   in   x k   . This independence of an assumed order of the tar-
gets and the measurements motivates the set-type approach 
considered in Sections XI–XIII. Note that  f ( z k,s  ,  m k,s   |  x k  )  in 
(17) is a valid hybrid pdf/pmf in the sense that 

   ∑ 
 m k,s  =0

  
∞

    ∫     f   ( z k,s  ,  m k,s   |  x k  ) d z k,s   = 1 .

V. JOIN T POSTER IOR PDFS A ND 
FACTOR GR A PHS FOR A K NOW N, 
FI X ED N UMBER OF TA RGETS

Bayesian estimation of the target states   x  k  (i)   typically relies 
on the posterior pdfs  f ( x  k  (i)  |  z 1:k  ) , where   z 1:k   ≜  [ z  1  

T ⋯  z  k  T ]   T  .  
The  f ( x  k  (i)  |  z 1:k  )  are marginals of the joint posterior pdf   
f ( x 1:k   |  z 1:k  ) , with   x 1:k   ≜  [ x  1  

T ⋯  x  k  T ]   
T
  . However, direct mar-

ginalization of  f ( x 1:k   |  z 1:k  )  is infeasible since the dimen-
sion of   x 1:k    grows linearly with the number of time steps  k  
and the number of targets   n t   , and thus the computational  
complexity scales exponentially with  k  and   n t   . The exponen-
tial  scaling with  k  can be avoided by exploiting statistical 
independencies across the time steps: using Bayes’ rule on  
f ( x 1:k   |  z 1:k  ) = f ( x 1:k   |  z 1:k  ,  m 1:k  ) , where   m 1:k   ≜  [ m  1  

T ⋯  m  k  T ]   
T
  ,  

we obtain 

  f ( x 1:k   |  z 1:k  ) =   
f ( z 1:k  ,  m 1:k   |  x 1:k  ) f ( x 1:k  )

  ________________  f ( z 1:k  ,  m 1:k  )
  

                                                 ∝ f ( z 1:k  ,  m 1:k   |  x 1:k  ) f ( x 1:k  ) 

since   z 1:k    (and, hence, also   m 1:k   ) are observed and thus con-
sidered fixed. (Note that knowledge of   m 1:k    is implied by 
knowledge of   z 1:k   .) Using A1) and A11), we obtain further 

  f ( x 1:k   |  z 1:k  ) ∝   ∏ 
 k ′  =1

  
k
  f  ( x  k ′     |  x  k ′  −1  ) f ( z  k ′    ,  m  k ′     |  x  k ′    ).  (18)

Here,  f ( x k   |  x k−1  )  and  f ( z k  ,  m k   |  x k  )  are given by (8) and (16),  
respectively, and we formally introduced  f ( x 1   |  x 0  ) ≜ f ( x 1  )   
[cf. (9)]. The factorization (18) underlies sequential 
Bayesian estimation (filtering) using the prediction step 
(1) and the update step (2), whose complexity per time step 
is constant. The factor graph representing the factorization 
(18) is shown in Fig. 2(a). We note that sequential Bayesian 
estimation and related methods such as the Kalman filter 
and the particle filter can be interpreted as running the 
SPA on this simple tree-structured factor graph.

A. First Stretching Step: Introducing   a 1:k   

The complexity of (1) and (2) still scales exponentially 
with   n t   . To address this issue and obtain scalable SPA-
based MTT methods, we use the stretching principle from 
Section III-A to introduce the DA vector   a 1:k   ≜  [ a  1  

T ⋯  a  k  T ]   
T
   

and formally replace the joint posterior pdf  f ( x 1:k   |  z 1:k  )  by  
 f ( x 1:k  ,  a 1:k   |  z 1:k  ) . Note that   ∑  a 1:k    

     f  ( x 1:k  ,  a 1:k   |  z 1:k  ) = f ( x 1:k   |  z 1:k  ) ,  

(13)

(17)
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and thus the marginal posterior pdfs  f ( x  k  (i)  |  z 1:k  )  calculated 
from  f ( x 1:k  ,  a 1:k   |  z 1:k  )  are equal to the ones calculated from 
 f ( x 1:k   |  z 1:k  ) . Suitable modification of (18) yields the new 
factorization 

     f ( x 1:k  ,  a 1:k   |  z 1:k  )   ∝   ∏ 
 k ′  =1

  
k
   f  ( x  k ′     |  x  k ′  −1  ) f ( z  k ′    ,  a  k ′    ,  m  k ′     |  x  k ′    )

         =   ∏ 
 k ′  =1

  
k
   f  ( x  k ′     |  x  k ′  −1  )   ∏ 

s=1
  

 n s  
   f  ( z  k ′  ,s  ,  a  k ′  ,s  ,  m  k ′  ,s   |  x  k ′    ) 

where (15) was used in the last step. Inserting (8), (9), and 
(13), we obtain further 

  

f ( x 1:k  ,  a 1:k   |  z 1:k  ) ∝

  

  ∏ 
 k ′  =1

  
k
   ( ∏ 

i=1
  

 n t  
   f  ( x   k ′    

(i)  |  x   k ′  −1  
(i)  ))     ∏ 

s=1
  

 n s  
  ψ  ( a  k ′  ,s  )

     

 

  

×   ∏ 
 i ′  =1

  
 n t  

  g  ( x   k ′    
( i ′  ) ,  a   k ′  ,s  

( i ′  )   ;  z  k ′  ,s  )

    

(19)

where  f ( x  1  
(i)  |  x  0  (i) ) ≜ f ( x  1  

(i) ) . The factor graph represent-
ing this factorization is shown in Fig. 2(b) for the single- 
sensor case (  n s   = 1 ). This factor graph has loops, which are 
however not visible because Fig. 2(b) essentially shows 
only the part of the factor graph corresponding to time 
step  k .

B. Second Stretching Step: Introducing   b 1:k   

Running the SPA on the factor graph in Fig. 2(b) is sig-
nificantly less complex than running it on the factor graph 
in Fig. 2(a), because the marginalizations with respect to 
the multitarget state [the   x k−1    integration in (1)] and with 
respect to the DA vector [the   a k,s    summation in (17)] are 
avoided. However, there are still high-dimensional discrete 
marginalizations, whose complexity scales exponentially 
with   n t    and   m k,s   . This is because the messages related to 
the variable nodes   a k,s    are functions of all the variables   a  k,s  

(i)   ,  

Fig. 2. Factor graphs for single-sensor and multisensor MTT, assuming a known, fixed number of targets. (a) Factor graph for sequential 
Bayesian estimation, corresponding to the factorization (18). (b) Factor graph for the single-sensor MTT problem corresponding to the 
factorization (19) with   n s   = 1 . (c) Stretched factor graph for the single-sensor MTT problem corresponding to the factorization (24) with   
n s   = 1 . (d) Factor graph for the multisensor MTT problem corresponding to the factorization (24). Two complete consecutive sections of 
the factor graph (for times  k − 1  and  k ) are shown in (a), and one complete section (for time  k ) in (b)�(d). Factor nodes in green represent 
factors related to the state-transition function and factor nodes in red represent factors related to the likelihood function. The time index  
k  and the sensor index  s  are omitted, and the following short notations are used:   x   i  ≜  x  k  (i)  ,   a   i  ≜  a  k,s  (i)   ,   b   m  ≜  b  k,s  (m)  ,   n m   ≜  m k,s   ,   x =   ≜  x k−2   ,   x −   ≜  x k−1   ,  
  x  −  i   ≜  x  k−1  (i)   ,   f −   ≜ f( x k−1   |  x k−2  ) ,  f ≜ f( x k   |  x k−1  ) ,   f   i  ≜ f( x  k  (i)  |  x  k−1  (i)  ) ,   f  −  z   ≜ f( z k−1   ,  m k−1   |  x k−1  ) ,   f   z  ≜ f( z k   ,  m k   |  x k  ) ,  gi ≜ g( x  k  (i)  ,  a  k,s  (i)   ;  z k,s  ) ,   g   i  ≜ g( x  k  (i)  ,  a  k,s  (i)   ;  z k,s  ) ,  
  h   m  ≜ h( b  k,s  (m)  ;  z  k,s  (m) ) ,  ψ ≜ ψ ( a k,s  ) , and   Ψ   i,m  ≜  Ψ i,m   ( a  k,s  (i)   ,  b  k,s  (m) ) .
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 i = 1, …,  n t   , where   a  k,s  
(i)   ∈ { 0, …,  m k,s  } . A computationally  

feasible SPA-based MTT method can be obtained by a modi-
fication of the factor graph in Fig. 2(b). We again invoke 
the stretching principle, this time to stretch the factor node  
“ ψ ( a k,s  ) .” Following [49], [50], we introduce the DA vector   
b k,s   =  [ b  k,s  

(1) ⋯  b  k,s  
( m k,s  ) ]   T   with entries  

(20)

  b  k,s  
(m)  ≜  

⎧

 

⎪
 ⎨ 

⎪
 

⎩

 

i ∈ { 1, …,  n t   },

  

if at time k, measurement m

     

 

  

at sensor s is generated by

    
 
  

target i
   

0,
  

if at time k, measurement m
     

 

  

at sensor s is not generated

     

 

  

by a target.

     

Note that   b k,s    carries the same information as   a k,s    but in a 
different form. If   b k,s    was known,   a k,s    would be known as 
well and the DA problem would be solved. However,   b k,s    is 
unknown and thus considered as a latent random variable in 
the inference problem. The admissibility of a DA hypothesis 
according to the constraint A4) can now be expressed by the 
indicator function 

  ψ ( a k,s  ,  b k,s  ) ≜  ∏ 
i=1

  
 n t  

    ∏ 
m=1

  
 m k,s  

   Ψ i,m     ( a  k,s  
(i)  ,  b  k,s  

(m) )  (21)

with 

   Ψ i,m   ( a  k,s  
(i)  ,  b  k,s  

(m) ) ≜  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
0,

  
 a  k,s  

(i)   = m,  b  k,s  
(m)  ≠ i

       or   b  k,s  
(m)  = i,  a  k,s  

(i)   ≠ m   

1,

  

otherwise.

     (22)

We note that   ∑  b k,s    
    ψ ( a k,s  ,  b k,s  ) = ψ ( a k,s  )  . Replacing  ψ ( a k,s  )   

in (19) by  ψ ( a k,s  ,  b k,s  )  and using (21) results in the new joint 
posterior pdf 

 f ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  ) ∝    ∏ 
 k ′  =1

  
k
   ∏ 

i=1
  

 n t  
   f   ( x   k ′    

(i) | x   k ′  −1  
(i)  )      ∏ 

s=1
  

 n s  
  g  ( x   k ′    

(i) ,  a   k ′  ,s  
(i)   ;  z  k ′  ,s  ) 

                                 ×   ∏ 
m=1

  
 m  k ′  ,s  

   Ψ i,m    ( a   k ′  ,s  
(i)  ,  b   k ′  ,s  

(m) ). 

Finally, we perform a last modification of the factoriza-
tion. This modification does not further reduce the com-
plexity, but it is the basis for a general SPA-based DA 
 algorithm, to be presented in Section VI, which can be 
used in many different MTT methods. First, we multiply 
(23) by the constant 

 c( z 1:k  ) ≜   ∏ 
 k ′  =1

  
k
     ∏ 

s=1
  

 n s  
     ∏ 

m=1
  

 m k,s  
   μ  c  

(s)      f   c  
(s)  ( z   k ′  ,s  

(m) ) .

For given  k  and  s , let   ℳ  k,s  
0   ⊆ { 1, …,  m k,s   }  be the set of 

all  m  with   b  k,s  
(m)  = 0 , i.e., all  m  indexing clutter measure-

ments. Because of A4) expressed by   ∏ i=1  
 n t      ∏ m=1  

 m k,s      Ψ i,m       ( a  k,s  
(i)  ,  

 b  k,s  
(m) ) , for each  m ∈ { 1, …,  m k,s   }\  ℳ  k,s  

0   , the joint poste-
rior pdf in (23) is nonzero only if there is exactly one   a  k,s  

(i)    
that equals  m . This means that for   a  k,s  

(i)   = m ∈ { 1, …,  m k,s  } ,  

the denominator   μ  c  
(s)   f   c  

(s)  ( z  k,s  
( a  k,s  

(i)  ) )  of  g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )  [see (14), 

recalling that   f    (s)  ( z  k,s  
(m)  |  x  k  (i) ) = f ( z  k,s  

(m)  |  x  k  (i) ) /  f   c  
(s)  ( z  k,s  

(m) ) ] is 
canceled by the corresponding factor   μ  c  

(s)   f   c  
(s)  ( z  k,s  

(m) )  in  c( z 1:k  ) .  
Equation (23) thus becomes 

 f ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  ) 

 ∝   ∏ 
 k ′  =1

  
k
   (  ∏ 

 i ′  =1
  

 n t  
   f  ( x   k ′    

( i ′  )  |  x   k ′  −1  
( i ′  )  ))     ∏ 

s=1
  

 n s  
  (   ∏ 

i=1
  

 n t  
   g  ( x   k ′    

(i) ,  a   k ′  ,s  
(i)   ;  z  k ′  ,s  ) 

 ×   ∏ 
 m ′  =1

  
 m  k ′  ,s  

   Ψ i, m ′      ( a   k ′  ,s  
(i)  ,  b   k ′  ,s  

( m ′  ) ))   ∏ 
m∈ ℳ   k ′  ,s  

0  
   μ  c  

(s)    f   c  
(s)  ( z   k ′  ,s  

(m) ) 

where for   a  k,s  
(i)   ∈ { 1, …,  m k,s  } 

 g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  ) ≜ g( x  k  (i) ,  a  k,s  

(i)   ;  z k,s  )  μ  c  
(s)   f   c  

(s)  ( z  k,s  
( a  k,s  

(i)  ) )

             =  p  d  (s)  ( x  k  (i) ) f ( z  k,s  
( a  k,s  

(i)  )  |  x  k  (i) ) 

and for   a  k,s  
(i)   = 0,   g( x  k  (i) , 0;  z k,s  ) ≜ g( x  k  (i) , 0;  z k,s  ) = 1 −  p  d  (s) ( x  k  (i) )   

[cf. (14)]. Introducing 

 h( b  k,s  
(m)  ;  z  k,s  

(m) ) ≜  { 
 μ  c  

(s)   f   c  
(s)  ( z  k,s  

(m) ),
  

 b  k,s  
(m)  = 0

   
1,

  
 b  k,s  

(m)  > 1
    

we obtain the final factorization of  f ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )  as 

     f ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )

     ∝   ∏ 
 k ′  =1

  
k
   (  ∏ 

 i ′  =1
  

 n t  
   f  ( x   k ′    

( i ′  )  |  x   k ′  −1  
( i ′  )  ))     ∏ 

s=1
  

 n s  
  (   ∏ 

i=1
  

 n t  
   g  ( x   k ′    

(i) ,  a   k ′  ,s  
(i)   ;  z  k ′  ,s  )

         ×   ∏ 
 m ′  =1

  
 m  k ′  ,s  

   Ψ i, m ′      ( a   k ′  ,s  
(i)  ,  b   k ′  ,s  

( m ′  ) ))   ∏ 
m=1

  
 m  k ′  ,s  

  h  ( b   k ′  ,s  
(m)  ;  z   k ′  ,s  

(m) )  (24)

with  f ( x  1  
(i)  |  x  0  (i) ) = f ( x  1  

(i) ) . Note that  f ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )  is 
again consistent with the original joint posterior pdf  f ( x 1:k   |  
z 1:k  )  in (18) in the sense that   ∑  a 1:k    

     ∑  b 1:k    
     f   ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  ) =  

f ( x 1:k   |  z 1:k  ) .
The factor graph representing the factorization (24) is 

shown in Fig. 2(c) for the single-sensor case (  n s   = 1 ) and 
in Fig. 2(d) for the multisensor case. These factor graphs 
contain one or multiple “bipartite” substructures that are 
associated with probabilistic DA. An interesting interpre-
tation of these substructures is that information on target-
originated measurements in the form of  g( x  k  (i) ,  a  k,s  

(i)   ;  z k,s  )  is 
connected to target-oriented DA variables and informa-
tion on clutter-originated measurements in the form of  
 h( b  k,s  

(m) ;  z  k,s  
(m) )  is connected to measurement-oriented DA 

variables. The two factor graphs will be used in Sections VI 
and VII as a basis for developing scalable SPA-based meth-
ods for MTT.

V I.  SPA-BA SED PROBA BILISTIC DA

Next, we describe an efficient loopy SPA-based algorithm 
for probabilistic DA [48]–[50]. This algorithm will consti-
tute an important building block of the SPA-based MTT 

(23)
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methods developed in Sections VII, IX, and XIII. We con-
sider   n t    targets, where   n t    is assumed known, and a single 
sensor (thus, we drop the sensor index  s ). The assumptions 
of a fixed, known number of targets and of a single sensor 
will be lifted in later sections.

The goal of probabilistic DA is to calculate the poste-
rior DA pmfs  p( a  k  (i)  |  z 1:k  ) , where   a  k  (i)   was defined in (10). 
These pmfs are marginals of the joint posterior pdf  f ( x 1:k  ,   
a 1:k  ,  b 1:k   |  z 1:k  )  in (24). We now use the loopy SPA on the fac-
tor graph in Fig. 2(c) to calculate accurate approximations 
of these marginal pmfs. We choose a message calculation 
schedule such that each time  k  is considered individually; 
this is achieved by passing messages only forward in time1 
[42]. According to (5), the messages passed from the factor 
nodes “ f ( x  k  (i)  |  x  k−1  

(i)  ) ” to the variable nodes “  x  k  (i)  ” are given by 

   α  k  (i)  ( x  k  (i) ) =  ∫     f  ( x  k  (i)  |  x  k−1  
(i)  )  f ̃  ( x  k−1  

(i)  ) d x  k−1  
(i)  .  (25)

Here,   f ̃  ( x  k−1  
(i)  )  is the belief approximating the marginal pos-

terior pdf of   x  k−1  
(i)   ; this belief was calculated at time  k − 1 . 

The message calculation in (25) is analogous to the predic-
tion step in sequential filtering [cf. (1)]. Similarly, the mes-
sages passed from the factor nodes “ g( x  k  (i) ,  a  k  (i)  ;  z k  ) ” to the 
variable nodes “  a  k  (i)  ” are given by 

  β  k  (i)  ( a  k  (i) ) =  ∫    g  ( x  k  (i) ,  a  k  (i)  ;  z k  )  α  k  (i)  ( x  k  (i) ) d x  k  (i)  

and the messages passed from the factor nodes “ h( b  k  (m) ;  z  k  (m) ) ”  
to the variable nodes “  b  k  (m)  ” are given by   ξ  k  (m)  ( b  k  (m) ) =  
h( b  k  (m)  ;  z  k  (m) ) . The   β  k  (i)  ( a  k  (i) )  and   ξ  k  (m)  ( b  k  (m) )  are referred to as 
association weights [50], [51], [107].

For future reference, we note that the belief of the joint 
DA vector   [ a  k  T   b  k  T ]   

T
   can be obtained by interpreting all vari-

able nodes related to the DA variables   a  k  (i)  ,  i = 1, …,  n t    and   
b  k  (m)  ,  m = 1, …,  m k,s    on the factor graph in Fig. 2(c) as one 
“supernode” and calculating the belief of that supernode 
according to (7). This belief is obtained as 

   p ̃  ( a k  ,  b k  ) ∝ ψ ( a k  ,  b k  ) ( ∏ 
i=1

  
 n t  

   β  k  (i)   ( a  k  (i) ))    ∏ 
m=1

  
 m k  

   ξ  k  (m)   ( b  k  (m) )   (26)

where  ψ ( a k  ,  b k  )  is given by (21).

A. SPA-Based DA

Once   α  k  (i)  ( x  k  (i) )  and   β  k  (i)  ( a  k  (i) )  have been calculated, the 
iterative SPA involving the factor nodes “  Ψ i,m   ( a  k  (i) ,  b  k  (m) ) ”  
and the variable nodes “  a  k  (i)  ” and “  b  k  (m)  ” is performed for 
all states  i = 1, …,  n t    and all measurements  m = 1, …,  m k    
in parallel. More specifically, at message passing iteration  
 ∈ { 1, …,  n it   } , a message   ϕ   Ψ i,m  → b  k  (m)   

[]   ( b  k  (m) )  is passed from  
“  Ψ i,m   ( a  k  (i) ,  b  k  (m) ) ” to “  b  k  (m)  ,” and a message   ν   Ψ i,m  → a  k  (i)   

[]   ( a  k  (i) )  is 
passed from “  Ψ i,m   ( a  k  (i) ,  b  k  (m) ) ” to “  a  k  (i)  .” Since each factor node  
“  Ψ i,m   ( a  k  (i) ,  b  k  (m) ) ” is connected to only two variable nodes, an 
outgoing message from such a factor node can be obtained 

from the incoming message by inserting (6) into the dis-
crete counterpart of (5). In this way, one obtains the follow-
ing recursion for the messages  ϕ  and  ν :

   ϕ    Ψ i,m  → b  k  (m)   
[]   ( b  k  (m) )

 =   ∑ 
 a  k  (i) =0

  
 m k  

   β  k  (i)   ( a  k  (i) )  Ψ i,m   ( a  k  (i) ,  b  k  (m) )   ∏ 
   m ′  =1   m ′  ≠m 

  
 m k  

   ν    Ψ i, m ′    → a  k  (i)   
[]    ( a  k  (i) )  (27)

and 

  ν    Ψ i,m  → a  k  (i)   
[]   ( a  k  (i) )

 =   ∑ 
 b  k  (m) =0

  
 n t  

   ξ  k  (m)   ( b  k  (m) )  Ψ i,m   ( a  k  (i) ,  b  k  (m) )   ∏ 
  i 
′  =1  
 i ′  ≠i

  

  
 n t  

   ϕ    Ψ  i ′  ,m  → b  k  (m)   
[−1]    ( b  k  (m) )  (28)

for  i = 1, …,  n t    and  m = 1, …,  m k   . This iterative algorithm is 
initialized by the messages 

    ϕ   Ψ i,m  → b  k  (m)   
[0]   ( b  k  (m) ) =   ∑ 

 a  k  (i) =0
  

 m k  
   β  k  (i)   ( a  k  (i) )  Ψ i,m   ( a  k  (i) ,  b  k  (m) ).  (29)

After the last iteration   =  n it   , approximations   p ̃  ( a  k  (i)  |  z 1:k  )  
of the marginal posterior DA pmfs  p( a  k  (i)  |  z 1:k  )  are obtained 
according to (7), i.e., 

  p ̃  ( a  k  (i)  |  z 1:k  ) =  A  k  (i)   β  k  (i)  ( a  k  (i) )   ∏ 
m=1

  
 m k  

   ν    Ψ i,m  → a  k  (i)   
[ n it  ]    ( a  k  (i) ) 

for  i = 1, …,  n t   , where the   A  k  (i)   are normalization factors.

B. A Scalable SPA-Based DA Algorithm

The messages (27) and (28) can be simplified [50], 
[118], [128]. Because of the binary consistency constraints 
expressed by   Ψ i,m   ( a  k  (i) ,  b  k  (m) ) , each message comprises 
only two different values:   ϕ   Ψ i,m  → b  k  (m)   

[]   ( b  k  (m) )  in (27) takes 
on one value for   b  k  (m)  = i  and another for all   b  k  (m)  ≠ i , and   
ν    Ψ i,m  → a  k  (i)   

[]   ( a  k  (i) )  in (28) takes on one value for   a  k  (i)  = m  and 
another for all   a  k  (i)  ≠ m . Thus, each message can be repre-
sented (up to an irrelevant constant factor) by the ratio of 
the first value and the second value, hereafter denoted as   
ϕ   k  [](i→m)   or   ν  k  [](m→i)  . The recursion (27), (28) can then be 
reformulated as  

(30)

   

 ϕ  k  [](i→m)  =

  

  
 β  k  (i)  (m)

  _________________________   
 β  k  (i)  (0)  +   ∑ 

  m ′  =1   m ′  ≠m 

  
 m k  

   β  k  (i)   ( m ′  )  ν   k  []( m ′  →i) 
  

    

 ν  k  [](m→i)  =
  

  
 ξ  k  (m)  (i)

  _________________________   
 ξ  k  (m)  (0)  +   ∑ 

  i ′  =1   i ′  ≠i  

  
 n t  

   ξ  k  (m)   ( i ′  )  ϕ  k  [−1]( i ′  →m) 
  

   
(31)

for  i = 1, …,  n t    and  m = 1, …,  m k   . This iterative algorithm 

is initialized by   ϕ  k  [0](i→m)  =  β  k  (i)  (m)  /  β  k  (i)  (0) . Note that 
this reformulation exploits the fact that, after replacing   
ϕ    Ψ i,m  → b  k  (m)   

[]   ( b  k  (m) )  in (27) by   ϕ  k  [](i→m)   and   ν    Ψ i,m  → a  k  (i)   
[]   ( a  k  (i) )  in 

(28) by   ν  k  [](m→i)  , for each term in the sum only one fac-
tor in the product of messages is different from 1. After the 

1We note that SPA-based algorithms for probabilistic DA that 
consider multiple time steps jointly were introduced in [145].
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last iteration   =  n it   , approximations of the  p( a  k  (i)  |  z 1:k  )  are 
obtained as 

  p ̃  ( a  k  (i)  = m|  z 1:k  ) =     β  k  (i)  (m)  ν  k  [ n it  ](m→i) 
  _____________________   

 β  k  (i)  (0)  +   ∑ 
 m ′  =1

  
 m k  

   β  k  (i)   ( m ′  )  ν  k  [ n it  ]( m ′  →i) 
     

for  m = 0, 1, …,  m k   . Here, for  m = 0 ,   ν  k  [ n it  ](0→i)  ≜ 1 . In what 
follows, this efficient algorithm will be referred to as sum–
product algorithm for data association (SPADA). Note that 
one can also obtain approximations of the “measurement-
oriented” DA pmfs  p( b  k  (m)  |  z 1:k  )  as 

  p ̃  ( b  k  (m)  = i|  z 1:k  ) =   
 ξ  k  (m)  (i)  ϕ  k  [ n it  ](i→m) 

  _____________________   
 ξ  k  (m)  (0)  +   ∑ 

 i ′  =1
  

 n t  
   ξ  k  (m)   ( i ′  )  ϕ  k  [ n it  ]( i ′  →m) 

   

for  i = 0, 1, …,  n t   . Here, for  i = 0 ,   ϕ  k  [ n it  ](0→m)  ≜ 1 .
It was shown in [50] and [128] that the recursion (30), 

(31) is a contraction, which is guaranteed to converge. In 
addition, it was shown in [127] and in [144, App. B-A] that the 
recursion (30), (31) solves a convex optimization problem, 
and thus it ultimately converges to the corresponding global 
optimum. Moreover, the number of iterations required 
to meet a specific convergence criterion is bounded [50]. 
Finally, the complexity of (30), (31) is significantly lower 

than that of (27), (28). In each iteration  ℓ​,   n t    m k    messages   

ϕ  k  [ℓ](i→m)   and   n t    m k    messages   ν  k  [ℓ](m→i)   are calculated. The asso-
ciated complexity is essentially determined by that of calcu-
lating the   n t    sums   ∑  m ′  =1, m ′  ≠m   m k       β  k  (i)   ( m ′  )  ν  k  [ℓ]( m ′  →i)   and the   m k    

sums   ∑  i ′  =1, i ′  ≠i  
 n t       ξ  k  (m)   ( i ′  )  ϕ  k  [ℓ−1]( i ′  →m)  , which scales as  O( n t    m k  ) .  

Hence, the overall complexity of SPADA per iteration is  

 O( n t    m k  ) . This is much smaller than the complexity of (27) 

and (28), which is  O( n  t  
2   m  k  3  +  n  t  

3   m  k  2 ) . We note that MATLAB 

code for the recursion (30), (31) is provided in [128].

C. Simulation Results

We demonstrate the performance of SPADA for a 2-D 
scenario with   n t   = 6  static targets arranged on a regular  
2 × 3  grid [50]. The spacing of the targets is varied between 
0 and 10. The measurements are the target positions plus 
circularly symmetric 2-D Gaussian noise of zero mean and 
variance 1. The clutter measurements are uniformly distrib-
uted over the region of interest with intensity   μ  c    f c   ( z  k  (m) ) = 
0.01 . The region of interest consists of the gates [1] of the six 
targets with gate threshold 18.4, which means that target-
originated measurements are “gated out” with probability   
10   −4  . The probability that a target is detected by the sen-
sor is   p d   ( x  k  (i) ) = 0.6 . Prior information on the   x  k  (i)   [replac-
ing   α  k  (i)  ( x  k  (i) )  in (25)] is obtained through the procedure 
described in [50]. The number of message passing iterations   
n it    is chosen adaptively according to [50].

We compare SPADA with the following three alternative 
algorithms [cf. Section II-C]: the MESP algorithm, which 
performs the SPA on a factor graph that is obtained with a 
different stretching of the factor node “ ψ ( a k  ) ” based on ele-
mentary mutual exclusion constraints [49], [124] [32, Box 
12.D]; the JTree algorithm, which performs the junction 
tree algorithm [25], [32] on that alternative factor graph, 
with association weights thresholded to   10   −3  ,   10   −2  , or   10   −1   
to induce sparsity; and the MCMCDA algorithm [145] using   
10   4  ,   10   5  , or   10   6   Markov chain Monte Carlo steps. We con-
sider only a single time step,  k = 1 , and accordingly, e.g.,  
  p ̃  ( a  k  (i)  |  z 1:k  ) =  p ̃  ( a  1  

(i)  |  z 1  ) . Fig. 3 shows the average maximum 
error of   p ̃  ( a  1  

(i)  |  z 1  )  and the average computation time versus 
the target spacing. The average maximum error is calculated 
by maximizing  | p ̃  ( a  k  (i)  = m|  z 1  ) − p( a  1  

(i)  = m|  z 1  )|  over all  m  
and averaging the result over the six targets ( i = 1, …, 6 ) and 
over 1000 simulation runs. (We do not plot the results of 
the MESP algorithm for very small target spacings because 
the MESP algorithm occasionally failed to converge in that 
case.) SPADA is seen to outperform the MESP algorithm 

Fig. 3. Experimental comparison of SPADA with three alternative DA algorithms. (a) Average maximum error of the estimated marginal 
posterior pmfs   p ̃  ( a  k  (i)  |  z 1:k  )  versus the target spacing. (b) Average computation time versus the target spacing.
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when the targets are closely spaced, to outperform the JTree 
(  10   −1  ) algorithm and the MCMCDA (  10   4  ) algorithm, and 
to perform similarly to the MCMCDA (  10   5  ) algorithm. The 
computation time of SPADA is seen to be always lower—
partly by several orders of magnitude—than that of the other 
algorithms. This is true even though the MESP and JTree 
algorithms were implemented using a C++ library [146] 
whereas SPADA was implemented in MATLAB. Further 
experiments presented in [50] confirm the high accuracy 
and efficiency of SPADA.

V II.  SPA-BA SED V ECTOR-T Y PE MT T 
METHODS FOR A K NOW N, FI X ED 
N UMBER OF TA RGETS

In this section, we consider the application of the SPA to 
MTT within the vector-type system model described in 
Section IV, i.e., assuming a known, fixed number   n t    of tar-
gets. First, we formulate two “total-SPA” methods for single-
sensor MTT, where the second method is based on SPADA. 
Next, we review the JPDA filter2 and develop a “SPADA-
embedded JPDA filter,” which is a JPDA filter using SPADA 
for an efficient approximative calculation of the marginal 
DA pmfs. Remarkably, the first total-SPA method is equal 
to the JPDA filter and the second total-SPA method is equal 
to the SPADA-embedded JPDA filter. The second total-SPA 
method is finally extended to obtain scalable MTT meth-
ods for multiple sensors. New variants of these methods for 
multisensor MTT that allow for an unknown, time-varying 
number of targets will be presented in Section IX.

A. SPA-Based Methods for Single-Sensor MTT

We will now show that the SPA can be used not only 
for an efficient calculation of the marginal DA pmfs but for 
the entire MTT problem. The number of targets   n t    is still 
assumed fixed and known. Furthermore, we still consider 
the single-sensor case  ( n s   = 1) , and thus again drop the sen-
sor index  s .

1) Total-SPA Method for Single-Sensor MTT: In contrast 
to Section VI, where we calculated the marginal DA pmfs  
p( a  k  (i)  |  z 1:k  )  by running the SPA on the bipartite part of the 
factor graph in Fig. 2(c), we now calculate the marginal pos-
terior target state pdfs  f ( x  k  (i)  |  z 1:k  )  by running the SPA on the 
factor graph in Fig. 2(b). We again use a message calculation 
schedule such that messages are passed only forward in time 
and hence a noniterative SPA is obtained.

First, the messages   α  k  (i)  ( x  k  (i) )  passed from the factor 
nodes “ f ( x  k  (i)  |  x  k−1  

(i)  ) ” to the variable nodes “  x  k  (i)  ” are calcu-
lated according to (25), and the messages   β  k  (i)  ( a  k  (i) )  passed 
from the factor nodes “ g( x  k  (i) ,  a  k  (i)  ;  z k  ) ” to the variable node 

“  a k   ” are calculated according to3 (26) [with  g( x  k  (i) ,  a  k  (i)  ;  z k  )  
replaced by  g( x  k  (i) ,  a  k  (i)  ;  z k  ) ]. Then, the messages passed from 
“  a k   ” to “ g( x  k  (i) ,  a  k  (i)  ;  z k  ) ” are calculated according to (6), i.e., 

   ω  k  (i)  ( a k  ) = ψ ( a k  )   ∏ 
  i ′  =1  
  i ′  ≠i

  

  
 n t  

   β  k  ( i ′  )   ( a  k  ( i ′  ) ).    

Next, the messages passed from “ g( x  k  (i) ,  a  k  (i) ;  z k  ) ” to “  x  k  (i)  ” are 
calculated according to the discrete counterpart of (5), i.e., 

   γ  k  (i)  ( x  k  (i) ) =  ∑ 
 a k  

   g  ( x  k  (i) ,  a  k  (i)  ;  z k  )  ω  k  (i)  ( a k  )   

  =   ∑ 
 a  k  (i) =0

  
 m k  

  g  ( x  k  (i) ,  a  k  (i)  ;  z k  )  κ  k  (i)  ( a  k  (i) )  (32)

with 

   κ  k  (i)  ( a  k  (i) ) ≜   ∑ 
~ a  k  (i) 

   ω  k  (i)   ( a k  )  (33)

where   ∑  ~ a  k  (i)     denotes the summation over all   a  k  ( i ′  )  ∈ { 0, …,  
m k   }  for all   i ′   ∈ { 1, ⋯,  n t   }\ { i} . Finally, the beliefs for the   x  k  (i)   
are obtained according to (7), i.e., 

   f ̃  ( x  k  (i) ) ∝  α  k  (i)  ( x  k  (i) )  γ  k  (i)  ( x  k  (i) ).  (34)

These beliefs approximate the marginal posterior pdfs  
 f ( x  k  (i)  |  z 1:k  ) . They can be used for Bayesian state estimation, 
e.g., by means of the MMSE estimator in (3).

2) A Scalable Total-SPA Method for Single-Sensor MTT: 
The complexity of the total-SPA method presented above 
is exponential in   n t    due to the summation in (33). This 
exponential scaling can be avoided by running the SPA 
on the entire factor graph in Fig. 2(c) rather than on the 
factor graph in Fig. 2(b) [or on the bipartite part of the 
factor graph in Fig. 2(c) as done for DA in Section VI]. 
The resulting method will also be used in Section VII-C 
to develop scalable MTT methods for multiple sensors. 
Due to the additional stretching step underlying the factor 
graph in Fig. 2(c), the summation in (33) can be avoided 
by using SPADA.

More specifically, after calculating the messages  
  α  k  (i)  ( x  k  (i) )  and   β  k  (i)  ( a  k  (i) )  according to (25) and (26), respec-
tively, the iterative SPA (27)–(29) is executed, which yields 
the  messages   ν   Ψ i,m  → a  k  (i)   

[ n it  ]   ( a  k  (i) )  in (28). Then, the messages 

passed from “  a  k  (i)  ” to “ g( x  k  (i) ,  a  k  (i) ;  z k  ) ” are calculated accord-
ing to (6), i.e., 

   κ  k  (i)  ( a  k  (i) ) =   ∏ 
m=1

  
 m k  

   ν    Ψ i,m  → a  k  (i)   
[ n it  ]    ( a  k  (i) ).  (35)

Next, the messages   γ  k  (i)  ( x  k  (i) )  passed from “ g( x  k  (i) ,  a  k  (i)  ;  
z k  ) ” to “  x  k  (i)  ” are calculated according to (32) with   κ  k  (i)  ( a  k  (i) )   

3Note that this is still consistent with our general notation defined 
by (5), because the message   β  k  (i)  ( a  k  (i) )  can be interpreted as a function in   
a k    (which is constant in all   a  k  ( i ′  )   except   a  k  (i)  ).

2While the original JPDA filter additionally employs a Gaussian 
approximation for the target state pdfs [1], we here use the term JPDA 
more broadly to refer to a method that propagates a marginal pdf (without 
a parametric representation) separately for each single-target state [82].



Meyer et al . : Message Passing Algorithms for Scalable Multitarget Tracking

Vol. 106, No. 2, February 2018 | Proceedings of the IEEE 235

replaced by   κ  k  (i)  ( a  k  (i) ) . Thereby, the high-dimensional sum-
mation in (33) is avoided. Finally, the iterative SPA (27)–
(29) is replaced by SPADA. For this, the messages   ν  k  [ n it  ](m→i)   

in (31) are converted into the messages   ν   Ψ i,m  → a  k  (i)   
[ n it  ]   ( a  k  (i) )  used 

in (35) according to   ν   Ψ i,m  → a  k  (i)   
[ n it  ]   ( a  k  (i) ) =  ν  k  [ n it  ](m→i)   for   a  k  (i)  = m  

and   ν    Ψ i,m  → a  k  (i)   
[ n it  ]   ( a  k  (i) ) = 1  for   a  k  (i) ≠m . Finally, evaluation of (34) 

yields the beliefs4   f ̃  ( x  k  (i) ) . This total-SPA method for single-
sensor MTT has excellent scalability [namely,  O( n t    m k  ) ] and 
is thus suitable also for large tracking scenarios with closely 
spaced targets.

B. JPDA Filter With SPA-Based Probabilistic DA

The JPDA filter is a vector-type MTT method that 
approximates the joint posterior DA pmf by the product of 
its marginals. In this subsection, we first review the JPDA 
filter and then show how to embed SPADA.

1) Prediction Step: In the prediction step at time  k , the 
Chapman–Kolmogorov equation (1) is used to convert the 
approximate posterior pdf   f ̃  ( x k−1   |  z 1:k−1  )  calculated at time  
k − 1  into an approximate predicted posterior pdf   f ̃  ( x k   |  
z 1:k−1  ) . We assume that   f ̃  ( x k−1   |  z 1:k−1  )  factors into its mar-
ginals, i.e., 

   f ̃  ( x k−1   |  z 1:k−1  ) =  ∏ 
i=1

  
 n t  

    f ̃    ( x  k−1  
(i)   |  z 1:k−1  ).  (36)

The validity of this assumption will be verified and discussed 
in Section VII-B2. Note also that for  k − 1 = 1 , (36) is equiv-
alent to (9). Inserting (36) and (8) into (1) yields 

      f ̃  ( x k   |  z 1:k−1  ) =  ∏ 
i=1

  
 n t  

   ∫     f   ( x  k  (i)  |  x  k−1  
(i)  )  f ̃  ( x  k−1  

(i)   |  z 1:k−1  ) d x  k−1  
(i)    

     =  ∏ 
i=1

  
 n t  

    f ̃    ( x  k  (i)  |  z 1:k−1  )  (37)

with 

   f ̃  ( x  k  (i)  |  z 1:k−1  ) =  ∫     f  ( x  k  (i)  |  x  k−1  
(i)  )  f ̃  ( x  k−1  

(i)   |  z 1:k−1  ) d x  k−1  
(i)    (38)

for  i = 1, …,  n t   . Thus, the prediction step (1)—which 
required an (  n t    d x   )-dimensional integration—reduces to   n t    
separate predictions of single-target states, each requiring 
only a   d x   -dimensional integration.

2) Update Step: In the update step at time  k , the approxi-
mate posterior pdf   f ̃  ( x k   |  z 1:k  )  is calculated from the approxi-
mate predicted posterior pdf   f ̃  ( x k   |  z 1:k−1  )  in (37) and the cur-
rent measurement vector   z k    [cf. (2)]. To derive the update 
rule, we first expand the approximate posterior pdf as 

   f ̃  ( x k   |  z 1:k  ) =  ∑ 
 a k  

    f ̃    ( x k   |  a k  ,  z 1:k  ) p( a k   |  z 1:k  )  (39)

where the summation is over all   a k   ∈  { 0, …,  m k   }    n t    . Using 
A11),   f ̃  ( x k   |  a k  ,  z 1:k  )  is obtained as [143] 

   f ̃  ( x k   |  a k  ,  z 1:k  ) =  ∏ 
i=1

  
 n t  

    f ̃    ( x  k  (i)  |  a  k  (i) ,  z 1:k  )  (40)

where 

   f ̃  ( x  k  (i)  |  a  k  (i) ,  z 1:k  ) =   
g( x  k  (i) ,  a  k  (i)  ;  z k  )  f ̃  ( x  k  (i)  |  z 1:k−1  )   ________________________   

 ∫    g  ( x  k  (i)′ ,  a  k  (i)  ;  z k  )  f ̃  ( x  k  (i)′  |  z 1:k−1  ) d x  k  (i)′ 
    (41)

with  g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )  defined in (14). We note that the origi-

nal derivation of the JPDA filter [1] assumed that the prob-
ability of detection does not depend on the target state   x  k  (i)  , 
i.e.,   p d   ( x  k  (i) ) =  p d   . In that case, (41) simplifies as follows: for   
a  k  (i)  = m ∈ { 1, …,  m k   } 

  f ̃  ( x  k  (i)  |m,  z 1:k  ) =   
f ( z  k  (m)  |  x  k  (i) )  f ̃  ( x  k  (i)  |  z 1:k−1  )  ______________________   

 ∫     f  ( z  k  (m)  |  x  k  (i)′ )  f ̃  ( x  k  (i)′  |  z 1:k−1  ) d x  k  (i)′ 
   

and for   a  k  (i)  = 0 ,   f ̃  ( x  k  (i)  |  a  k  (i)  = 0,  z 1:k  ) =  f ̃  ( x  k  (i)  |  z 1:k−1  ) .
To avoid computations involving functions of the high-

dimensional multitarget state   x k   , the JPDA filter updates 
each single-target state   x  k  (i)   individually. This is achieved by 
approximating the joint posterior DA pmf  p( a k   |  z 1:k  )  by the 
product of its marginals, i.e., 

  p( a k   |  z 1:k  ) ≈  ∏ 
i=1

  
 n t  

   p  ( a  k  (i)  |  z 1:k  )  (42)

with 

  p( a  k  (i)  |  z 1:k  ) =   ∑ 
~ a  k  (i) 

  p  ( a k   |  z 1:k  ).  (43)

Because the summation in (43) is with respect to all   a  k  ( i ′  )   for   
i ′   ∈ { 1, …,  n t   }\ { i} , its computational complexity scales expo-
nentially with   n t   . We note that (42), (43) is the optimum 
approximation of  p( a k   |  z 1:k  )  by a fully factorizing pmf, where 
optimality is defined as minimum Kullback–Leibler diver-
gence [32, Prop. 8.3]. Inserting (40) and (42) into (39), 
we obtain 

   f ̃  ( x k   |  z 1:k  ) ≈  ∑ 
 a k  

    ∏ 
i=1

  
 n t  

    f ̃     ( x  k  (i)  |  a  k  (i) ,  z 1:k  ) p( a  k  (i)  |  z 1:k  )   

  =  ∏ 
i=1

  
 n t  

     ∑ 
 a  k  (i) =0

  
 m k  

   f ̃     ( x  k  (i)  |  a  k  (i) ,  z 1:k  ) p( a  k  (i)  |  z 1:k  )  (44)

  =  ∏ 
i=1

  
 n t  

    f ̃    ( x  k  (i)  |  z 1:k  ).  (45)

Hence, the calculation of   f ̃  ( x k   |  z 1:k  )  simplifies to   n t    separate 
calculations of the approximate marginal posterior pdfs 
  f ̃  ( x  k  (i)  |  z 1:k  ) . According to (44), these approximate marginal 
posterior pdfs are given by 

   f ̃  ( x  k  (i)  |  z 1:k  ) =   ∑ 
 a  k  (i) =0

  
 m k  

   f ̃    ( x  k  (i)  |  a  k  (i) ,  z 1:k  ) p( a  k  (i)  |  z 1:k  )  (46)

with   f ̃  ( x  k  (i)  |  a  k  (i) ,  z 1:k  )  given by (41) and  p( a  k  (i)  |  z 1:k  )  given by 
(43). The   f ̃  ( x  k  (i)  |  z 1:k  )  can be used for Bayesian state estima-
tion, e.g., by means of the MMSE estimator in (3).

4These beliefs are not the same approximations of the marginal 
posterior pdfs  f ( x  k  (i)  |  z 1:k  )  as in (34) because they are based on loopy SPA 
for DA. For simplicity, we do not indicate this difference by our notation.
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It can be shown that approximating the joint posterior 
DA pmfs  p( a k   |  z 1:k  )  according to (42), as is done in the JPDA 
filter, results in approximate marginal posterior state pdfs  
  f ̃  ( x  k  (i)  |  z 1:k  )  in (46) that are equal to the beliefs   f ̃  ( x  k  (i) )  in (34). 
Thus, the total-SPA method presented in Section VII-A1 
can be viewed as an SPA-based reformulation of the JPDA 
filter. Furthermore, we note that the factorization (45) 
is consistent with our initial factorization assumption in 
(36). In fact, together with (9), the above derivation pro-
vides an inductive proof that the factorization postulated 
in (42) entails (36), i.e., the factorization of   f ̃  ( x k   |  z 1:k  )  into 
the approximate marginal posterior pdfs   f ̃  ( x  k  (i)  |  z 1:k  ) , for all  
k = 1, 2, … .

A closed-form implementation of the JPDA filter for lin-
ear-Gaussian models is presented in [1]. A sequential Monte 
Carlo (particle-based) implementation for nonlinear and 
non-Gaussian models can be found in [82].

3) Embedding SPADA: While the approximation (42) 
makes it possible to update the target states   x  k  (i)   individu-
ally, the calculation of the marginal DA pmfs  p( a  k  (i)  |  z 1:k  )  in 
(43) still scales exponentially with   n t   . The complexity can 
be reduced by gating [1], which is an additional approxima-
tion, but it remains exponential in the case of closely spaced 
targets. This problem can be solved by using SPADA for an 
approximative calculation of the  p( a  k  (i)  |  z 1:k  ) . As an input to 
SPADA, the approximate marginal posterior pdfs at the pre-
ceding time,   f ̃  ( x  k−1  

(i)   |  z 1:k−1  ) , are used, i.e., the   f ̃  ( x  k−1  
(i)   |  z 1:k−1  )   

are substituted for the   f ̃  ( x  k−1  
(i)  )  in (25). Remarkably, the 

resulting “SPADA-embedded JPDA filter” is equivalent to 
the scalable total-SPA method developed in Section VII-A2. 
Indeed, it can be shown that the approximate marginal pos-
terior pdfs produced by the former method are equal to the 
beliefs produced by the latter method.

C. SPA-Based Methods for Multisensor MTT

Next, we discuss the extension of the total-SPA refor-
mulation of the JPDA filter from Section VII-A1 to the case 
of   n s   ≥ 2  sensors. Let us consider the factorization (24) of 
the joint posterior pdf  f ( x 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  ) . The correspond-
ing factor graph is shown in Fig. 2(d); it is a generalization 
of the single-sensor factor graph in Fig. 2(c) featuring an 
additional “outer loop” across the sensors. For this factor 
graph, the associated variational inference problem can 
be shown to be a nonconvex optimization problem [144], 
and thus the iterative SPA is not guaranteed to converge. 
Indeed, performing multiple message passing iterations 
over the outer loop does not necessarily lead to improved 
performance. In the following, we discuss two message pass-
ing schedules that avoid convergence issues and have been 
observed to result in good performance in many MTT sce-
narios. Alternative, iterative approaches based on convexifi-
cation are studied in forthcoming work [144].

1) Sequential Processing: Following the iterated-
corrector strategy, the target state beliefs are updated 
sequentially with respect to the sensors. This corresponds 
to a message passing schedule consisting of   n s    successive 
“sensor update” steps, where in each step the result of 
the preceding step is used (except for the first step) and 
messages are passed to and from a part of the factor graph 
related to one sensor.

First, the messages   α  k  (i)  ( x  k  (i) )  are calculated according to 
(25). Then, iterated beliefs    f ̃   s   ( x  k  (i) )  are calculated sequen-
tially for each sensor  s = 1, …,  n s   . At the  s th sensor update 
step, the messages passed from “ g( x  k  (i) ,  a  k,s  

(i)   ;  z k,s  ) ” to “  a  k,s  
(i)   ” are 

calculated as [cf. (26)] 

   β  k,s  
(i)  ( a  k,s  

(i)  ) =  ∫    g  ( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )   f ̃   s−1   ( x  k  (i) ) d x  k  (i)   (47)

where the    f ̃   s−1   ( x  k  (i) )  were calculated at the preceding sensor 
update step [cf. (49)] or, for  s = 1 ,    f ̃   0   ( x  k  (i) ) =  α  k  (i)  ( x  k  (i) ) . Note 
that expression (47) involves the measurement   z k,s    of sensor  
s . Using the   β  k,s  

(i)  ( a  k,s  
(i)  )  as input, the iterative SPA (27)–(29) 

or SPADA (30), (31) is executed, which yields the messages   
ν    Ψ i,m  → a  k,s  

(i)    
[ n it  ]   ( a  k,s  

(i)  ) . Then, the messages passed from “  a  k,s  
(i)   ” to  

“ g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  ) ” are calculated according to (35), i.e., 

  κ  k,s  
(i)  ( a  k,s  

(i)  ) =   ∏ 
m=1

  
 m k,s  

   ν    Ψ 
i,m

  → a  
k,s

  (i)    
[ n it  ]    ( a  k,s  

(i)  ) 

and the messages passed from “ g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  ) ” to “  x  k  (i)  ” are 

calculated as [cf. (32)] 

   γ  k,s  
(i)  ( x  k  (i) ) =   ∑ 

 a  k,s  
(i)  =0

  
 m k,s  

  g  ( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )  κ  k,s  

(i)  ( a  k,s  
(i)  ).  (48)

Finally, iterated beliefs are obtained according to (7), i.e., 

    f ̃   s   ( x  k  (i) ) ∝  α  k  (i)  ( x  k  (i) )   ∏ 
 s ′  =1

  
s
   γ  k, s ′    

(i)    ( x  k  (i) )  (49)

which generalizes (34) and can be calculated recur-
sively. Note that    f ̃   s   ( x  k  (i) )  incorporates the sensor measure-
ments   z k, s ′      for   s ′   = 1, …, s . According to Fig. 2(d) and (6), 
   f ̃   s   ( x  k  (i) )  is also the message passed from “  x  k  (i)  ” to “ g( x  k  (i) ,  
a  k,s+1  

(i)   ;  z k,s+1  ) ” at sensor update step  s + 1 . The final beliefs 
are given as   f ̃  ( x  k  (i) ) ≜   f ̃    n s     ( x  k  (i) ) ; they take into account the 
measurements of all sensors. These beliefs are used for state 
estimation [e.g., using the MMSE estimator in (3) with 
 f ( x k   |  z 1:k  )  replaced by   f ̃  ( x  k  (i) ) ] and to calculate the messages   
α  k+1  

(i)   ( x  k+1  
(i)  )  at the next time step  k + 1  according to (25).

This sequential message passing algorithm is simple 
and its computational complexity is linear in the num-
ber of sensors   n s   . On the other hand, it is not well suited 
to a parallel or distributed implementation, and the final 
beliefs   f ̃  ( x  k  (i) )  depend on the chosen sensor order. We 
note that a sensor-sequential processing is also used by 
the sequential multisensor JPDA filter [81] and by iter-
ated-corrector multisensor extensions of set-type filters 
(see Section XIII-B).
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2) Parallel Processing: An alternative SPA-based method 
for multisensor MTT is provided by the following “parallel” 
message passing schedule. First, the messages   α  k  (i)  ( x  k  (i) )  are 
calculated according to (25). Then, the following operations 
are carried out separately for each sensor  s ∈ { 1, …,  n s   } . The 
messages   β  k,s  

(i)  ( a  k,s  
(i)  )  passed from “ g( x  k  (i) ,  a  k,s  

(i)   ;  z k,s  ) ” to “  a  k,s  
(i)   ” 

are calculated according to (26), i.e., 

   β  k,s  
(i)  ( a  k,s  

(i)  ) =  ∫    g  ( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  )  α  k  (i)  ( x  k  (i) ) d x  k  (i) .  (50)

Note that in contrast to (47), the expression (50) does not 
involve a result related to a different sensor. The iterative 
SPA (27)–(29) or SPADA (30), (31) is now executed, and 
the messages passed from “  a  k,s  

(i)   ” to “ g( x  k  (i) ,  a  k,s  
(i)   ;  z k,s  ) ” are cal-

culated according to (35), i.e., 

  κ  k,s  
(i)  ( a  k,s  

(i)  ) =   ∏ 
m=1

  
 m k,s  

   ν   Ψ i,m  → a  k,s  
(i)    

[ n it  ]    ( a  k,s  
(i)  ) .

Next, the messages   γ  k,s  
(i)  ( x  k  (i) )  passed from “ g( x  k  (i) ,  a  k,s  

(i)   ;  z k,s  ) ” 
to “  x  k  (i)  ” are calculated according to (48). After these opera-
tions have been done for all  s ∈ { 1, …,  n s   }  separately, beliefs 
are calculated as 

  f ̃  ( x  k  (i) ) ∝  α  k  (i)  ( x  k  (i) )   ∏ 
s=1

  
 n s  

   γ  k,s  
(i)   ( x  k  (i) ).   

This message passing schedule allows for a parallel 
implementation and facilitates a distributed implemen-
tation, and the results do not depend on a chosen sensor 
ordering as in sequential processing. However, in some sce-
narios, the independent processing of the individual sensor 
measurements may result in a reduced estimation accuracy. 
We note that a sensor-parallel processing is also used by the 
parallel multisensor JPDA filter [81] and by the multisensor 
Monte Carlo JPDA filter [82].

V III.  V ECTOR-T Y PE SYSTEM MODEL 
A ND FACTOR GR A PH FOR A N 
U NK NOW N, TIME-VA RY ING N UMBER 
OF TA RGETS

Next, we consider the practically more relevant case of an 
unknown, time-varying number   i k    of targets. Extending [53], 
[80], and [147], we first present a vector-type system model 
and an associated factor graph for this case. Corresponding 
total-SPA vector-type methods for MTT will be developed 
in Section IX. The presented vector-type approach models 
only detected targets, i.e., targets that have so far generated 
at least one measurement at any of the sensors. By contrast, 
the set-type approach presented in Section XI models also 
undetected targets, i.e., targets that potentially exist but did 
not generate any measurement yet.

Our model is based on an arbitrary ordering  s = 1, 2, …,  
n s    of the sensors. At time  k  and sensor  s , we distinguish 
between the following two types of detected targets:

•  newly detected targets, which exist at time  k  and have 
been detected for the first time at time  k  and sensor  s ;

•  survived targets, which exist at time  k  and have been 
detected previously, either at a previous time   k ′   < k  or 
at the current time  k  but at a previous sensor   s ′   < s .

The numbers of newly detected targets and survived targets 
are unknown. To account for this fact, we introduce the 
notion of potential targets (PTs). The number of PTs at time  
k , denoted   j k   , is the maximum possible number of targets 
that have generated a measurement at any of the sensors up 
to time  k . This number depends on the number of measure-
ments observed at time  k , as explained in Section VIII-B. 
The existence/nonexistence of PT  j ∈ { 1, …,  j k   }  is modeled 
by a binary variable   r  k  (j)  ∈ { 0, 1} , i.e., PT  j  exists at time  k  
if and only if   r  k  (j)  = 1 . The state of PT  j  is denoted   x  k  (j)  , and 
is formally considered also if   r  k  (j)  = 0 . The augmented PT 

state is defined as   y  k  (j)  ≜  [ x  k  (j)T   r  k  (j) ]   T  , and the joint state vec-

tor as   y k   ≜  [ y  k  (1)T ⋯  y  k  ( j k  )T ]   T  . The states   x  k  (j)   of nonexisting PTs 
are obviously irrelevant. Therefore, all pdfs defined for PT 
states,  f ( y  k  (j) ) = f ( x  k  (j) ,  r  k  (j) ) , are such that 

  f ( x  k  (j) ,  r  k  (j)  = 0) =  f   k  (j)   f D   ( x  k  (j) )  (51)

where   f   k  (j)  ∈ [0, 1 ]  is a constant and   f D   ( x  k  (j) )  is an arbitrary 
“dummy pdf.”

A. Assumptions

We will use the following assumptions, which replace 
Vk1)–Vk3).

Vu1)  The number of targets   i k    is time-varying and 
unknown.

Vu2)  The PT states are ordered (arbitrarily) according 
to their arrangement in the joint augmented state 
vector   y k   =  [ y  k  (1)T ⋯  y  k  ( j k  )T ]   

T
  .

Vu3)  A PT  j  that exists at time  k − 1  survives (i.e., still 
exists at time  k ) with survival probability   p s   ( x  k−1  

(j)  )  
and disappears with probability  1 −  p s   ( x  k−1  

(j)  ) .
Vu4)  The number of newly detected targets at time  k  

and sensor  s  is a priori (i.e., before the measure-
ments are observed) Poisson distributed with 
mean   μ  n  (s)  . It is furthermore independent of the 
number of clutter measurements and of the num-
ber of survived targets.

Vu5)  The states of newly detected targets at time  k  and 
sensor  s  are a priori iid and distributed according 
to5   f n   ( x k  ) .

Vu6)  At time  k , the states of newly detected targets are 
independent of the states of survived targets.

Vu7)  At time  k = 0 , there are no PTs, i.e.,   y 0    is an empty 
vector and   j 0   = 0 .

Based on these assumptions and the common assump-
tions in Section I-C, we will next establish a system model 

5Here and hereafter, with an abuse of notation,   x k    denotes a generic 
single-target state vector (whereas in Section VII, it denoted the multi-
target state vector).
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and a statistical formulation and, subsequently, derive a 
“stretched” version of the joint posterior pdf  f ( y 1:k   |  z 1:k  ) .

B. Legacy PTs and New PTs

Each PT at time  k  and sensor  s  is either a “legacy” PT, 
i.e., a PT that was already established in the past, or a “new” 
PT. The corresponding states will be denoted by    y _   k,s  

(j)    and 
   
_

 y   k,s  
(m)  , respectively. The new PTs and legacy PTs are related 

to, respectively, the newly detected targets and survived tar-
gets mentioned earlier, as described in what follows.

•  New PTs: To incorporate in the state space targets 
that are newly detected by sensor  s  at time  k ,   m k,s    new 
PT states    

_
 y   k,s  
(m)  ,  m = 1, …,  m k,s   —one for each measure-

ment   z  k,s  
(m)  —are introduced. Accordingly,     r ̅    k,s  

(m)  = 1  
means that measurement  m  produced by sensor  s  at 
time  k  was generated by a newly detected target. We 
denote by    

_
 y  k,s   ≜  [  

_
 y   k,s  
(1)T ⋯   

_
 y   k,s  
( m k,s  )T ]   

T
   the joint vector of all 

new PT states. Before the current measurements   z  k,s  
(m)   

are observed, the number   m k,s    of new PT states    
_

 y   k,s  
(m)   

is random.
•  Legacy PTs: The legacy PT states    y _   k,s  

(j)    represent sur-
vived targets, i.e., targets that have been detected 
previously, either at a previous time   k ′   < k  or at the 
current time  k  but at a previous sensor   s ′   < s . The tar-
get represented by the new PT state     

_
 y    k ′  , s ′    
( m ′  )   introduced 

due to measurement   m ′    of sensor   s ′    at time   k ′   ≤ k  is 
represented by the legacy PT state    y _   k,s  

(j)    at time  k , with  
 j =  j  k ′  −1   +  ∑  s ″  =1  

 s ′  −1    m k, s ″     +  m ′    . (Note that here, either  
  k ′   < k  and  s, s ′    arbitrary or   k ′   = k  and   s ′   < s .) 
Accordingly,     r ̲    k,s  

(j)   = 1  means that the target that was 
detected the first time via measurement   m ′    of sensor   
s ′    at time   k ′    still exists when the measurements of sen-
sor  s  at time  k  are incorporated. We denote by    y _  k,s   ≜  
[  y _   k,s  

(1)T ⋯   y _   k,s  
( j k,s  )T ]   

T
   the joint vector of all legacy PT states 

at time  k  and sensor  s . (The relation between   j k,s    and   j k    
will be explained shortly.)

New PTs become legacy PTs when the next 
 measurements—either of the next sensor or at the next time 
step—are incorporated. In particular, at time  k , when the 
measurements of the next sensor,  s , are incorporated, the 
number of legacy PTs is updated as 

  j k,s   =  j k,s−1   +  m k,s−1   

with   j k,1   =  j k−1   . Here,   j k,s    is equal to the number of all meas-
urements collected at time  k  up to sensor  s . Note that the 
vector of all the legacy PT states at time  k  up to sensor  s  
can be written as    y _  k,s   =  [  y _   k,s−1  

T      
_

 y   k,s−1  
T  ]   

T
  . The vector of all 

the legacy PT states at time  k , before any sensor measure-
ments at time  k  are incorporated, is denoted by    y _  k   . (Note 
that    y _  k,1   =   y _  k    and thus for  j ∈ { 1, …,  j k−1   } ,    y _   k,s  

(j)   =   y _   k  (j)   for all  
s ∈ { 1, …,  n s   } .) We also introduce the joint state of all the 
new PTs introduced at time  k  as    

_
 y  k   ≜  [  

_
 y   k,1  
T  ⋯   

_
 y   k, n s    
T  ]   

T
  . After the 

measurements of all sensors  s ∈ { 1, …,  n s   }  have been incor-
porated at time  k , the total number of PT states is 

   j k   =  j k, n s     +  m k, n s     =  j k−1   +   ∑ 
s=1

  
 n s  

   m k,s     (52)

and the vector of all the PT states at time  k  is given by 

  y k   =  [  y _   k  T    
_

 y   k  T ]   T  =  [  y _   k, n s    
T     

_
 y   k, n s    
T  ]   T  . 

This comprises   j k−1    PTs that have been introduced at previ-
ous time steps and   ∑ s=1  

 n s      m k,s     PTs introduced at time  k . Since 
new PTs are introduced as new measurements are incor-
porated, the number of PT states would grow indefinitely. 
Thus, for the development of a feasible MTT method, a sub-
optimum pruning step removing PTs is employed; this will 
be further discussed in Section IX-A6.

With a vector-type model in which the number of targets 
is unknown, the derivation of a likelihood function of the 
form  f ( z k,s  ,  m k,s   |  y k  )  is complicated by the fact that the num-
ber of PT states depends on the number of measurements6  
m k,s   . Thus, contrary to the case of a known number of tar-
gets, described in Sections IV and V, we will use a derivation 
of the joint posterior pdf  f ( y 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )  that does not 
involve a likelihood function. The joint posterior pdf and the 
corresponding factor graph will be the basis for the develop-
ment of scalable MTT methods in Section IX. We first estab-
lish some pdfs and pmfs to be used in the derivation of the 
joint posterior pdf.

C. State-Transition pdf

For each PT state   y  k−1  
(j)   ,  j ∈ { 1, …,  j k−1   }  at time  k − 1 , 

there is one legacy PT state    y _   k  (j)   at time  k . According to A1) 
and A2), the state-transition pdf for legacy PT state    y _  k   ≜  
[  y _   k  (1)T ⋯   y _   k  ( j k−1  )T ]   

T
   factorizes as 

  f (  y _  k   |  y k−1  ) =   ∏ 
j=1

  
 j k−1  

  f  (  y _   k  (j)  |  y  k−1  
(j)  )  (53)

where the single-target augmented state-transition pdf  
f (  y _   k  (j)  |  y  k−1  

(j)  ) = f (  x _   k  (j) ,    r ̲    k  (j)  |  x  k−1  
(j)  ,  r  k−1  

(j)  )  is given as follows. If PT  
j  does not exist at time  k − 1 , i.e.,   r  k−1  

(j)   = 0 , then it does not 
exist at time  k  either, i.e.,     r ̲    k  (j)  = 0 , and thus its state pdf is   
f D   (  x _   k  (j) ) . This means that 

  f (  x _   k  (j) ,    r ̲    k  (j)  |  x  k−1  
(j)  ,  r  k−1  

(j)   = 0) =  { 
 f D   (  x _   k  (j) ),

  
   r ̲    k  (j)  = 0

   
0,

  
   r ̲    k  (j)  = 1.

    (54)

On the other hand, if PT  j  exists at time  k − 1 , i.e.,   r  k−1  
(j)   = 1 , 

then, using Vu3), the probability that it still exists at time  k , 
i.e.,     r ̲    k  (j)  = 1 , is given by the survival probability   p s   ( x  k−1  

(j)  ) , and 
if it still exists at time  k , its state    x _   k  (j)   is distributed according 
to the state-transition pdf  f (  x _   k  (j)  |  x  k−1  

(j)  ) . Thus 

  f (  x _   k  (j) ,    r ̲    k  (j)  |  x  k−1  
(j)  ,  r  k−1  

(j)   = 1) 

  =  { 
(1 −  p s   ( x  k−1  

(j)  ))  f D   (  x _   k  (j) ),
  
   r ̲    k  (j)  = 0

    
 p s   ( x  k−1  

(j)  ) f (  x _   k  (j)  |  x  k−1  
(j)  ),

  
   r ̲    k  (j)  = 1.

    (55)

6This issue can be addressed by using a set-type model as discussed 
in Section XI.
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We note that the difference of the state-transition model 
(53)–(55) from the state-transition model for a known 
number of targets in (8) is due to the fact that targets may 
disappear. 

According to Vu7),   y 0    is empty. Thus, no state transition 
(53) can be performed at time  k = 1  and, consequently,    y _  1    is 
empty as well. For future use, we formally introduce  f (  y _   1  

(j)  |  
y  0  (j) ) ≜ 1  and  f (  y _  1   |  y 0  ) ≜ 1 . 

D. Conditional pdf of DA Vector, New PT State, and 
Number of Measurements

Using A3)–A6) and Vu4), the prior pmf of the DA vector   
a k,s   ≜  [ a  k,s  

(1) ⋯  a  k,s  
( j k,s  ) ]   

T
  , the vector of binary existence variables 

for new PTs    
_
 r  k,s   ≜  [  

_
 r   k,s  
(1) ⋯   

_
 r   k,s  
( m k,s  ) ]   T  , and the number of measure-

ments   m k,s    conditioned on the vector of legacy PT states    y _  k,s    
is obtained as (see [143] for a derivation) 

 p( a k,s  ,   
_
 r  k,s  ,  m k,s   |   y _  k,s  )  

 =   1 ____  m k,s   !
    e   − μ  n  (s)    ( μ  n  (s) )   

|    _ r  k,s  
  |
   e   − μ  c  

(s)    ( μ  c  
(s) )   

 m k,s  −|   a k,s  
  |−|    _ r  k,s  

  |
  

  × ψ ( a k,s  ) 
(

  ∏ 
m∈    _ r  k,s  

  
   Γ   a k,s    

(m)  
)

  
(

  ∏ 
j∈   a k,s  

  
     r ̲    k,s  

(j)     p  d  (s)  (  x _   k,s  
(j)  )

)
   

  ×   ∏ 
 j ′  ∉   a k,s  

  
  (  1 −    r ̲    k,s  

(j)    p  d  (s)  (  x _   k,s  
( j ′  ) )).  (56)

Here,  ψ ( a k,s  )  and     a k,s      are defined as in Section IV-B but 
with  i ,   i ′   , and   n t    replaced by  j ,   j ′   , and   j k,s   , respectively;  j ∉    a k,s      
is short for  j ∈ { 1, …,  j k,s   }\    a k,s     ;      _ r  k,s      is the set of new PTs 
that exist at time  k , i.e.,      _ r  k,s     ≜ { m ∈ { 1, …,  m k,s   } :    r ̅    k,s  

(m)  = 1} ; 
and   Γ   a k,s    

(m)   is defined as 

  Γ   a k,s    
(m)  ≜  { 0,  ∃ j ∈ { 1, …,  j k,s   } such that   a  k,s  

(j)   = m    
1,

  
otherwise.

    

Together, the factors  ψ ( a k,s  )  and   ∏ m∈     r ̅   k,s    
    Γ   a k,s    

(m)    enforce A4), 
i.e.,  p( a k,s  ,   

_
 r  k,s  ,  m k,s   |   y _  k,s  )≠0  only if each measurement is 

associated either with a legacy PT or with a new PT or with 
clutter, and no measurement is associated with more than 
one PT. Note that  p( a k,s  ,   

_
 r  k,s  ,  m k,s   |   y _  k,s  )  in (56) is a valid pmf 

in the sense that 

   ∑ 
 m k,s  =0

  
∞

    ∑ 
  
_
 r  k,s  ∈ {0,1}    m k,s   

      ∑ 
 a k,s  

   p    ( a k,s  ,   
_
 r  k,s  ,  m k,s   |   y _  k,s  ) = 1  

for arbitrary    y _  k,s   . The vector of legacy PTs    y _  k,s    may be empty, 
i.e.,   j k,s   = 0 . In that case,     a k,s      and  { 1, …,  j k,s   }\    a k,s      are empty, 
and an expression of  p( a k,s  ,   

_
 r  k,s  ,  m k,s   |   y _  k,s  ) = p( a k,s  ,   

_
 r  k,s  ,  m k,s  )   

can be obtained by setting the two products in (56) involv-
ing     a k,s      to 1.

To better understand the structure of  p( a k,s  ,   
_
 r  k,s  ,  m k,s    |   y _  k,s  ) ,  

we next consider four special cases. In the no-new-detec-
tions, no-legacy-detections, no-clutter case, i.e.,   m k,s   = 0 , 
   
_
 r  k,s   = 0 , and   a k,s   = 0 , expression (56) reduces to 

  p( a k,s   = 0,   
_
 r  k,s   = 0,  m k,s   = 0|   y _  k,s  )  

  =  e   − μ  n  (s)    e   − μ  c  
(s)    ∏ 

j=1
  

 j k,s  
  (  1 −    r ̲    k,s  

(j)    p  d  (s)  (  x _   k,s  
(j)  )).   

Here,   e   − μ  n  (s)    is the Poisson pmf of the number of newly 
detected targets evaluated at 0,   e   − μ  c  

(s)    is the Poisson pmf of 
the number of clutter measurements evaluated at 0, and   
∏ j=1  

 j k,s     (1 −    r ̲    k,s  
(j)     p  d  (s)  (   x ̲    k,s  

(i)  ))  is the probability that no survived 
target is detected by sensor  s . In the no-new-detections, no-
legacy-detections, all-clutter case, i.e.,   m k,s   > 0 ,    

_
 r  k,s   = 0 , and   

a k,s   = 0 , we obtain

      p( a k,s   = 0,   
_
 r  k,s   = 0,  m k,s   |   y _  k,s  ) 

 =  e   − μ  n  (s)     
 e   − μ  c  

(s)    ( μ  c  
(s) )   

 m k,s  
 
 _________  m k,s   !

    ∏ 
j=1

  
 j k,s  

  (  1 −    r ̲    k,s  
(j)    p  d  (s)  (  x _   k,s  

(j)  )) 

where   e   − μ  c  
(s)    ( μ  c  

(s) )   
 m k,s  

  /  m k,s   !  is the Poisson pmf of the num-
ber of clutter measurements evaluated at   m k,s   . In the all-
new-detections, no-legacy-detections, no-clutter case, i.e., 
   
_
 r  k,s   = 1  and   a k,s   = 0 , we have

  p( a k,s   = 0,   
_
 r  k,s   = 1,  m k,s   |   y _  k,s  )  

  =   
 e   − μ  n  (s)    ( μ  n  (s) )   

 m k,s  
 
 _________  m k,s   !

    e   − μ  c  
(s)    ∏ 

j=1
  

 j k,s  
  (  1 −    r ̲    k,s  

(j)    p  d  (s)  (  x _   k,s  
(j)  ))  

where   e   − μ  n  (s)    ( μ  n  (s) )   
 m k,s  

  /  m k,s   !  is the Poisson pmf of the num-
ber of newly detected targets evaluated at   m k,s   . In the no-
new-detections, all-legacy-detections, no-clutter case, i.e.,   
m k,s   =  j  k,s  

d   ,    
_
 r  k,s   = 0 , and   a k,s   =  a  k,s  

d   , where   j  k,s  
d   ≜  ∑ j=1  

 j k,s        r ̲    k,s  
(j)     is 

the number of existing legacy PTs and   a  k,s  
d    is any vector that 

assigns exactly one measurement to each existing legacy PT, 
we obtain

   p( a k,s   =  a  k,s  
d  ,   

_
 r  k,s   = 0,  m k,s   =  j  k,s  

d   |   y _  k,s  ) 

 =   1 ___ 
 j  k,s  
d   !

    e   − μ  n  (s)    e   − μ  c  
(s)     ∏ 

j∈   a k,s  
  
     r ̲    k,s  

(j)     p  d  (s)  (  x _   k,s  
(j)  ).   

Here,   e   − μ  n  (s)    and   e   − μ  c  
(s)    are again the Poisson pmfs of the num-

ber of newly detected targets and the number of clutter meas-
urements evaluated at 0, respectively;    ∏ 

j∈   a k,s  
  
     r ̲    k,s  

(j)     p  d  (s)  (  x _   k,s  
(j)  )   

is the probability that all existing legacy PTs are detected by 
sensor  s , and the factor  1 /  j  k,s  

d   !  arises because there are   j  k,s  
d   !  

different measurement-target associations and, thus,   j  k,s  
d   !  

different   a  k,s  
d   .

We can express (56) more compactly as 

 p( a k,s  ,   
_
 r  k,s  ,  m k,s   |   y _  k,s  )

= C( m k,s  ) ψ ( a k,s  ) ( ∏ 
j=1

  
 j k,s  

   q 1    (  x _   k,s  
(j)  ,    r ̲    k,s  

(j)  ,  a  k,s  
(j)  ;  m k,s  ))   ∏ 

m∈    _ r  k,s    
     μ  n  (s)  ___ 
 μ  c  (s) 

     Γ   a k,s    
(m)   

  
(57)

where  C( m k,s  )  is a normalization factor that depends only on   
m k,s    and   q 1   (  x _   k,s  

(j)  ,    r ̲    k,s  
(j)  ,  a  k,s  

(j)   ;  m k,s  )  is defined as  

(58)

  
 q 1   (  x _   k,s  

(j)  , 1,  a  k,s  
(j)   ;  m k,s  ) ≜

  
 

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
  
 p  d  (s)  (  x _   k,s  

(j)  )
 _______ 

 μ  c  
(s) 

  ,     a  k,s  
(j)   ∈ { 1, …,  m k,s   }    

1 −  p  d  (s)  (  x _   k,s  
(j)  ),  a  k,s  

(j)   = 0

   
      

 q 1   (  x _   k,s  
(j)  , 0,  a  k,s  

(j)   ;  m k,s  ) ≜

  

1( a  k,s  
(j)  )
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where  1(a)  denotes the indicator function of the event  a = 0  
(i.e.,  1(a)  is 1 if  a = 0  and 0 otherwise).

Next, using Vu5) and the fact that new PT states with 
   
_
 r  k,s   = 1  represent newly detected targets, the prior pdf of 

the states    
_
 x  k,s    of new PTs conditioned on    

_
 r  k,s    and   m k,s    is 

obtained as 

  f (  
_

 x  k,s   |   
_
 r  k,s  ,  m k,s  ) =  

(
  ∏ 
 m ′  ∈    _ r  k,s  

  
   f n    (  

_
 x   k,s  
( m ′  ) )

)
    ∏ 
m∉    _ r  k,s  

  
   f D    (  

_
 x   k,s  
(m) )  (59)

where  m ∉     _ r  k,s      is short for  m ∈ { 1, …,  m k,s   }\     _ r  k,s     .
Finally, using Vu6), we obtain for the conditional pdf of   

a k,s   ,    
_

 y  k,s   , and   m k,s   

 f ( a k,s  ,   
_

 y  k,s  ,  m k,s   |   y _  k,s  ) 

 = f (  
_

 x  k,s   |  a k,s  ,   
_
 r  k,s  ,  m k,s  ,   y _  k,s  ) p( a k,s  ,   

_
 r  k,s  ,  m k,s   |   y _  k,s  ) 

 = f (  
_

 x  k,s   |   
_
 r  k,s  ,  m k,s  ) p( a k,s  ,   

_
 r  k,s  ,  m k,s   |   y _  k,s  ). 

Inserting (57) and (59), we obtain further 

 f ( a k,s  ,   
_

 y  k,s  ,  m k,s   |   y _  k,s  )

= C( m k,s  ) ψ ( a k,s  ) ( ∏ 
j=1

  
 j k,s  

   q 1    (  x _   k,s  
(j)  ,    r ̲    k,s  

(j)  ,  a  k,s  
(j)   ;  m k,s  )) 

 ×   ∏ 
m=1

  
 m k,s  

   v 1    (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m) ,  a k,s  )  (60)

where   v 1   (  _ x   k,s  
(m) ,    r ̅    k,s  

(m) ,  a k,s  )  is defined as  

(61)
  v 1   (  

_
 x   k,s  
(m) , 1,  a k,s  ) ≜  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 0,

  

∃ j ∈ { 1, …,  j k,s   }

    
 
  

such that   a  k,s  
(j)   = m

    

   
 μ  n  (s) 

 ___ 
 μ  c  

(s) 
    f n   (  

_
 x   k,s  
(m) ),

  

otherwise

    

and 

   v 1   (  
_ x   k,s  

(m) , 0,  a k,s  ) ≜  f D   (  
_

 x   k,s  
(m) ).  (62)

E. Conditional pdf of the Measurements

Using A4), A7), A8), and A9), the dependence of 
the measurement vector   z k,s    on     y  ̲  k,s   ,     y ̅   k,s   ,   a k,s   , and   m k,s    is 
described by the conditional pdf [cf. (12)] 

 f ( z k,s   |   y _  k,s  ,   
_

 y  k,s  ,  a k,s  ,  m k,s  )

=  (  ∏ 
m=1

  
 m k,s  

    f  c  
(s)   ( z  k,s  

(m) ))  
(

  ∏ 
j∈   a k,s    

   f   (s)   ( z  k,s  
( a  k,s  

(j)  )  |   x _   k,s  
(j)  )

)
 

 ×   ∏ 
 m ′  ∈    _ r  

k,s
    
   f   (s)   ( z  k,s  

( m ′  )  |   
_

 x   k,s  
( m ′  ) ).  (63)

[Note that this expression presupposes that    _ r  k,s    and   a k,s    are 
consistent with A4).] We can write (63) as 

 f ( z k,s   |   y _  k,s  ,   
_

 y  k,s  ,  a k,s  ,  m k,s  ) = C( z k,s  ) ( ∏ 
j=1

  
 j k,s  

   q 2    (  x _   k,s  
(j)  ,    r ̲    k,s  

(j)  ,  a  k,s  
(j)  ;  z k,s  )) 

                                 ×   ∏ 
m=1

  
 m k,s  

   v 2    (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m)  ;  z  k,s  
(m) )  (64)

where  C( z k,s  )  is a normalization factor that depends only on   z k,s    
(and, thus, also on   m k,s   ),   q 2   (  x _   k,s  

(j)  ,    r ̲    k,s  
(j)  ,  a  k,s  

(j)   ;  z k,s  )  is defined as 

  q 2  (  x _   k,s  
(j)   , 1,  a  k,s  

(j)  ;  z k,s   ) ≜  { 
 f   (s)  ( z  k,s  

(m)  |   x _   k,s  
(j)   ),  a  k,s  

(j)   = m ∈ { 1, …,  m k,s   }    
1,                          a  k,s  

(j)   = 0
   

 q 2  (  x _   k,s  
(j)  , 0,  a  k,s  

(j)   ;  z k,s  ) ≜ 1 

and   v 2   (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m)  ;  z  k,s  
(m) )  is defined as  

(65)

  v 2   (  
_

 x   k.s  
(m) ,    r ̅    k,s  

(m) ;  z  k,s  
(m) ) ≜  { 

 f   (s)  ( z  k,s  
(m)  |   

_
 x   k,s  
(m) ),

  
   r ̅    k,s  

(m)  = 1
   

1,
  

   r ̅    k,s  
(m)  = 0.

    (66)

The vector of legacy PTs    y _  k,s    may be empty, i.e.,   j k,s   = 
0 . In that case, an expression of  f ( z k,s   |   y _  k,s  ,   

_
 y  k,s  ,  a k,s  ,  m k,s  ) =  

f ( z k,s   |   
_

 y  k,s  ,  a k,s  ,  m k,s  )  can be obtained by replacing in (64) the 
product involving   j k,s    by 1.

F. Conditional pdf of Measurements, Number 
of Measurements, DA Vector, and Augmented 
Target States

The pdf of   z k,s   ,   a k,s   ,   m k,s   , and    
_
 y  k,s    conditioned on    y _  k,s    is 

obtained as 

   f ( z k,s  ,  a k,s  ,  m k,s  ,   
_

 y  k,s   |   y _  k,s  )
 = f ( a k,s  ,   

_
 y  k,s  ,  m k,s   |   y _  k,s  ) f ( z k,s   |   y _  k,s  ,   

_
 y  k,s  ,  a k,s  ,  m k,s  )  (67)

with  f ( a k,s  ,   
_

 y  k,s  ,  m k,s   |   y _  k,s  )  given by (60) and  f ( z k,s   |   y _  k,s  ,   
_

 y  k,s  ,  a k,s  ,  
 m k,s  )  given by (64). Note that  f ( z k,s  ,  a k,s  ,  m k,s  ,   

_
 y  k,s   |   y _  k,s  )  in 

(67) is a valid hybrid pdf/pmf in the sense that 

   ∑ 
 m k,s  =0

  
∞

     ∑ 
 a k,s  

      ∑ 
  
_
 r  k,s  ∈ {0,1}    m k,s   

   ∫     ∫     f      ( z k,s  ,  a k,s  ,  m k,s  ,   
_

 y  k,s   |    y _  k,s  ) d z k,s   d  
_

 x  k,s   = 1  

for arbitrary    y _  k,s   . Using A10) and the fact that the new PT 
states    

_
 y  k, s ′      related to sensors   s ′   = 1, …, s − 1  become legacy 

PT states at the successive sensors  s, …,  n s   , the conditional 
pdf of   z k   ,   a k   ,   m k   , and    

_
 y  k    given    y _  k    is obtained as [cf. (15)] 

  f ( z k  ,  a k  ,  m k  ,   
_

 y  k   |   y _  k  ) =   ∏ 
s=1

  
 n s  

   f  ( z k,s  ,  a k,s  ,  m k,s  ,   
_

 y  k,s   |   y _  k,s  )  (68)

where  f ( z k,s  ,  a k,s  ,  m k,s  ,   
_

 y  k,s   |   y _  k,s  )  is given by (67).
Next, we develop the conditional pdf of   z k   ,   a k   ,   m k   , and   y k    

given   y k−1   . We obtain 

  f ( z k  ,  a k  ,  m k  ,  y k   |  y k−1  ) = f ( z k  ,  a k  ,  m k  ,   y _  k  ,   
_

 y  k   |  y k−1  )

 = f ( z k  ,  a k  ,  m k  ,   
_

 y  k   |   y _  k  ,  y k−1  ) f (  y _  k   |  y k−1  )

 = f ( z k  ,  a k  ,  m k  ,   
_

 y  k   |   y _  k  ) f (  y _  k   |  y k−1  )  (69)

where A11) was used. [Note that A11) implies an analogous 
assumption in which the   x   k ′    

(i)  ,   k ′   ≠ k  in A11) are replaced 
by   y   k ′    

(j)  ,   k ′   ≠ k .] In case   y k−1    is empty,    y _  k    is empty as well 
and (69) reduces to  f ( z k  ,  a k  ,  m k  ,  y k   |  y k−1  ) = f ( z k  ,  a k  ,  m k  ,   

_
 y  k  ) . 
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Using again A11) and the chain rule, the unconditional joint 
pdf for all times up to  k  is given by 

  f ( z 1:k  ,  a 1:k  ,  m 1:k  ,  y 1:k  ) =   ∏ 
 k ′  =1

  
k
  f  ( z  k ′    ,  a  k ′    ,  m  k ′    ,  y  k ′     |  y  k ′  −1  )  (70)

where  f ( z 1  ,  a 1  ,  m 1  ,  y 1   |  y 0  ) = f ( z 1  ,  a 1  ,  m 1  ,  y 1  ) = f ( z 1  ,  a 1  ,  m 1  ,   
_

 y  1  ) .

G. Joint Posterior pdf and Factor Graph

Next, similarly to Section V, we derive the joint posterior 
pdf  f ( y 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )  and the corresponding factor graph. 
As in Section V-A, we start by performing the first stretch-
ing step, i.e., we replace  f ( y 1:k   |  z 1:k  )  by  f ( y 1:k  ,  a 1:k   |  z 1:k  ) .  
With   z 1:k    observed, we obtain for the stretched joint poste-
rior pdf 

     f ( y 1:k  ,  a 1:k   |  z 1:k  ) = f ( y 1:k  ,  a 1:k   |  z 1:k  ,  m 1:k  ) 

  ∝ f ( z 1:k  ,  a 1:k  ,  m 1:k  ,  y 1:k  )

           =   ∏ 
 k ′  =1

  
k
  f  ( z  k ′    ,  a  k ′    ,  m  k ′    ,  y  k ′     |  y  k ′  −1  ) 

where (70) was used. Next, using (69) and subsequently 
(68) and (67), we obtain further 

 f ( y 1:k  ,  a 1:k   |  z 1:k  )   ∝   ∏ 
 k ′  =1

  
k
   f  (  y _   k ′     |  y  k ′  −1  )   ∏ 

s=1
  

 n s  
   f  ( a  k ′  ,s  ,   

_
 y   k ′  ,s  ,  m  k ′  ,s   |   y _   k ′  ,s  )

       × f ( z  k ′  ,s   |   y _   k ′  ,s  ,   
_

 y   k ′  ,s  ,  a  k ′  ,s  ,  m  k ′  ,s  ) 

where we recall that  f (  y _  1   |  y 0  ) = 1 . Finally, inserting (53), 
(60), and (64) yields 

  f ( y 1:k  ,  a 1:k   |  z 1:k  )

∝   ∏ 
 k ′  =1

  
k
   (  ∏ 

 j ′  =1
  

 j  k ′  −1  
  f  (  y _    k ′    

( j ′  )  |  y   k ′  −1  
( j ′  )  ))     ∏ 

s=1
  

 n s  
  ψ  ( a  k ′  ,s  )

   ×  ( ∏ 
j=1

  
 j  k ′  ,s  

  q  (  x _    k ′  ,s  
(j)  ,    r ̲     k ′  ,s  

(j)  ,  a   k ′  ,s  
(j)   ;  z  k ′  ,s  )) 

   ×   ∏ 
m=1

  
 m  k ′  ,s  

   v 1    (  
_

 x    k ′  ,s  
(m) ,    r ̅     k ′  ,s  

(m) ,  a  k ′  ,s  )  v 2   (  
_

 x    k ′  ,s  
(m) ,    r ̅     k ′  ,s  

(m)  ;  z   k ′  ,s  
(m) )   (71)

with  f (  y _   1  
(j)  |  y  0  (j) ) = 1  and 

 q(  x _   k,s  
(j)  ,    r ̲    k,s  

(j)  ,  a  k,s  
(j)   ;  z k,s  )

 ≜  q 1   (  x _   k,s  
(j)  ,    r ̲    k,s  

(j)  ,  a  k,s  
(j)   ;  m k,s  )  q 2   (  x _   k,s  

(j)  ,    r ̲    k,s  
(j)  ,  a  k,s  

(j)   ;  z k,s  ).    (72)

Next, we perform the second stretching step, similarly 
to Section V-B, i.e., we replace  f ( y 1:k  ,  a 1:k   |  z 1:k  )  by  f ( y 1:k  ,  a 1:k  ,  
 b 1:k   |  z 1:k  ) . This is done by replacing  ψ ( a k,s  )  in (71) by 

 ψ ( a k,s  ,  b k,s  ) =  ∏ 
j=1

  
 j k,s  

     ∏ 
m=1

  
 m k,s  

   Ψ j,m     ( a  k,s  
(j)  ,  b  k,s  

(m) )  

[cf. (21)] with   Ψ j,m   ( a  k,s  
(j)  ,  b  k,s  

(m) )  given by (22). The fac-
torization (71) can now be simplified by the follow-
ing modification. Let   a k,s    and   b k,s    be a valid pair of DA 

vectors in the sense that  ψ ( a k,s  ,  b k,s  ) = 1 . Then, the condi-
tion in (61), “ ∃ j ∈ { 1, …,  j k,s   }  such that   a  k,s  

(j)   = m ,” is equal to  
“  b  k,s  

(m)  ∈ { 1, …,  j k,s   } .” By inspecting   v 1   (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m) ,  a k,s  )  defined 

in (61) and (62) as well as   v 2   (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m)  ;  z  k,s  
(m) )  defined 

in (66), one can conclude that the product   v 1   (  
_

 x   k,s  
(m) ,  

   r ̅    k,s  
(m) ,  a k,s  )  v 2   (  

_
 x   k,s  
(m) ,    r ̅    k,s  

(m)  ;  z  k,s  
(m) )  in (71) can be replaced by  

v(  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m) ,  b  k,s  
(m)  ;  z  k,s  

(m) )  defined as 

 v(  
_

 x   k,s  
(m) , 1,  b  k,s  

(m)  ;  z  k,s  
(m) )

 ≜  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 
0,

  
 b  k,s  

(m)  ∈ { 1, …,  j k,s   }
     

  
 μ  n  (s) 

 ___ 
 μ  c  

(s) 
    f n   (  

_
 x   k,s  
(m) )  f   (s)  ( z  k,s  

(m)  |   
_

 x   k,s  
(m) ),

  
 b  k,s  

(m)  = 0
     (73)

and 

  v(  
_

 x   k,s  
(m) , 0,  b  k,s  

(m)  ;  z  k,s  
(m) ) =  f D   (  

_
 x   k,s  
(m) ).  (74)

With this simplification, the stretched marginal posterior 
pdf replacing (71) is obtained as 

    f ( y 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )

     ∝   ∏ 
 k ′  =1

  
k
   (  ∏ 

 j ′  =1
  

 j  k ′  −1  
  f  (  y _    k ′    

( j ′  )  |  y   k ′  −1  ( j ′  )  ))  

    ×   ∏ 
s=1

  
 n s  

  (    ∏ 
j=1

  
 j  k ′  ,s  

  q  (  x _    k ′  ,s  
(j)  ,    r ̲     k ′  ,s  

(j)  ,  a   k ′  ,s  
(j)   ;  z  k ′  ,s  )

    ×   ∏ 
 m ′  =1

  
 m  k ′  ,s  

   Ψ j, m ′      ( a   k ′  ,s  
(j)  ,  b   k ′  ,s  

( m ′  ) ))

    ×   ∏ 
m=1

  
 m  k ′  ,s  

  v  (  
_ x    k ′  ,s  

(m) ,    r ̅     k ′  ,s  
(m) ,  b   k ′  ,s  

(m)  ;  z   k ′  ,s  
(m) ).  (75)

Here, we recall that   j 0   = 0  [cf. Vu7)]. We note that  f ( y 1:k  ,   
a 1:k  ,  b 1:k   |  z 1:k  )  is still consistent with the original joint poste-
rior pdf  f ( y 1:k   |  z 1:k  )  in the sense that 

   ∑ 
 a 1:k  

     ∑ 
 b 1:k  

   f   ( y 1:k   ,  a 1:k   ,  b 1:k   |  z 1:k   ) = f ( y 1:k   |  z 1:k  ) 

which means that the marginal posterior pdfs  f ( y  k  (j)  |  z 1:k  )  
calculated from  f ( y 1:k  ,  a 1:k  ,  b 1:k   |  z 1:k  )  are equal to the ones 
calculated from  f ( y 1:k   |  z 1:k  ) .

The factorization in (75) can now be represented by a 
factor graph. This factor graph is shown for the single-sensor 
case (  n s   = 1 ) in Fig. 4. As a difference from the factor graph 
for a known, fixed number of targets shown in Fig. 2(c), for 
each measurement, an additional variable node “   

_
 y   k,s  
(m)  ” rep-

resenting the state of a new PT is introduced.

I X .  SPA-BA SED V ECTOR-T Y PE MT T 
METHODS FOR A N U NK NOW N, TIME-
VA RY ING N UMBER OF TA RGETS

In this section, building on the vector-type system model 
presented in Section VIII and the factor graph shown in 
Fig. 4, we develop total-SPA MTT methods for tracking an 
unknown, time-varying number of targets. An important 
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building block of these methods is the “bipartite” formula-
tion of the probabilistic DA problem developed in Section 
VIII-G and represented graphically in Fig. 4. This formula-
tion enables the application of SPADA, which leads to excel-
lent scalability and, thus, suitability even for large tracking 
scenarios with closely spaced targets. The proposed SPA-
based MTT methods are improved variants of the total-SPA 
method presented in [53] and can be seen as SPA-based 
versions of the JIPDA filter [2], [63]. Differently from the 
method in [53] and the JIPDA filter, they do not use a heu-
ristic to model the generation of new PTs. A particle-based 
implementation is described in [53].

A. Single-Sensor MTT

We first consider the single-sensor case (  n s   = 1 ) and 
thus drop the sensor index  s . For MTT with an unknown 
number of targets, approximations   f ̃  (  y _   k  (j) )  and   f ̃  (  

_
 y   k  (m) )  of the 

marginal posterior pdfs  f (  y _   k  (j)  |  z 1:k  )  and  f (  
_

 y   k  (m)  |  z 1:k  )  can be 
obtained in an efficient way by running the iterative SPA 
on the loopy factor graph in Fig. 4. As before, messages are 
only sent forward in time. The generic SPA rules in Section 
III-B then yield the following operations at time  k . [With an 
abuse of notation, we denote messages that are analogous to 
messages in previously presented methods in the same way, 
even if the functional forms are different.]

1) Prediction: First, the messages   α  k   (  y _   k  (j) ) =  α  k   (  x _   k  (j) ,    r ̲    k  (j) )   
passed from the factor nodes “ f (  y _   k  (j)  |  y  k−1  

(j)  ) ” to the variable 
nodes “   y _   k  (j)  ” are calculated according to 

  α  k   (  x _   k  (j) ,    r ̲    k  (j) ) =   ∑ 
 r  k−1  

(j)  ∈{0,1}
   ∫     f   (  x _   k  (j) ,    r ̲    k  (j)  |  x  k−1  

(j)  ,  r  k−1  
(j)  ) 

           ×  f ̃  ( x  k−1  
(j)  ,  r  k−1  

(j)  ) d x  k−1  
(j)  . 

Here,   f ̃  ( x  k−1  
(j)   ,  r  k−1  

(j)  )  was calculated at the previous time  k − 1 . 
Inserting (54) and (55), we obtain for     r ̲    k  (j)  = 1 

   α  k   (  x _   k  (j) , 1) =  ∫     p s    ( x  k−1  
(j)  ) f (  x _   k  (j)  |  x  k−1  

(j)  )  f ̃  ( x  k−1  
(j)  , 1) d x  k−1  

(j)    (76)

and for     r ̲    k  (j)  = 0  we have [cf. (51)]   α  k   (  x _   k  (j) , 0) =  α  k  (j)   f D   (  x _   k  (j) )  with 

   α  k  (j)  =   f ̃    k−1  
(j)

   +  ∫    (  1 −  p s   ( x  k−1  
(j)  ))  f ̃  ( x  k−1  

(j)  , 1) d x  k−1  
(j)    (77)

where    f ̃    k−1  
(j)

   =  ∫      f ̃    ( x  k−1  
(j)  , 0) d x  k−1  

(j)   . [Note also that   α  k  (j)  =  
∫     α  k    (  x _   k  (j) , 0) d  x _   k  (j)  ; furthermore,   f ̃  ( x  k−1  

(j)  , 0) =   f ̃    k−1  
(j)

    f D   ( x  k−1  
(j)  )  

according to (51).] Because   f ̃  ( x  k−1  
(j)  ,  r  k−1  

(j)  )  is normalized, so 
is   α  k   (  x _   k  (j) ,    r ̲    k  (j) ) , i.e., 

   ∑ 
   r ̲    k  (j) ∈{0,1}

   ∫     α  k     (  x _   k  (j) ,    r ̲    k  (j) ) d  x _   k  (j)  = 1 . 

Thus, we also have 

  α  k  (j)  = 1 −  ∫     α  k    (  x _   k  (j) , 1) d  x _   k  (j)  .

2) Measurement Evaluation: Once   α  k   (  x _   k  (j) , 1)  and   α  k  (j)   have 
been calculated, a “measurement evaluation” step is per-
formed for both the legacy PTs and the new PTs. For the 
legacy PTs, the messages   β  k  (j)  ( a  k  (j) )  passed from the factor 

Fig. 4. Factor graph for single-sensor MTT with an unknown, time-varying number of targets, corresponding to the factorization (75) for   
n s   = 1 . Two complete consecutive sections of the factor graph (for times  k − 1  and  k ) are shown; the section for time  k  also depicts the 
messages passed between adjacent nodes. Factor nodes in green represent factors related to the state-transition function, factor nodes 
in red represent the remaining factors, and messages are depicted in blue. The time index  k  and the sensor index  s  are omitted, and the 
following short notations are used:   y  =  j   ≜  y  k−2  (j)   ,   n  m 

‾
    ≜  m k−1   ,   n  p _     ≜  j 

k−2
   ,    y _    

−
  j   ≜   y _    

k−1
  (j)   ,    
_

 y   −  m  ≜   
_

 y   k−1  (m)   ,   a  −  j   ≜  a  k−1  (j)   ,   b  −  m  ≜  b  k−1  (m)   ,   n m   ≜  m k   ,   n p   ≜  j 
k−1

   ,    y _     j  ≜   y _    
k
  (j)  ,  

   
_

 y    m  ≜   
_

 y   k  (m)  ,   a   j  ≜  a  k  (j)  ,   b   m  ≜  b  k  (m)  ,   f  −  j   ≜ f(  y _    
k−1

  (j)   |  y  k−2  (j)  ) ,   f   j  ≜ f(  y _    
k
  (j)  |  y  k−1  (j)  ) ,   q  −  j   ≜ q(  x _    k−1  (j)  ,    r ̲    k−1  (j)  ,  a  k−1  (j)   ;  z k−1  ) ,   Ψ  −  j,m  ≜  Ψ j,m   ( a  k−1  (j)  ,  b  k−1  (m)  ) ,   v  −  m  ≜ v(  

_
 x   k−1  (m)  ,    r ̅    k−1  (m)  ,  

 b  k−1  (m)   ;  z  k−1  (m)  ) ,   q   j  ≜ q(  x _    k  (j) ,    r ̲    k  (j) ,  a  k  (j)  ;  z k  ) ,   Ψ    j,m  ≜  Ψ j,m   ( a  k  (j) ,  b  k  (m) ) ,   v   m  ≜ v(  
_

 x   k  (m) ,    r ̅    k  (m) ,  b  k  (m)  ;  z  k  (m) ) ,    f ̃    −  j   ≜  f ̃  (  y _    
k−1

  (j)  ) ,   α  j   ≜  α  k   (  y _    
k
  (j) ) ,   γ  j   ≜  γ  k  (j)  (  y _    

k
  (j) ) ,   κ  j   ≜  κ  k  (j)  ( a  k  (j) ) ,  

  β  j   ≜  β  k  (j)  ( a  k  (j) ) ,   ν  m,j   ≜  ν   Ψ j,m  → a  k  (j)   
[]   ( a  k  (j) ) ,   ϕ  j,m   ≜  ϕ   Ψ j,m  → b  k  (m)   

[]   ( b  k  (m) ) ,   ξ  m   ≜  ξ  k  (m)  ( b  k  (m) ) ,   ι  m   ≜  ι  k  (m)  ( b  k  (m) ) , and   ς  m   ≜  ς  k  (m)  (  
_

 y   k  (m) ) .
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nodes “ q(  x _   k  (j) ,    r ̲    k  (j) ,  a  k  (j)  ;  z k  ) ” to the variable nodes “  a  k  (j)  ” are 
calculated according to 

  β  k  (j) ( a  k  (j) ) =   ∑ 
   r ̲    k  (j) ∈{0,1}

   ∫    q   (  x _   k  (j) ,    r ̲    k  (j) ,  a  k  (j)  ;  z k  )  α  k   (  x _   k  (j) ,    r ̲    k  (j) ) d  x _   k  (j) 

      =  ∫    q  (  x _   k  (j) , 1,  a  k  (j)  ;  z k  )  α  k   (  x _   k  (j) , 1) d  x _   k  (j)  + 1( a  k  (j) )  α  k  (j) .  
 (78)

In the last expression, we used  q(  x _   k  (j) , 0,  a  k  (j)  ;  z k  ) = 1( a  k  (j) ) ,  
which follows from (72) along with (65) and (58). For the 
new PTs, the messages   ξ  k  (m)  ( b  k  (m) )  passed from the factor 
nodes “ v(  

_
 x   k  (m) ,    r ̅    k  (m) ,  b  k  (m)  ;  z  k  (m) ) ” to the variable nodes “  b  k  (m)  ” 

are calculated according to 

  
 ξ  k  (m)  ( b  k  (m) ) =

  
  ∑ 
   r ̅    k  (m) ∈{0,1}

   ∫     v   (  
_

 x   k  (m) ,    r ̅    k  (m) ,  b  k  (m)  ;  z  k  (m) ) d  
_

 x   k  (m) 
     

                    =
  
 ∫     v  (  

_
 x   k  (m) , 1,  b  k  (m)  ;  z  k  (m) ) d  

_
 x   k  (m)  + 1

    
(79)

where (74) was used. Inserting (73), we find that for   b  k  (m)  = 
0 , expression (79) simplifies to 

  ξ  k  (m)  (0) =   
 μ  n  

 __  μ  c      ∫      f n    (  
_

 x   k  (m) ) f( z  k  (m)  |   
_

 x   k  (m) ) d  
_

 x   k  (m)  + 1 

[here, we recall that  f( z  k  (m)  |    x ̅    k  (m) ) = f ( z  k  (m)  |    x ̅    k  (m) ) /  f c   ( z  k  (m) )],  
and for   b  k  (m)  ≠ 0 , it simplifies to   ξ  k  (m)  ( b  k  (m) ) = 1 .

For future reference, we note that the belief of the joint 
DA vector   [ a  k  T   b  k  T ]   

T
   is obtained as 

   p ̃  ( a k  ,  b k  ) ∝ ψ ( a k  ,  b k  ) (  ∏ 
j=1

  
 j k−1  

  β  k  (j)   ( a  k  (j) ))    ∏ 
m=1

  
 m k  

   ξ  k  (m)   ( b  k  (m) )  (80)

where  ψ ( a k  ,  b k  )  is given by [cf. (21)]

 ψ ( a k  ,  b k  ) =   ∏ 
j=1

  
 j k−1  

   ∏ 
m=1

  
 m k  

   Ψ j,m     ( a  k  (j) ,  b  k  (m) ) .

3) Iterative Probabilistic DA: Next, probabilistic DA is 
performed using the iterative SPA-based algorithm from 
Section VI-A, which yields at each iteration    the messages   
ϕ   Ψ j,m  → b  k  (m)   

[]   ( b  k  (m) )  and   ν    Ψ j,m  → a  k  (j)   
[]   ( a  k  (j) ) . Here, the messages  

  β  k  (j)  ( a  k  (j) )  from (78) are used in (27) and (29), and the mes-
sages   ξ  k  (m)  ( b  k  (m) )  from (79) are used in (28). After the last 
iteration   =  n it   , the messages passed from “  a  k  (j)  ” to “ q(  x _   k  (j) ,  
   r ̲    k  (j) ,  a  k  (j)  ;  z k  ) ” are obtained as 

   κ  k  (j)  ( a  k  (j) ) =   ∏ 
m=1

  
 m k  

   ν   Ψ 
j,m

  → a  k  (j)   
[ n it  ]    ( a  k  (j) )  (81)

and the messages passed from “  b  k  (m)  ” to “ v(  
_

 x   k  (m) ,    r ̅    k  (m) ,  b  k  (m)  ;  
z  k  (m) ) ” are obtained as 

   ι  k  (m)  ( b  k  (m) ) =   ∏ 
j=1

  
 j k−1  

  ϕ   Ψ 
j,m

  → b  
k
  (m)   

[ n it  ]    ( b  k  (m) ).  (82)

For an efficient implementation, one can use SPADA. 
The messages   ν  k  [ n it  ](m→j)   in (31) and   ϕ  k  [ n it  ](j→m)   in (30) then 
have to be converted into the messages   ν   Ψ j,m  → a  k  (j)   

[ n it  ]   ( a  k  (j) )  used 
in (81) and   ϕ   Ψ j,m  → b  k  (m)   

[ n it  ]   ( b  k  (m) )  used in (82), respectively. For   
ν  k  [ n it  ](m→j)  , this is done as explained in Section VII-A2. For   
ϕ  k  [ n it  ](j→m)  , similarly,   ϕ   Ψ j,m  → b  k  (m)   

[ n it  ]   ( b  k  (m) ) =  ϕ  k  [ n it  ](j→m)   for   b  k  (m)  = j  
and   ϕ   Ψ j,m  → b  k  (m)   

[ n it  ]   ( b  k  (m) ) = 1  for   b  k  (m)  ≠ j .

4) Measurement Update: A “measurement update” step 
is now performed for both the legacy PTs and the new PTs. 
For the legacy PTs, the messages   γ  k  (j)  (  x _   k  (j) ,    r ̲    k  (j) )  passed from 
“ q(  x _   k  (j) ,    r ̲    k  (j) ,  a  k  (j)  ;  z k  ) ” to “   y _   k  (j)  ” are calculated according to 

  γ  k  (j)  (  x _   k  (j) , 1) =   ∑ 
 a  k  (j) =0

  
 m k  

  q  (  x _   k  (j) , 1,  a  k  (j)  ;  z k  )  κ  k  (j)  ( a  k  (j) ) 

and   γ  k  (j)  (  x _   k  (j) , 0) =  γ  k  (j)   with 

  γ  k  (j)  =  κ  k  (j) (0). 

For the new PTs, the messages   ς  k  (m)  (  
_

 x   k  (m) ,    r ̅    k  (m) )  passed from  
“ v(  

_
 x   k  (m) ,    r ̅    k  (m) ,  b  k  (m)  ;  z  k  (m) ) ” to “   

_
 y   k  (m)  ” are calculated as 

  ς  k  (m)  (  
_

 x   k  (m) , 1) =   
 μ  n  

 __  μ  c      f n   (  
_

 x   k  (m) ) f( z  k  (m)  |   
_

 x   k  (m) )  ι  k  (m)  (0) 

and   ς  k  (m)  (  
_

 x   k  (m) , 0) =  ς  k  (m)   f D   (  
_

 x   k  (m) )  with 

  ς  k  (m)  =   ∑ 
 b  k  (m) =0

  
 j k−1  

   ι  k  (m)   ( b  k  (m) ). 

5) Belief Calculation: Finally, for the legacy PTs, beliefs   
f ̃  (  y _   k  (j) ) =  f ̃  (  x _   k  (j) ,    r ̲    k  (j) )  approximating the marginal posterior 
pdfs  f (  y _   k  (j)  |  z 1:k  ) = f (  x _   k  (j) ,    r ̲    k  (j)  |  z 1:k  )  are obtained as 

   f ̃  (  x _   k  (j) , 1) =   1 ___ 
  C ̲    k  (j) 

    α  k   (  x _   k  (j) , 1)  γ  k   (  x _   k  (j) , 1)  (83)

and   f ̃  (  x _   k  (j) , 0) =    f ̲    k  (j)   f D   (  x _   k  (j) )  with 

     f ̲    k  (j)  =   1 ___ 
  C ̲    k  (j) 

    α  k  (j)   γ  k  (j)   (84)

where    C ̲    k  (j)  ≜  ∫     α  k    (  x _   k  (j) , 1)  γ  k  (j)  (  x _   k  (j) , 1) d  x _   k  (j)  +  α  k  (j)   γ  k  (j)  . Similarly, 
for the new PTs, beliefs   f ̃  (  

_
 y   k  (m) ) =  f ̃  (  

_
 x   k  (m) ,    r ̅    k  (m) )  approximat-

ing the marginal posterior pdfs  f (  
_

 y   k  (m)  |  z 1:k  ) = f (  
_

 x   k  (m) ,    r ̅    k  (m)  |  
z 1:k  )  are obtained as 

   f ̃  (  
_

 x   k  (m) , 1) =   1 ____ 
  C ̅    k  (m) 

    ς  k  (m)  (  
_

 x   k  (m) , 1)  (85)

and   f ̃  (  
_

 x   k  (m) , 0) =    f ̅    k  (m)   f D   (  
_

 x   k  (m) )  with 

     f ̅    k  (m)  =   1 ____ 
  C ̅    k  (m) 

    ς  k  (m)   (86)

where    C ̅    k  (m)  ≜  ∫     ς  k  (m)   (  
_

 x   k  (m)  , 1) d  
_

 x   k  (m)  +  ς  k  (m)  .

6) Target Declaration, State Estimation, and Pruning: For 
the legacy PTs, beliefs   p ̃  (   r ̲    k  (j) )  approximating the marginal 
posterior pmfs  p(   r ̲    k  (j)  |  z 1:k  )  of the existence indicators     r ̲    k  (j)   are 
obtained from the beliefs   f ̃  (  x _   k  (j) ,    r ̲    k  (j) )  as 

  p ̃  (   r ̲    k  (j) ) =  ∫      f ̃    (  x _   k  (j) ,    r ̲    k  (j) ) d  x _   k  (j) . 

Target detection—hereafter termed “target declaration” 
to avoid confusion with the detection performed by the 
sensors—is now performed by comparing   p ̃  (   r ̲    k  (j)  = 1)  to a 
threshold   P th   , i.e., legacy PT  j  is declared to exist at time  k  if  
  p ̃  (   r ̲    k  (j)  = 1) >  P th    [148, Ch. 2]. For these PTs  j , state esti-
mation is then performed, e.g., using (3) with  f ( x k   |  z 1:k  )   
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replaced by   f ̃  (  x _   k  (j) ,    r ̲    k  (j)  = 1)  / p ̃  (   r ̲    k  (j)  = 1) . For the new PTs, 
target declaration and state estimation are done as for the 
legacy PTs but with   f ̃  (  x _   k  (j) ,    r ̲    k  (j) )  replaced by   f ̃  (  

_
 x   k  (m) ,    r ̅    k  (m) ) .

Finally, a pruning step is typically performed. According 
to (52), the number of PTs would grow with time  k . 
Therefore, legacy and new PTs whose existence beliefs  
  p ̃  (   r ̲    k  (j)  = 1)  and   p ̃  (   r ̅    k  (m)  = 1) , respectively are below a thresh-
old   P pr    are removed.

B. Multisensor MTT

For multiple sensors (  n s   ≥ 2 ), the factor graph dif-
fers from that for a single sensor shown in Fig. 4 in that 
an additional section of the factor graph is introduced for 
each additional sensor, and for each time  k , there is a factor 
node “ f (  y _   k  (j)  |  y  k−1  

(j)  ) ” in the section corresponding to the first 
sensor. The total-SPA MTT method for an unknown, time-
varying number of targets presented in the previous subsec-
tion can be extended to the case of multiple sensors by using 
a sensor-sequential or sensor-parallel processing. In either 
case, the first step is the prediction step, i.e., calculation of 
the messages   α  k   (  x _   k  (j) ,    r ̲    k  (j) )  according to (76) and (77).

1) Sequential Processing: As in Section VII-C1, message 
passing operations are performed sequentially for each sen-
sor  s = 1, …,  n s   . [However, contrary to MTT methods for 
a known number of targets, the sequence of sensors was 
already defined in the derivation of the factor graph; see 
Section VIII.] Let us denote the beliefs—for both the leg-
acy and new PTs—calculated at the  (s − 1) th sensor update 
step [i.e., at sensor  s − 1 ] as    f ̃   s−1   (  x _   k,s  

(j)   ,    r ̲    k,s  
(j)  ) ,  j = 1, …,  j k,s   . [We 

recall from Section VIII-B that    y _  k,s   =  [  y _   k,s−1  
T      _ y   k,s−1  

T  ]   
T
   and   

j k,s   =  j k,s−1   +  m k,s−1   .] These beliefs serve as input to the 
 s th sensor update step [i.e., at sensor  s ], in which the mes-
sage passing and belief calculation operations described in 
Sections IX-A2–IX-A5 are performed. This sensor-recur-
sive processing is initialized by    f ̃   0   (  x _   k,1  

(j)  ,    r ̲    k,1  
(j)  ) =  α  k   (  x _   k  (j) ,    r ̲    k  (j) ) ,  

 j = 1, …,  j k,1   , which were calculated in the prediction step. 
[Recall that    y _  k,1   =   y _  k    and   j k,1   =  j k−1   .] The beliefs    f ̃    n s     (  x _   k, n s    

(j)  ,    r ̲    k, n s    
(j)  ) ,  

 j = 1, …,  j k, n s      and    f ̃    n s     (  
_

 x   k, n s    
(m)  ,    r ̅    k, n s    

(m)  ) ,  m = 1, …,  m k, n s      calculated 
at the last sensor  s =  n s    take into account the measurements 
of all sensors; they are used for target declaration and state 
estimation as described in Section IX-A6, and to perform 
prediction at the next time step  k + 1 .

An advantage of this sensor-sequential method over the 
sensor-parallel method considered next is that it performs 
sensor fusion for new PTs and it executes SPADA only once 
per sensor. On the other hand, sequential processing is not 
well suited to a parallel or distributed implementation.

2) Parallel Processing: The SPA-based message passing 
method for sensor-parallel MTT can be summarized as fol-
lows. For all sensors  s ≥ 2 , the messages   α  k   (  x _   k,s  

(j)  ,    r ̲    k,s  
(j)  ) ,  j >  

j k−1    are not available and are thus initialized by   α  k   (  x _   k,s  
(j)  , 0) 

=  f D   (  x _   k,s  
(j)  )  and   α  k   (  x _   k,s  

(j)  , 1) = 0 . (These messages belong to 
legacy PTs at sensor  s  and to new PTs at sensors preceding 

sensor  s  with respect to the sensor ordering defined in 
Section VIII.) Then, the message passing operations 
described in Sections IX-A2–IX-A4 are carried out sepa-
rately for each sensor  s ∈ { 1, …,  n s   } . As a result, for each 
sensor  s ∈ { 1, …,  n s   } , messages7   γ  k,s  

(j)  (  x _   k,s  
(j)  ,    r ̲    k,s  

(j)  ) =  γ  k,s  
(j)  (  x _   k  (j) ,  

   r ̲    k  (j) )  are available for each legacy PT  j ∈ { 1, …,  j k−1   } , and 
messages   ς  k,s  

(m)  (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m) )  are available for each new PT  m 
∈ { 1, …,  m k,s   } . Finally, beliefs approximating the marginal 
posterior pdfs for the legacy PTs  j ∈ { 1, …,  j k−1   } ,  f (  y _   k  (j)  |  z 1:k  ) = 
f (  x _   k  (j) ,    r ̲    k  (j)  |  z 1:k  ) , are calculated as [cf. (83) and (84)] 

  f ̃  (  x _   k  (j) ,    r ̲    k  (j) ) ∝  α  k  (j)  (  x _   k  (j) ,    r ̲    k  (j) )   ∏ 
s=1

  
 n s  

   γ  k,s  
(j)   (  x _   k  (j) ,    r ̲    k  (j) ). 

Furthermore, beliefs approximating the marginal poste-
rior pdfs for the new PTs,  f (  

_
 y   k,s  
(m)  |  z 1:k  ) = f (  

_
 x   k,s  
(m) ,    r ̅    k,s  

(m)  |  z 1:k  ) ,  
for  s ∈ {1, …,  n s  }  and  m ∈ {1, …,  m k,s  } , are directly obtained as 
[cf. (85) and (86)] 

  f ̃  (  
_

 x   k,s  
(m) ,    r ̅    k,s  

(m) ) ∝  ς  k,s  
(m)  (  

_
 x   k,s  
(m) ,    r ̅    k,s  

(m) ). 

This method facilitates a parallel or distributed imple-
mentation. On the other hand, its performance may be 
poorer than that of the sequential method described previ-
ously. This is because no sensor fusion is performed for new 
PTs, i.e., each sensor attempts to infer new targets individu-
ally. As demonstrated in [53], the computational complex-
ity of sensor-parallel processing scales strictly linearly with 
the number of sensors   n s   . We note that, similarly to [52], 
sensor-parallel processing can be extended to multiple SPA 
iterations over an “outer loop” that spans across the differ-
ent sensors. In this way, sensor fusion gains can be leveraged 
also for the inference of new targets. However, this comes 
at the cost of an increased computational complexity since 
SPADA has to be executed multiple times for each sensor 
(once for each outer-loop iteration).

X . IN TRODUCTION TO R A NDOM 
FINITE SETS

We now turn to the set-type MTT methods. We first 
give an introduction to RFSs, which underlie the set-
type system model and MTT methods to be presented in 
Sections XI–XIII.

A. Basic Description

An RFS  X = { x   (1)  , …,  x   (n)  }  (also known as a simple finite 
point process [149], [150]) is a set-valued random variable 
whose realizations  are finite sets  {  x   (1)  , …,  x   (n)  }  of vec-
tors   x   (1)  , …,  x   (n)  ∈  ℝ    d x    . Both the number of elements  n = 
|X |  ∈  ℕ 0   —the cardinality of  X —and the elements   x   (i)   are 
random, and the elements   x   (i)   are unordered. Adopting the 
framework of finite set statistics (FISST) [3], an RFS can 
be described by its pdf   f X   ( ) , briefly denoted  f ( ) . For a 

7We recall that for  j ∈ { 1, …,  j k−1   } ,    y _   k,s  
(j)   =   y _   k  (j)   for all  s ∈ { 1, …,  n s   } .
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realization   = {  x   (1)  , …,  x   (n)  }  with cardinality  | |  = n , the 
pdf is given by 

  f ( ) = f ({  x   (1)  , …,  x   (n)  }) = n ! ρ(n)  f n   ( x   (1)  , …,  x   (n) ).  (87)

Here,  ρ(n) ≜ ℙ {  | X |  = n}  is the cardinality distribution, i.e., 
the pmf of  n = |X| , and   f n   ( x   (1)  , …,  x   (n) )  is a pdf of the random 
vectors   x   (1)  , …,  x   (n)   that is invariant to a permutation of its 
arguments   x   (i)  . It will be convenient to define the set inte-
gral of a real-valued set function  g( )  as [3] 

  ∫    g  ( ) δ ≜   ∑ 
n=0

  
∞

    1 __ n !     ∫  ℝ   n d 
x
     

     g  ({  x   (1)  , …,  x   (n)  }) d x   (1) ⋯ d x   (n) .       (88)

For an RFS pdf  f ( ) , we have   ∫     f  ( ) δ = 1 .
For an RFS  X , the probability hypothesis density (PHD)  

D(x) :  ℝ    d x    → ℝ  is defined by the property that its integral 
over a region   ⊆  ℝ    d x     equals the expected number of ele-
ments present in , i.e.,   ∫     D  (x) dx = E {  | X ∩  | }  [3]. An 
expression of  D(x)  in terms of  f ( )  can be found in [3].

B. Special RFSs

Next, we review four types of RFSs that are especially 
relevant to RFS-based MTT methods. Given the cardinality  
|  |  = n , the elements of a Poisson RFS  X  are iid with some 
“spatial pdf”  f (x) , i.e., 

  f n   ( x   (1)  , …,  x   (n) ) =  ∏ 
i=1

  
n
   f  ( x   (i) ) =   ∏ 

x∈
    f  (x) .

Furthermore, the cardinality is Poisson distributed with 
mean  μ , i.e.,  ρ(n) =  e   −μ   μ   n  / n ! ,  n ∈  ℕ 0   . Hence, (87) yields 
the pdf of  X  as 

 f ( ) =  e   −μ    ∏ 
x∈

  μ  f (x).   

The PHD of the Poisson RFS is given by  D(x) = μ f (x) ; it is 
also known as the intensity function.

A Bernoulli RFS either contains one element  x  with 
probability of existence  r  or is empty with probability  1 − r .  
If it is nonempty, the element  x  is distributed according to 
the “spatial pdf”  s(x) . Hence, the RFS pdf is given by 

  f ( ) =  
{

 
1 − r,

  
 = ∅

   rs(x) ,   = { x}   
0,

  
otherwise.

    (89)

We note that   ∑ j  
     γ  j    f   

 (j)   ( )  with normalized   γ  j    (i.e.,   ∑ j  
     γ  j    = 1 ) 

and Bernoulli pdfs   f    (j)  ( )  is again a Bernoulli pdf.
A multi-Bernoulli (MB) RFS is the union of   n c    independ-

ent component RFSs   X   (j)  ,  j = 1, …,  n c   , which are Bernoulli 
RFSs with existence probabilities   r   (j)   and spatial pdfs   s   (j)  (x) .  
Let   f    (j)  ( )  denote the pdf of Bernoulli component   X   (j)  . To 
express  f ( )  for a realization   = {  x   (1)  , …,  x   (n)  }  of cardinal-
ity  n ≤  n c   , we introduce a mapping  α  of an index  j ∈ { 1, …,  
n c   }  to an index  α (j) ∈ { 0, …, n} . This mapping is such that 
the set of all  α (j)  includes  { 1, …, n} , and   j 1   ≠  j 2    with  α ( j 1  ),  
α ( j 2  ) ∈ { 1, …, n}  implies  α ( j 1  ) ≠ α ( j 2  ) . In our context,  α  

conveys a mapping of  n  of the   n c    Bernoulli component pdfs   
f    (j)  ( )  to single-vector element sets  {  x   (α (j))  }  and the other   
n c   − n  Bernoulli component pdfs to empty sets. Let     n c  ,n    
denote the set of all such “components-to-elements” map-
pings  α ; note that  |    n c  ,n   | =  n c   ! / ( n c   − n)  ! . The pdf can now 
be expressed as [51] 

  f ( ) =   ∑ 
α∈   n c  ,n  

    ∏ 
j=1

  
 n c  

    f    (j)    (    (α (j)) )  (90)

where  n = | |  and      (α (j))   is  {  x   (α (j))  }  for  α (j) ∈ { 1, …, n}  and  
∅  for  α (j) = 0 . 

A labeled MB (LMB) RFS is an MB RFS where each 
state variable is augmented by a label [108]. More specifi-
cally, a track-labeling function  τ (⋅)  assigns to each Bernoulli  
component   X   (j)  ,  j ∈ { 1, …,  n c   }  a distinct label  l ∈  ,  
where   = { τ (j)  : j ∈ { 1, …,  n c   }} . The realization of an 
LMB RFS is a set   = { ( x   (1)  ,  l   (1) ), …, ( x   (n)  ,  l   (n) )}  of tuples  
 ( x   (i) ,  l   (i) ) ∈  ℝ    d x    ×  ,  i ∈ { 1, …, n} , with   l   (i)  ≠  l   ( i ′  )   for  i ≠  i ′   . The 
pdf is given by [108] 

  f ( ) =  ∏ 
j=1

  
 n c  

    f    (j)   (     (τ (j)) )  (91)

where   f    (j)  ( )  is the pdf of Bernoulli component   X   (j)   and   
    (τ (j))   is given by       (τ (j))  = { ( x   (i)  ,  l   (i) ) ∈  : τ (j) =  l   (i)  } .  
For sets   = { ( x   (1) ,  l   (1) ), …, ( x   (n)  ,  l   (n) )}  that have elements 
with nondistinct labels, i.e.,  ∃ i, i ′    with   l   (i)  =  l   ( i ′  )  = τ (j) , we 
have  |     (τ (j)) | > 1  and thus  f ( ) = 0  according to (89). Note  
that in the evaluation of  f ( ) , a sum over all possible com-
ponents-to-elements mappings as in (90) is avoided since 
the mapping is fixed, i.e., given by the labels   l   (1)  , …,  l   (n)  .

X I.  SET-T Y PE SYSTEM MODEL

The system model for set-type MTT describes all the target 
states and all the measurements of a sensor as time-varying 
RFSs. Several set-type system models are available. In par-
ticular, the “unlabeled” model proposed in [51] and [107] 
describes newborn targets by a Poisson RFS. The posterior 
pdf consists of an MB mixture component representing 
detected targets, which are targets that potentially exist and 
generated at least one measurement so far, and a Poisson 
component representing undetected targets, which are tar-
gets that potentially exist but did not generate any measure-
ment yet. (The latter are termed unknown targets in [51] 
and [151].) A new Bernoulli component is generated for each 
measurement, representing the hypothesis that this meas-
urement is the first detection of a target that was previously 
undetected and thus was previously modeled by a Poisson 
component. This model is able to maintain track continuity 
implicitly based on information provided by metadata. As an 
alternative, the “labeled” model proposed in [108] and [109] 
explicitly maintains track continuity through labels. Target 
birth is modeled by an LMB RFS, where each Bernoulli 
component represents a potential new target and has a dis-
tinct label. In cases of limited prior birth information, one 
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typically uses a heuristic to generate new Bernoulli compo-
nents based on measurements from the previous time step 
[109]. Such heuristics can be avoided with the MB–Poisson 
model [51], [107].

Here, we propose a hybrid “labeled-unlabeled” system 
model that combines the benefits of the unlabeled and labeled 
models, i.e., generation of new Bernoulli components based 
on the Poisson RFS modeling of undetected targets and index-
ing of already detected targets by a distinct label providing 
explicit track continuity. We represent targets that have been 
detected by an LMB RFS and targets that remain undetected 
by an unlabeled Poisson RFS in which each component is for-
mally augmented by the same nonunique label   l k   = 0 . When 
a target is detected for the first time, this “dummy” label is 
replaced by a new unique label that identifies the underlying 
measurement. This is not the result of an update step but an 
incorporation of exogenous information; it can be seen as an 
additional external measurement of the label.8

A. State-Transition pdf and Prior Distribution

1) Assumptions: The entirety of the target states is mod-
eled as a time-varying RFS   X k   ≜ { ( x  k  (1) ,  l  k  (1) ), …, ( x  k  ( i k  ) ,  l  k  ( i k  ) )} . 
Furthermore, we use the following assumptions in addition 
to the common assumptions A1)–A11) [3], [51].

S1)  The number of targets,   i k   , is time-varying and 
unknown.

S2)  The target states (elements of   X k   ) are unordered.
S3)  A target  i  that exists at time  k − 1  survives (i.e., 

still exists at time  k ) with survival probability   
p s   ( x  k−1  

(i)  )  and disappears with probability  1 −  
 p s   ( x  k−1  

(i)  ) . The survival probability   p s   ( x  k−1  
(i)  )  does 

not depend on the target label. Targets that survive 
preserve their label.

S4) Each target  i  is a survived target or a newborn target.
S5)  The states of the newborn targets at time  k  are 

independent of the states of the survived targets at 
time  k .

S6)  The states of the newborn targets at time  k  are iid. 
Each of them has label   l  k  (i)  = 0  and is distributed 
according to the birth pdf   f b   ( x  k  (i) ) .

S7)  The number of newborn targets at time  k  is Poisson 
distributed with mean   μ  b   .

S8)  At time  k = 0 , all target states have label   l  0  (i)  = 0  
(since no targets have been detected); they are iid 
and distributed according to a prior pdf   f p   ( x  0  (i) ) .

S9)  The number of targets at time  k = 0  is Poisson dis-
tributed with mean   μ  p   .

The overall multitarget state RFS   X k    is the union of the RFSs 
of the detected and undetected targets, i.e., 

   X k   =  X  k  d  ∪  X  k  u .  (92)

Here,   X  k  d   is a labeled RFS whose elements have unique 
nonzero labels, and   X  k  u   is an unlabeled RFS whose ele-
ments have the nonunique dummy label l    k   = 0 . The label of a 
detected target is a unique identifier of the first measurement 
generated by that target. Undetected targets become detected 
targets as soon as they produce a measurement; conversely, 
detected targets cannot become undetected targets.

2) Detected Targets: Let

     k−1  
d   ≜ { ( x  k−1  

(1)   ,  l  k−1  
(1)  ), …, ( x  k−1  

( i  k−1  
d  )  ,  l  k−1  

( i  k−1  
d  ) )}  

comprise the states of the detected targets that existed at 
time  k − 1 . Because of A1), A2), and S3), each detected 
target  j  that existed at time  k − 1  gives rise to a—possibly 
nonexistent—“survived target” at time  k . The state of this 
survived target is modeled as a Bernoulli RFS   X  k,j  

d    [cf. (89)] 
with  r =  p s   ( x  k−1  

(j)  )  and  s( x k  ) = f ( x k   |  x  k−1  
(j)  ) . The associated 

multitarget (RFS) state-transition pdf is thus 

 f (   k,j  
d   | { ( x  k−1  

(j)   ,  l  k−1  
(j)  )}) 

  =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 

1 −  p s   ( x  k−1  
(j)  ),

  

   k,j  
d   = ∅ 

     p s   ( x  k−1  
(j)  ) f ( x k   |  x  k−1  

(j)  ),     k,j  
d   = { ( x k   ,  l  k−1  

(j)  )}    

0,

  

otherwise.

     (93)

In view of A2), S1), and S2), the overall multitarget state  
RFS of the detected targets at time  k  is the LMB RFS   X  k  d  =  
{ ( x  k  (1)  ,  l   (1) ), …, ( x  k  ( i  k  d )  ,  l   ( i  k  d ) )}  given by 

   X  k  d  =   ∪ 
j=1

  
 i  k−1  
d  

  X  k,j  
d   .  (94)

Here, because of A2), the Bernoulli components   X  k,j  
d    are 

conditionally independent given   X  k−1  
d   .

The joint evolution of the detected target states is 
described by the multitarget state-transition pdf  f (   k  d  |    k−1  

d  ) ,  
where      k  d  = { ( x  k  (1)  ,  l   (1) ), …, ( x  k  ( i  k  d )  ,  l   ( i  k  d ) )}  and     k−1  

d   = { ( x  k−1  
(1)   ,  

 l   (1) ), …, ( x  k−1  
( i  k−1  

d  )  ,  l   ( i  k−1  
d  ) )} . [Note that   i  k  d  ≤  i  k−1  

d   , where  
  i  k  d  =  i  k−1  

d    if all survived targets exist at time  k  and  
i     k  d  <  i  k−1  

d    otherwise.] Using (94), one obtains [108] 

  f (   k  d  |    k−1  
d  ) =   ∏ 

j=1
  

 i  k−1  
d  

  f  (   k  (τ (j))  | { ( x  k−1  
(j)   ,  l  k−1  

(j)  )})  (95)

where  f (    k  (τ (j))  | { ( x  k−1  
(j)   ,  l  k−1  

(j)  )})  is  f (   k,j  
d   | { ( x  k−1  

(j)   ,  l  k−1  
(j)  )})  in 

(93) evaluated at     k,j  
d   =     k  (τ (j))  = { ( x  k  (i)  ,  l   (i) ) ∈     k  d  : τ(j) =  l   (i)  } .  

[We recall that  τ (⋅)  is the track-labeling function of the LMB 

RFS introduced in Section X-B.] As discussed after (91), for 

sets     k  d   with nondistinct labels,  f (    k  d  |    k−1  
d  ) = 0 . At  k = 0 ,  

we have     0  d   = ∅ .

3) Undetected Targets: Let     k−1  
u   ≜ { ( x  k−1  

(1)   , 0) , …,   
( x  k−1  

( i  k−1  
u  )  , 0) }  comprise the states of the undetected targets 

that existed at time  k − 1 . Because of A1) and S3), each 
undetected target  j  that existed at time  k − 1  gives rise to 
a—possibly nonexistent—survived target at time  k . Again, 
the state of this (undetected) survived target is modeled as a 
Bernoulli RFS   X  k,j  

u    with pdf  f (    k,j  
u   | { ( x  k−1  

(j)   , 0) })  given by (93) 
8If the label is viewed as a proxy for the trajectory, the formulation 

in [153] provides a similar result directly via a Bayes update.
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(with obvious modifications). Furthermore, there may be 
targets newly appearing at time  k . The entirety of the states 
of these newborn targets will be described by an RFS   Γ k   . 
Because of S6) and S7),   Γ k    is a Poisson RFS with mean   μ  b    and 
spatial pdf   f b   ( x k  ) , and all elements have label   l k   = 0 . Thus, 
the intensity function of   Γ k    is   λ   b   ( x k   ,  l k  ) =  μ  b    f b   ( x k  ) 1( l k  ) .  
With S4) and S5), the overall multitarget state RFS of the 
undetected targets at time  k ,   X  k  u  = { ( x  k  (1) , 0), …, ( x  k  ( i  k  u )  , 0) } ,  
is then obtained as 

   X  k  u  = (  ∪ 
j=1

  
 i  k−1  
u  

  X  k,j  
u   )  ∪  Γ k  .  (96)

Here, because of A2) and S5), the components   X  k,j  
u    and   Γ k    

are all conditionally independent given   X  k−1  
u   .

The joint evolution of the undetected target states is 
described by the multitarget state-transition pdf  f (    k  u  |     k−1  

u  ) ,  
where      k  u  = { ( x  k  (1)  , 0) , …, ( x  k  ( i  k  u )  , 0) } . Let  α  be a mapping of an 
index  j ∈ { 1, …,  i  k−1  

u   }  to an index  α (j) ∈ { 0, …,  i  k  u  } . This map-
ping is such that   j 1   ≠  j 2    with  α ( j 1  ), α ( j 2  ) ∈ { 1, …, m}  implies   
α ( j 1  ) ≠ α ( j 2  ) . Furthermore, let   ℳ  i  k−1  

u  , i  k  u     be the set of all pos-
sible mappings  α . Using (96), (93), and (90) together with 
S6) and S7), one obtains [3, Ch. 13]  

(97)

 f (    k  u  |     k−1  
u  )   =  e   − μ  b    ( ∏ 

i=1
  

 i  k  u 
   μ  b     f b   ( x  k  (i) ))  (  ∏ 

j=1
  

 i  k−1  
u  

 (  1 −  p s   ( x  k−1  
(j)  )))  

           ×   ∑ 
α∈ ℳ  i  k−1  

u  , i  k  u   
      ∏ 
 j ′  :α ( j ′  )>0

      
 p s   ( x  k−1  

( j ′  )  ) f ( x  k  (α ( j ′  ))  |  x  k−1  
( j ′  )  )
  _________________  

 μ  b   (1 −  p s   ( x  k−1  
( j ′  )  ))  f b   ( x  k  (α ( j ′  )) )

    . 

An analysis of this expression shows that for  α ( j ′  ) > 0 , target   
j ′    survives and its state   x  k−1  

( j ′  )    is mapped to   x  k  (α ( j ′  ))  , whereas 
for  α ( j ′  ) = 0 , target  j  does not survive. At  k = 0 , due to S8) 
and S9),   X  0  u    is a Poisson RFS with mean   μ  p    and spatial pdf  
  f p   ( x 0  ) , and all elements have label   l 0   = 0 .

B. Likelihood Function

The entirety of the measurements of sensor  s  at time  
k  is modeled as a time-varying RFS   Z k,s   ≜ {  z  k,s  

(1)  , …,  z  k,s  
( m k,s  )  } . 

Let    k   = { ( x  k  (1)  ,  l  k  (1) ), …, ( x  k  ( i k  )  ,  l  k  ( i k  ) )}  be the set of the states 
of the targets at time  k . Based on A5) and A9), a—possibly 
nonexistent—measurement   z k,s    originating from target  j  is 
modeled as a Bernoulli RFS   Z k,s,j    [cf. (89)] with  r =  p  d  (s)  ( x  k  (j) )   
and  s( z k,s  ) = f ( z k,s   |  x  k  (j) ) . Both  r  and  s( z k,s  )  do not depend on 
the target label. The associated RFS likelihood function is 
thus given by 

 f ( Z k,s,j   |{  x  k  (j)  }) =  

⎧
 

⎪
 ⎨ 

⎪
 

⎩
 

1 −  p  d  (s)  ( x  k  (j) ),

  

 Z k,s,j   = ∅ 

     p  d  (s)  ( x  k  (j) ) f ( z k,s   |  x  k  (j) ),   Z k,s,j   = {  z k,s   }    

0,

  

otherwise.

    (98)

Because of A4) and A9), the entirety of the target-origi-
nated measurements then forms the MB RFS   ∪ j=1  

 i k      Z k,s,j    .  
Furthermore, the entirety of the clutter-originated meas-
urements is described by an RFS   Λ k,s   . Because of A6) and 

A8),   Λ k,s    is a Poisson RFS with mean   μ  c  
(s)   and spatial pdf  

  f   c  
(s)  ( z k,s  )  and, thus, intensity function   λ  c  

(s)  ( z k,s  ) =  μ  c  
(s)   f   c  

(s)  ( z k,s  ) .  
Using A3), A4), A8), and A11), the overall measurement 
RFS at sensor  s  and time  k ,   Z k,s   = {  z  k,s  

(1)  , …,  z  k,s  
( m k,s  )  } , is then 

obtained as 

   Z k,s   =  (  ∪ 
j=1

  
 i k  
   Z k,s,j   )  ∪  Λ k,s  .  (99)

Here, because of A7), A8), and A9), the components   Z k,s,j    
and   Λ k,s    are all conditionally independent given   X k   .

The dependence of   Z k,s    on the multitarget state RFS   X k   = 
{ ( x  k  (1)  ,  l  k  (1) ), …, ( x  k  ( i k  )  ,  l  k  ( i k  ) )}  is described by the single-sensor 
multitarget likelihood function  f ( Z k,s   |   k  ) . Using (99) and 
(98) together with A6)–A9), one obtains [3, Ch. 12] 

  f ( Z k,s   |   k  ) =  e   − μ  c  
(s)   (  ∏ 

m=1
  

 m k,s  
   μ  c  

(s)    f   c  
(s)  ( z  k,s  

(m) ))    

        ×   ∑ 
α∈ ℳ  i  k  u , m k,s    

    ∏ 
j=1

  
 i k  
   g   ( x  k  (j) , α (j);  z k,s  )   (100)

where  g( x  k  (j)  , α (j);  z k,s  )  is as in (14) with   a  k,s  
(i)    replaced by  α (j) . 

An analysis of this expression shows that for  α (j) > 0 , target  
j  [with state   x  k  (j)  ] generates measurement   z  k,s  

(α (j))  , whereas for  
α (j) = 0 , target  j  does not generate a measurement at sen-
sor  s . Note that due to missed detections and clutter meas-
urements, the number of measurements   m k,s    may also be 
smaller or larger than the number of targets   i k   . According to 
(100), the measurements do not provide information about 
the target labels. (If the labels could be measured as well, 
there would not be a DA uncertainty.) Comparing (100) with 
(17), it can be shown that for   i k    fixed,9  f ( Z k,s   |   k  ) =  m k,s   ! ×  
f ( z k,s   ,  m k,s   |  x k  ) . This is not surprising as the assumptions 
underlying the vector-type and set-type measurement mod-
els [i.e., A3)–A9)] are equal.

Finally, using A10), the multisensor multitarget likeli-
hood function is obtained as 

  f ( Z k   |   k  ) =   ∏ 
s=1

  
 n s  

   f  ( Z k,s   |   k  )  (101)

where   Z k   ≜ ( Z k,1   , …,  Z k, n s    )  is an ordered list of the sets   Z k,s   .  
For later use, we also introduce the ordered list   Z 1:k   ≜  
( Z 1   , …,  Z k  ) .

X II.  SET-T Y PE MU LTITA RGET STATE 
PROPAGATION

In this section, extending [113] and [51], we develop predic-
tion and update steps for the set-type system model from 
Section XI. The prediction step and an approximation of the 
update step will be used in Section XIII to devise a hybrid 
labeled/unlabeled variant of the TOMB/P filter proposed in 
[51] and [113]. We consider the single-sensor case (  n s   = 1 ) 
and thus drop the sensor index  s . We note that two alterna-
tive derivations of our results are provided in [51] and [151].

9Here, the factor   m k,s   !  is related to the fact that  f ( Z k,s   |   k  )  integrates 
to one using the set integral (88) whereas  f ( z k,s   ,  m k,s   |  x k  )  integrates to one 
using conventional integration.
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According to (92), the multitarget state RFS   X k    is the 
union of the detected target RFS   X  k  d   and the undetected tar-
get RFS   X  k  u  . It can be shown [51] that the posterior pdfs of   
X  k  d   and   X  k  u   can be propagated in parallel, in both cases by 
 carrying out a prediction step and an update step. While the 
two prediction steps are performed completely separately, 
the update step for   X  k  d   involves the prediction results for 
both   X  k  d   and   X  k  u  . We note that explicit propagation of the 
pdf of the undetected targets   X  k  u   enables the consideration 
of targets that were born at an earlier time but so far have 
not been detected by any sensor. This ability is beneficial 
especially if the detection probabilities   p d   ( x k  )  are low, time-
varying, or nonuniform (i.e., different for different values 
of   x k   ).

In the following development of the prediction and 
update steps, we use the fact that the posterior pdf of the 
overall multitarget state RFS   X k−1    at time  k − 1  factorizes as 

  f (  k−1   |  Z 1:k−1  ) = f (   k−1  
d   |  Z 1:k−1  ) f (    k−1  

u   |  Z 1:k−1  ).  (102)

Here, according to Section X-B,   X  k−1  
d    is an LMB RFS con-

sisting of  |   k−1   |  Bernoulli components, where    k−1    is a set 
of nonzero labels. Furthermore,   X  k−1  

u    is a Poisson RFS with 
mean parameter   μ  k−1  

u   , spatial pdf   f u   ( x k−1  ) , dummy label   
l k−1    (which is 0) and, thus, intensity function   λ  k−1  

u   ( x k−1   ,  
 l k−1  ) =  μ  k−1  

u    f u   ( x k−1  ) 1( l k−1  ) . The sets     k−1  
d    and      k−1  

u    in (102) 
are given by     k−1  

d   = { ( x k−1   ,  l k−1  ) ∈   k−1   :  l k−1   ≠ 0}  and      k−1  
u   =  

{ ( x k−1   ,  l k−1  ) ∈   k−1   :  l k−1   = 0} . Indeed, for  k − 1 = 0 ,  
the form in (102) is a consequence of the initial condition 
defined by S8) and S9), which implies that at  k = 0 ,   X 0   =  
X  0  u    is a Poisson RFS with intensity function   λ  0  u  ( x 0   ,  l 0  ) =  
 μ  p    f p   ( x 0  ) 1( l 0  ) . For  k − 1 ≥ 1 , it can be shown that the form 
in (102) is preserved by the prediction and update steps 
 presented in what follows, and therefore it is valid for all 
values of  k − 1 . [We note that this fact was proved in [51] 
and [151] for the unlabeled case, and according to [151] the 
proof passes unchanged in the labeled case.]

For simplicity of notation, we will index the existence 
probabilities and spatial pdfs of the Bernoulli components 
directly by their labels (assigned upon first detection), i.e., 
we write them as   r  k−1  

(l)    and   s  k−1  
(l)   ( x k−1  )  rather than   r  k−1  

( τ   −1 (l))   and   
s  k−1  

( τ   −1 (l))  ( x k−1  ) , respectively, with  l ∈   k−1   .

A. Prediction Step

In the prediction step, the preceding posterior pdf  
f (  k−1   |  Z 1:k−1  )  is converted into a predicted posterior 
pdf  f (  k   |  Z 1:k−1  )  via the RFS version of the Chapman–
Kolmogorov equation [cf. (1)] 

 f (  k   |  Z 1:k−1  ) =  ∫     f  (  k   |   k−1  ) f (  k−1   |  Z 1:k−1  )δ   k−1  .  

The posterior pdf of the detected targets,  f (   k  d  |  Z 1:k  ) ,  
and that of the undetected targets,  f (    k  u  |  Z 1:k  ) =  
f (   k  u ) , can be predicted separately. [Note that   X  k  u   is inde-
pendent of   Z 1:k   , but impacted by the characteristics of the 

detection process—in particular, by   p d   ( x k  ) .] These pre-
dictions involve the state-transition pdfs (95) and (97), 
respectively.

More specifically,  f (   k  d  |  Z 1:k−1  )  is again an LMB pdf, 
with the Bernoulli parameters   r  k|k−1  

(l)    and   s  k|k−1  
(l)   ( x k  )  given by 

   r  k|k−1  
(l)   =  r  k−1  

(l)    ∫     p s    ( x k−1  )  s  k−1  
(l)   ( x k−1  ) d x k−1    (103)

    s  k|k−1  
(l)   ( x k  ) =   

 ∫     f  ( x k   |  x k−1  )  p s   ( x k−1  )  s  k−1  
(l)   ( x k−1  ) d x k−1     ________________________   

 ∫     p s    ( x k−1  )  s  k−1  
(l)   ( x k−1  ) d x k−1  

     (104)

for  l ∈   k−1   . If at time  k − 1  the existence of a target is per-
fectly known, i.e.,   r  k−1  

(l)   = 1 , and if also   p s   ( x k−1  ) = 1 , and thus   
r  k|k−1  

(l)   = 1  according to (103), then the spatial-pdf predic-
tion in (104) simplifies to the conventional prediction for a 
single target performed by the JPDA filter [see (38)]. In the 
general case, (103) and (104) correspond to the vector pre-
diction (76) [here,   r  k|k−1  

(l)    s  k|k−1  
(l)   ( x k  )  corresponds to   α  k   ( x k   , 1) ].

Furthermore,  f (   k  u  |  Z 1:k−1  )  is again a Poisson pdf, whose 
state intensity function is given by 

  λ  k|k−1  
u   ( x k   ,  l k  ) = 1( l k  )  ∫     f  ( x k   |  x k−1  )  p s   ( x k−1  )   

  ×  λ  k−1  
u   ( x k−1   ,  l k−1   = 0) d x k−1   +  λ   b   ( x k   ,  l k  ).  

This prediction step converting   λ  k−1  
u   ( x k−1   ,  l k−1  )  into  

  λ  k|k−1  
u    (x k   ,  l k  )  is equivalent to the prediction step of the PHD 

filter [111]. The labels of the elements of  f (    k  u  |  Z 1:k−1  )  are 
again   l k   = 0 . It is important to note that the entire prediction 
step preserves the LMB–Poisson model assumed for   X k−1   .

B. Update Step

In the update step, the predicted posterior pdf  f (  k   |  
Z 1:k−1  )  is converted into the posterior pdf  f (  k   |  Z 1:k  )  via the 
RFS version of Bayes’ rule [cf. (2)] 

 f (  k   |  Z 1:k  ) ∝ f ( Z k   |   k  ) f (  k   |  Z 1:k−1  ). 

Here, the single-sensor multitarget likelihood function  
 f ( Z k   |   k  )  [see (100)] incorporates the current measure-
ment set   Z k   .

1) Update for the Detected Targets: The posterior pdf 
describing the detected targets is given by [51] 

  f (   k  d  |  Z 1:k  ) =  ∑ 
 c k  

    p  ( c k  )  f    c k    
LMB  (    k  d )  (105)

  =  ∑ 
 c k  

    p  ( c k  )   ∏ 
l∈  k  

    f    (l, c  k  (l) )   (    k  (l) )  (106)

where      k  d  = { ( x  k  (1)  ,  l   (1) ), …, ( x  k  ( i  k  d )  ,  l   ( i  k  d ) )} ,   c k    is a DA vec-
tor with entries   c  k  (l)  ,  l ∈   k    and pmf  p( c k  )  (see below),  
  f    (l, c  k  (l) )  (   k  (l) )  is a Bernoulli pdf, and     k  (l)  = { ( x  k  (i)  ,  l   (i) ) ∈   
  k  d  :  l   (i)  = l} . According to (91), we have that

  f    c k    
LMB  (    k  d ) =   ∏ 

l∈  k  
    f    (l, c  k  (l) )   (    k  (l) )  

is an LMB pdf. Thus, (105) means that  f (   k  d  |  Z 1:k  )  is a mix-
ture of LMB pdfs, where each LMB pdf is indexed by   c k   , 
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weighted by  p( c k  ) , and consists of  |   k   |  Bernoulli compo-
nents. The label set is updated as 

    k   =   k−1   ∪    k  new   (107)

where    k−1    corresponds to legacy components that are 
taken over from time  k − 1  and     k  new   corresponds to new 
components that were undetected so far and generate a 
measurement for the first time. Note that    k−1   ∩    k  new  = ∅  
and thus  |   k   | = |   k−1   | + |    k  new  | . For each measurement  
m ∈ { 1, …,  m k   } , a new Bernoulli component is created, to 
which the unique label  l ≜ (k, m) ∈    k  new   is assigned. Thus, 
in particular,  |    k  new  | =  m k   .

The legacy and new Bernoulli components are the set-
type counterparts of, respectively, the legacy and new PTs 
used in the vector-type system model described in Section 
VIII. In the vector-type system model, the number of PTs 
increased roughly linearly with time  k  [see (52)]. As evi-
denced by (107), the same increase is now exhibited by the 
number of Bernoulli components   f    (l, c  k  (l) )  (    k  (l) )  in each LMB 
pdf   f    c k    

LMB  (    k  d ) . In addition, the number of possible associa-
tion vectors   c k    and, in turn, the number of different LMB 
pdfs   f    c k    

LMB  (   k  d )  increases exponentially. These issues will be 
addressed in Section XIII-A.

It will be convenient to partition the DA vector   c k    =   
[ c  k  (l) ] l∈  k      in (105) and (106) as   c k   ≜  [ a  k  T   b  k  T ]   

T
  , with the “legacy 

component” DA vector   a k   =  [ a  k  (l) ] l∈  k−1      and the “new compo-
nent” DA vector   b k   =  [ b  k  (l) ] l∈   k  new    . The entries of these vectors 
are defined as follows. For  l ∈   k−1   ,   c  k  (l)  =  a  k  (l)   with 

   a  k  (l)  ≜  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

m ∈ { 1, …,  m k   },

  

if at time k, legacy component l

     
 
  

generates measurement m

     0,  if at time k, legacy component l     

 

  
does not generate a

    

 

  

measurement.

    

For  l ∈    k  new  ,   c  k  (l)  =  b  k  (l)   with 

  b  k  (l)  ≜  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

  l ′   ∈   k−1   ,

  

if at time k, measurement m is

     
 
  

generated by legacy component lʹ
     

  0,
  

if at time k, measurement m is
     

 

  

not generated by a legacy component.

    

[We recall that  l = (k, m)  for  l ∈    k  new  .] These definitions of   
a  k  (l)   and   b  k  (l)   are similar to (10) and (20), respectively. Note 
that   c k   ∈  { 0, …,  m k   }   |  k−1  |  ×  ( { 0} ∪   k−1  )    m k    . To guarantee 
that  p( c k  ) = 0  for all   c k   =  [ a  k  T   b  k  T ]   T   that violate A4), similarly 
as in (21) and (22), we introduce the indicator function 

  ψ ( a k   ,  b k  ) =   ∏ 
l∈  k−1  

    ∏ 
m=1

  
 m k  

   Ψ l,m     ( a  k  (l)  ,  b  k  (k,m) )  

with 

   Ψ l,m   ( a  k  (l)  ,  b  k  (k,m) ) ≜  

⎧
 

⎪

 ⎨ 
⎪

 

⎩
 
0,

  
 a  k  (l)  = m,    b  k  (k,m)  ≠ l

      or   b  k  (k,m)  = l,    a  k  (l)  ≠ m   

1,

  

otherwise.

     

The DA pmf  p( c k  )  is now given by 

  

p( c k  ) =

  

p( a k   ,  b k  )

   ∝  ∝ ψ ( a k   ,  b k  ) (  ∏ 
l∈  k−1  

   β  k  (l)   ( a  k  (l) ))    ∏ 
 l ′  ∈   k  new 

   ξ  k  ( l ′  )   ( b  k  ( l ′  ) )     

 

  

 

    (108)

where the association weights   β  k  (l)  (⋅)  and   ξ  k  (l)  (⋅)  are calcu-
lated as follows. For  l ∈   k−1   , we have for   a  k  (l)  = m ∈ { 1, …,  
m k   }  

  β  k  (l)  (m) =  r  k|k−1  
(l)    C  k  (l)  ( z  k  (m) ) 

with   C  k  (l)  ( z  k  (m) ) ≜  ∫     f  ( z  k  (m)  |  x k  )  p d   ( x k  )  s  k|k−1  
(l)   ( x k  ) d x k   , and for  

  a  k  (l)  = 0 

  β  k  (l)  (0) = 1 −  r  k|k−1  
(l)    D  k  (l)  

with   D  k  (l)  ≜  ∫     p d    ( x k  )  s  k|k−1  
(l)   ( x k  ) d x k   . For  l = (k, m) ∈    k  new  , we 

have   ξ  k  (l)  ( b  k  (l) ) = 1  if   b  k  (l)  ≠ 0 , and 

  ξ  k  (l=(k,m))  (0) =  C  k  u  ( z  k  (m) ) +  λ  c   ( z  k  (m) ) 

if   b  k  (l)  = 0 , with   C  k  u  ( z  k  (m) ) ≜  ∫     f  ( z  k  (m)  |  x k  )  p d   ( x k  )  λ  k|k−1  
u   ( x k  ,  l k   = 0) 

× d x k    and   λ  c   ( z  k  (m) ) =  μ  c    f c   ( z  k  (m) ) . It can be shown that for  
  p d   ( x k  )  λ  k|k−1  

u   ( x k   ,  l k   = 0) =  μ  n    f n   ( x k  ) , the joint marginal DA 
pmf  p( c k  ) = p( a k   ,  b k  )  in (108) equals the belief   p ̃  ( a k   ,  b k  )  in 
(80), i.e., the belief calculated by the total-SPA method for 
an unknown number of targets.

Each Bernoulli component   f    (l, c  k  (l) )  (    k  (l) )  in (106) is 
parameterized by an existence probability   r  k  (l, c  k  (l) )   and a 
spatial pdf   s  k  (l, c  k  (l) )  ( x k  ) . These parameters are calculated as 
follows. Let us first consider the legacy components, i.e.,  
l ∈   k−1   , where   c  k  (l)  =  a  k  (l)  . Here, the existence probability 
is given for   a  k  (l)  ∈ { 1, …,  m k   }  by   r  k  (l, a  k  (l) )  = 1  [this means that 
legacy component  l  corresponds to an existing target that 
generated measurement  m =  a  k  (l)  ] and for   a  k  (l)  = 0  by 

   r  k  (l,0)  =   
 r  k|k−1  

(l)   (1 −  D  k  (l) )
  __________ 

1 −  r  k|k−1  
(l)    D  k  (l) 

  .  (109)

The spatial pdf is given for all   a  k  (l)  ∈ { 0, …,  m k   }  by 

   s  k  (l, a  k  (l) )  ( x k  ) =   
g( x k   ,  a  k  (l)  ;  z k  )  s  k|k−1  

(l)   ( x k  )
  ___________________  

 ∫    g  ( x  k  ′   ,  a  k  (l)  ;  z k  )  s  k|k−1  
(l)   ( x  k  ′  ) d x  k  ′  

    (110)

where  g( x k   ,  a  k  (l)  ;  z k  )  was defined in (14). Next, we consider 
the new components, i.e.,  l = (k, m) ∈    k  new  , where   c  k  (l)  =  
 b  k  (l)  . Here, the existence probability is given for   b  k  (l)  = 0  by 

   r  k  (l=(k,m),0)  =   
 C  k  u  ( z  k  (m) )

 _____________  
 C  k  u  ( z  k  (m) ) +  λ  c   ( z  k  (m) )

    (111)

and for   b  k  (l)  ≠ 0  by   r  k  (l, b  k  (l) )  = 0  (this means that measurement  
m  was generated by a legacy component). The spatial pdf is 
given for   b  k  (l)  = 0  by 

    s  k  (l=(k,m),0)  ( x k  ) =   
f ( z  k  (m)  |  x k  )  p d   ( x k  )  λ  k|k−1  

u   ( x k   ,  l k   = 0)
   ________________________  

 C  k  u  ( z  k  (m) )
     (112)
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whereas for   b  k  (l)  ≠ 0 ,   s  k  (l, b  k  (l) )  ( x k  )  does not need to be defined 
[since   r  k  (l, b  k  (l) )  = 0 ].

2) Update for the Undetected Targets: We recall that for 
the targets that remain undetected, the posterior pdf  f (    k  u  |  
Z 1:k  ) = f (    k  u )  does not involve   Z 1:k    [although it involves  
  p d   ( x k  ) ]. The update step for these targets yields again a 
Poisson pdf  f (   k  u ) , whose intensity function is calculated as 

  λ  k  u  ( x k   ,  l k  ) = (1 −  p d   ( x k  ))  λ  k|k−1  
u   ( x k   ,  l k  ). 

This is equivalent to the update step of the PHD filter 
[111] for the case where the sensor does not produce 
any measurements. The labels of all elements of      k  u   are 
again zero.

X III.  SPA-BA SED SET-T Y PE MT T 
METHODS

Building on the set-type system model from Section XI and 
the set-type multitarget state propagation rules from Section 
XII, we will now develop a hybrid labeled/unlabeled variant 
of the TOMB/P filter proposed in [51] and [113] [cf. Section 
II-B2]. This labeled/unlabeled TOMB/P filter represents the 
joint state of the detected targets by a labeled RFS—more 
specifically, an LMB RFS—and is thus able to maintain 
track continuity, i.e., to estimate entire target trajectories.

Whereas the prediction step presented in Section XII-A 
and the update step for the undetected targets presented in 
Section XII-B2 preserve the LMB–Poisson model used for   X k    
in Section XII, the update step for the detected targets pre-
sented in Section XII-B1 converts the LMB RFS describing 
the detected targets into a mixture of LMB RFSs. In order to 
reobtain an LMB pdf also for the detected targets, we will use 
an approximation that is similar to the one used in the deri-
vation of the JPDA filter. The marginal posterior DA pmfs 
are then calculated by SPADA. As in the vector-type MTT 
methods discussed in Section VII, this is key to obtaining 
scalability of the resulting filter. We first consider the single-
sensor case (  n s   = 1 ) and later extend to multiple sensors. A 
detailed derivation of our results and a closed-form imple-
mentation for linear-Gaussian models can be found in [51] 
and [151], and a particle-based implementation for nonlinear 
and non-Gaussian models is presented in [107].

A. Approximate Update Step for the Detected 
Targets

According to (106) and (107), the update step for the 
detected targets produces a mixture of LMB pdfs, and its 
computational complexity scales exponentially with the 
number  |   k   |  of Bernoulli components and the number   m k    
of measurements. To address these issues, we approximate 
the joint DA pmf  p( c k  )  by the product of its marginals, i.e., 

  p( c k  ) ≈   ∏ 
l∈  k  

  p  ( c  k  (l) ),  with   p( c  k  (l) ) =   ∑ 
~ c  k  (l) 

  p  ( c k  ).  (113)

Note that a similar approximation was used in the derivation 
of the JPDA filter; cf. (42). Inserting (113) in (106) yields

 f (    k  d  |  Z 1:k  ) ≈     ∏ 
l∈  k  

    ∑ 
 c  k  (l) 

    p     ( c  k  (l) )  f    (l, c  k  (l) ) (    k  (l) )   =     ∏ 
l∈  k  

    f    (l)     (    k  (l) ).  
 (114)

Here,   f    (l)  (   k  (l) ) ≜  ∑  c  k  (l)   
       p ( c  k  (l) )  f    (l, c  k  (l) )  (   k  (l) )  is a weighted sum 

of Bernoulli pdfs, where the weights  p( c  k  (l) )  are normalized. 
Thus (cf. Section X-B),   f    (l)  (   k  (l) )  is again a Bernoulli pdf. 
This means that  f (    k  d  |  Z 1:k  )  is approximated in (114) by the 
product of Bernoulli pdfs   f    (l)  (   k  (l) ) , each associated with one 
of the components  l ∈   k   . We conclude that the obtained 
approximation of  f (    k  d  |  Z 1:k  )  is again an LMB pdf, i.e., the 
approximate update step preserves the LMB structure.

The existence probability   r  k  (l)   and spatial pdf   s  k  (l)  ( x k  )  
parameterizing the Bernoulli pdf   f    (l)  (     k  (l) )  are obtained as 
follows. For the legacy components, i.e.,  l ∈   k−1   , where  
  c  k  (l)  =  a  k  (l)  , we have

  

        r  k  (l)  =
  

  ∑ 
 a  k  (l) =0

  
 m k  

  p  ( a  k  (l) )  r  k  (l, a  k  (l) ) 

   
 s  k  (l)  ( x k  ) =

  
  1 ___ 
 r  k  (l) 

     ∑ 
 a  k  (l) =0

  
 m k  

  p  ( a  k  (l) )  r  k  (l, a  k  (l) )   s  k  (l, a  k  (l) )  ( x k  )
  

and for new components, i.e.,  l ∈    k  new  , where   c  k  (l)  =  b  k  (l)  , 
we have

   r  k  (l)  = p( b  k  (l)  = 0)  r  k  (l,0)  ,   s  k  (l)  ( x k  ) =  s  k  (l,0)  ( x k  ).  (117)

Here, expressions of   r  k  (l, c  k  (l) )   and   s  k  (l, c  k  (l) )  ( x k  )  were provided 
in Section XII-B1. In analogy to the JPDA filter, where the 
approximation (42) ensured that the approximate poste-
rior pdf   f ̃  ( x k   |  z 1:k  )  of the multitarget state factorizes into the 
approximate posterior pdfs   f ̃  ( x  k  (i)  |  z 1:k  )  of the single-target 
states, the similar approximation (113) ensures that  f (    k  d  |  
Z 1:k  )  is an LMB pdf.

It remains to calculate the marginal DA pmfs  p( a  k  (l) ) ,  
 l ∈   k−1    and  p( b  k  (l) ) ,  l ∈    k  new   occurring in (115)–(117). The 
factorization in (108) is analogous to that in (26) with  { 1, …,  
n t   }  and  { 1, …,  m k   }  replaced by    k−1    and     k  new  , respectively. 
Hence, we can use SPADA with association weights   β  k  (l)  ( a  k  (l) ) ,  
 l ∈   k−1    and   ξ  k  (l)  ( b  k  (l) ) ,  l ∈    k  new   to calculate approximations 
of  p( a  k  (l) )  and  p( b  k  (l) ) .

After (115)–(117) have been evaluated, target declara-
tion and state estimation can be performed. LMB compo-
nent  l ∈   k    is declared to be an existing target at time  k  if   r  k  (l)   
is larger than a threshold   P th   . Furthermore, for a target  l  that 
is declared to exist, an estimate     ̂  x   k  (l)   of the state   x  k  (l)   is calcu-
lated as in (3) with  f ( x k   |  z 1:k  )  replaced by   s  k  (l)  ( x k  ) .

Whereas the approximate update step discussed above 
avoids the exponential scaling of complexity with  |   k   |  and   
m k   , it does not avoid the roughly linear increase of  |   k   |  
with time  k  [cf. (107)]. Therefore, a pruning step is typically 
performed, which removes Bernoulli components  l  whose 
existence probability   r  k  (l)   is below a predefined threshold   P pr   .

(115)

(116)
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It is interesting to note that the expression (110) of the 
spatial pdf   s  k  (l, a  k  (l) )  ( x k  )  is analogous to the expression (41) of the 
approximate posterior pdf   f ̃  ( x  k  (i)  |  a  k  (i)  ,  z 1:k  )  in the JPDA filter. 
Indeed, if the predicted existence probability of all legacy 
components  l ∈   k−1    is   r  k|k−1  

(l)   = 1 , and thus [cf. (109) and the 
discussion preceding it]   r  k  (l, a  k  (l) )  = 1  for all  l ∈   k−1    and all   a  k  (l)  
∈ { 0, …,  m k   } , and if there are no predicted undetected tar-
gets, i.e.,   λ  k|k−1  

u   ( x k   ,  l k  ) = 0 , then   r  k  (l=(k,m),0)  = 0  in (111). This 
means that the existence probability of all the new compo-
nents is zero. As a consequence, (106) is equivalent to (39), 
and thus the update step of the TOMB/P filter reduces to the 
update step of the JPDA filter. Furthermore, it can be shown 
that if the intensity function   λ  n   ( x k  ) =  μ  n    f n   ( x k  )  for newly 
detected targets in the vector-type total-SPA method from 
Section IX-A is set to   λ  n   ( x k  ) =  p d   ( x k  )  λ  k|k−1  

u   ( x k   ,  l k   = 0) , then 
the beliefs resulting from that method are equivalent to the 
Bernoulli component pdfs   f    (l)  (    k  (l) ) . More specifically, let  
  f ̃  ( x  k  (j) ,  r  k  (j) )  be the belief produced by the vector-type total-SPA 
method for the PT that was detected for the first time due to 
measurement  m  at time  k , i.e.,  j =  j k−1   + m . Furthermore, let   
f    (l)  (    k  (l) )  be the pdf of the Bernoulli component with label  
l = (m, k)  obtained by the hybrid labeled/unlabeled variant 
of the TOMB/P filter. Then the existence probability   r  k  (l)   and 
spatial pdf   s  k  (l)  ( x  k  (l) )  of that Bernoulli component are related 
to   f ̃  ( x  k  (j) ,  r  k  (j) )  according to   r  k  (l)   s  k  (l)  ( x  k  (l) ) =  f ̃  ( x  k  (j)  , 1) . While in 
the vector-type total-SPA method the time step  k  and the 
measurement index  m  related to the first measurement of a 
PT are implicitly encoded by the order of the subvectors   y  k  (j)  ,  
 j = 1, … ,j k    in the joint PT vector   y k   , in the hybrid labeled/
unlabeled variant of the TOMB/P filter this information is 
explicitly given by the Bernoulli component label  l .

B. Multisensor Extensions

In the case of multiple sensors (  n s   ≥ 2 ), the prediction 
step discussed in Section XII-A is unchanged as it does not 
involve the sensor measurements. Regarding the update 
step, using Bayes’ rule, A11), and (101), we obtain 

    f (  k   |  Z 1:k  ) ∝ f ( Z k   |   k  ) f (  k   |  Z 1:k−1  )  

                                  =  (  ∏ 
s=1

  
 n s  

   f  ( Z k,s   |   k  ))  f (  k   |  Z 1:k−1  ).   

Based on this expression, the update step can be per-
formed sensor-sequentially within an iterated-corrector 
method. Iterated marginal posterior pdfs  f (  k   |  Z  1:k  s  )  are 
calculated for each sensor  s = 1, …,  n s   . Here,  f (  k   |  Z  1:k  s  )  
denotes the pdf of    k    conditioned on   Z 1:k−1    and on   Z k, s ′      for   
s ′   = 1, …, s . The  s th update step converts  f (  k   |  Z  1:k  s−1 )  into  
f (  k   |  Z  1:k  s  ) , thereby incorporating the measurement   Z k,s    
of sensor  s . This recursion is initialized by  f (  k   |  Z  1:k  0  ) =  
f (  k   |  Z 1:k−1  ) . The  s th update step is equal to the single-sensor 
update step discussed in Section XIII-A except for the follow-
ing differences. The input  f (  k   |  Z 1:k−1  )  of the single-sensor 
update step is replaced by  f (  k   |  Z  1:k  s−1 ) , and the measurements   
z  k  (m)  ,  m ∈ { 1, …,  m k  }  are replaced by   z  k,s  

(m)  ,  m ∈ { 1, …,  m k,s   } . 

Furthermore, for the labels of the newly detected targets to 
be unique, they are now given by the triple  (k, s, m) .

This sequential multisensor MTT method exhibits excel-
lent performance in many scenarios; an example will be 
considered in Section XIV. Due to the approximation per-
formed in each update step, the final result of the method 
depends on the order in which the sensors are updated. 
In certain set-type filters, such as the PHD, CPHD, and 
MeMBer filters, a sensor-sequential update can lead to a 
poorer performance than in the single-sensor case [112], 
[153]. In the method discussed above, because of the dif-
ferent approximation employed, the influence of the sensor 
order on performance is significantly less strong. We note 
that “parallel” set-type multisensor MTT methods that per-
form the update steps for all sensors simultaneously have 
been proposed recently [104], [105]. However, these meth-
ods do not exploit the independence of the measurements of 
different sensors [cf. A10)] and hence do not scale well with 
the number of sensors.

X I V.  PER FOR M A NCE E VA LUATION

In this section, we present simulation and real-data experi-
ments in order to demonstrate the performance of SPA-
based MTT methods and compare it with that of other 
MTT methods.

A. Simulation Results

We consider a region of interest (ROI) given by  [−3000 m, 
3000    m ]  × [−3000    m, 3000    m ] , with up to five targets. 
The target states comprise 2-D position and velocity, i.e.,  
  x  k  (i)  =  [ x  1,k  (i)    x  2,k  (i)     x ̇    1,k  (i)     x ̇    2,k  (i)  ]   T  , and they evolve according to 
the near-constant-velocity motion model [154, Sec. 6.3.2] 
such that the target trajectories tend to intersect at the 
ROI center. The sensors are placed uniformly on a circle of 
radius 3000 m about the ROI center. The ROI with the sen-
sor positions (for   n s   = 3  sensors) and an example realiza-
tion of the target trajectories is shown in [53, Fig. 4]. The 
sensors perform range and bearing measurements within a 
measurement range of 6000 m. The mean number of clut-
ter measurements is   μ  c  

(s)  = 2 . The clutter pdf   f   c  
(s)  ( z  n,m  (s)  )  is 

uniform on  [0 m, 6000 m ]  with respect to the range com-
ponent and uniform on  [ 0   ° ,  360   °  ) with respect to the angle 
component.

We present simulation results for the following SPA-
based multisensor MTT methods: the sequential and paral-
lel SPADA-embedded multisensor JPDA methods described 
in Section VII-C (abbreviated10 “JPDA-SPA”), the sequen-
tial and parallel multisensor total-SPA methods described 
in Section IX-B (abbreviated “Total-SPA-S” and “Total-
SPA-P,” respectively), and the SPADA-embedded sequen-
tial multisensor TOMB/P filter described in Section XIII-B 

10We do not distinguish between the sequential and parallel multi-
sensor JPDA methods because they exhibited identical performance.
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(abbreviated “TOMB/P-SPA”). These SPA-based methods 
are compared with the iterated-corrector PHD filter [3], 
[101], [112] (“IC-PHD”), the iterated-corrector CPHD filter 
[3], [102], [112] (“IC-CPHD”), the partition-based multisen-
sor PHD filter [104] (“MS-PHD”), and the partition-based 
multisensor CPHD filter [104] (“MS-CPHD”). Particle 
implementations are used for all filters.

The simulation parameters are as follows. For methods 
that model the number of targets as unknown, the birth pdf   
f b   ( x k  )  is uniform on the ROI, the number of newborn targets 
is Poisson distributed with mean   μ  b   =  10   −2  , and the survival 
probability is   p s   ( x k  ) =  p s   = 0.999 . The threshold for target 
declaration is   P th   = 0.5 . The SPA-based methods perform    
n it   = 20  message passing iterations. In Total-SPA-S, we 
choose the intensity function for newly detected targets as   
λ  n  (s)  ( x k  ) =  p  d  (s)  ( x k  )  μ  b    f b   ( x k  )  for all sensors  s . (Note that   μ  n  (s)  =  
∫     λ  n  (s)   ( x k  ) d x k    and   f n   ( x k  ) =  λ  n  (s)  ( x k  ) /  μ  n  (s)  .) In Total-SPA-P, we 
set   λ  n  (1)  ( x k  ) =  p  d  (1)  ( x k  )  μ  b    f b   ( x k  )  and   λ  n  (s)  ( x k  ) = 0  for  s = 2, …,  
n s   . In TOMB/P-SPA, the mean number of targets at time   
k = 0  is   μ  p   = 0  [cf. S9)]. In TOMB/P-SPA, Total-SPA-P, and 
Total-SPA-S, the pruning threshold is   P pr   =  10   −5  . For track 
management in JPDA-SPA, we perform gating with a gate 
threshold of 18.4, we use the  m -of- n  heuristic [1] with  m = 4  
and  n = 6  across time and sensors for track initialization, 
and we terminate a track if for six consecutive update steps 
no measurement falls into the gate of the respective target. 
The maximum numbers of subsets and partitions used by 
MS-PHD and MS-CPHD are 120 and 720, respectively, simi-
larly to [104]. We performed 400 simulation runs, each with 
150 time steps  k . New target trajectories were generated in 
each simulation run. Further details of the simulation setup 
and parameters (e.g., the number of particles used by the 
various filters) are provided in [53].

We measure the performance of the various MTT 
 methods by the Euclidean distance based optimal subpat-
tern assignment (OSPA) metric with cutoff parameter 200 
[155]. (We recall that complementary performance results 
assessing DA accuracy were presented in Section VI-C.) 
For   n s   = 3  sensors and a detection probability of   p  d  (s)  ( x  k  (i) ) 
=  p d   = 0.8 , Fig. 5 shows the mean OSPA (MOSPA) error—
averaged over 400 simulation runs—of all methods versus 
time  k . One can see that for all methods, the error peaks at 
times  k =  5, 10, 15, 20, and 25, i.e., when there are target 
births. However, very soon after each target birth, all meth-
ods except IC-PHD reliably estimate the number of targets. 
The performance of TOMB/P-SPA, Total-SPA-S, and Total-
SPA-P is seen to be almost identical. The performance of 
JPDA-SPA is inferior to that of the other SPA-based meth-
ods immediately after target births; this can be explained 
by the fact that JPDA-SPA uses a heuristic to initialize 
new targets. Otherwise, JPDA-SPA performs like the other 
SPA-based methods. The SPA-based methods are seen to 
outperform all the other simulated methods. In particular, 
IC-CPHD, MS-PHD, and MS-CPHD perform worse than 
the SPA-based methods because particle implementations of  

(C)PHD filters involve a potentially unreliable cluster-
ing step. This clustering step is especially unreliable when 
targets are closely spaced, which occurs in our simulation 
around time  k = 100 , i.e., when the five target trajectories 
intersect in the ROI center. In fact, the MOSPA error of 
IC-CPHD, MS-PHD, and MS-CPHD is seen to be higher 
around that time. Finally, IC-PHD performs significantly 
worse than all the other filters because it is unable to reliably 
estimate the number of targets in the simulated scenario. 
We note that simulation results for a significantly larger sce-
nario with closely spaced targets are presented in [53].

The average computation time per time step  k  for a 
MATLAB implementation on a single core of an Intel Xeon 
E5-2640 v3 CPU was measured as 0.03 s for JPDA-SPA; 
0.08 s for Total-SPA-S, Total-SPA-P, and TOMB/P-SPA; 0.11 s  
for IC-PHD; 0.14 s for IC-CPHD; 13.21 s for MS-PHD; and 
13.82 s for MS-CPHD. We note that JPDA-SPA used gating 
whereas the other filters did not. The high computation times 
of the MS-PHD and MS-CPHD filters are due to the fact that 
the trellis algorithm used for partition extraction is tailored to 
a Gaussian mixture implementation and becomes computa-
tionally intensive in a particle-based implementation. Further 
results demonstrating the excellent scalability of the SPA-
based methods are reported in [52], [53], and [147].

Finally, for detection probability   p d   = 0.6 , Fig. 6 shows 
the time-averaged MOSPA error—i.e., averaged over all 
150 simulated time steps—versus the number of sensors   n s   . 
JPDA-SPA performs worse than TOMB/P-SPA, Total-SPA-S, 
and Total-SPA-P, due to its heuristic track initialization. 
Total-SPA-P performs worse than Total-SPA-S and TOMB/
P-SPA, because it does not implement sensor fusion for new 
PTs. The increase of the time-averaged MOSPA error of 
MS-PHD and MS-CPHD for   n s   > 5  is due to the fact that the 
chosen maximum numbers of subsets (120) and partitions 
(720) are too small for that case; however, larger maximum 
numbers would lead to excessive simulation times.

Fig. 5. MOSPA error versus time  k  for   n s   = 3  and   p d   = 0 . 8 . (The 
curves for Total-SPA-S and TOMB/P-SPA coincide.)
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B. Results for a Radar Tracking Experiment

For further validation of the SPA-based MTT meth-
ods, we use real measurements that were acquired by two 
high-frequency surface-wave (HFSW) radars for maritime 
surveillance [156], [157]. HFSW radars feature over-the-
horizon coverage and a continuous-time mode of opera-
tion. On the other hand, they suffer from poor range and 
azimuth resolution, high nonlinearity, and strong clutter; 
these effects make MTT a challenging task [156], [157]. 
The two radar stations are located close to the cities of Pisa 
and La Spezia in Italy. The ROI is the intersection of the 
fields-of-view of the two radar stations. All vessels in the 
ROI are considered as targets. Ground truth information 
about the target positions is reported by the automatic 
identification system (AIS). However, this information is 
incomplete since AIS reports do not include vessels below 
a certain gross tonnage and military vessels. The overall 
tracking scenario is shown in Fig. 7. At each of the two 
radar sensors, measurements are available every 33.28 s.

We processed the real measurements provided by the 
two sensors by the same MTT methods as in the previous 
subsection. Target motion is modeled by the near-constant-
velocity model with driving process variance 0.01 m2/  s   4  .  
We use a range-bearing measurement model involving a 
Gaussian measurement noise vector with covariance matrix  
diag{ (150m)   2  ,  (1.  5   ° )   2 } . The probability of detection is   p  d  (s)   
( x  k  (i) ) =  p d   = 0.65  for both sensors. The  clutter pdf   f   c  

(s)  ( z  k,s  
(m) )   

is chosen uniform on the ROI, and the mean number of 
clutter measurements is   μ  c  

(s)  = 15 . For methods that model 
the number of targets as unknown, the birth pdf   f b   ( x k  )  is 
uniform on the ROI, the number of newborn targets is 
Poisson distributed with mean   μ  b   =  10   −1  , and the survival 
probability is   p s   ( x k  ) =  p s   = 0.999 . The threshold for target 
declaration is   P th   = 0.5 . Track management in JPDA-SPA is 
as described earlier, except that the gate threshold is 9 and 
tracks are terminated if for six consecutive update steps less 

than two measurements fall into the gate of the respective 
target. The (C)PHD-type filters use 45 000 particles to rep-
resent the PHD of the target states. JPDA-SPA, TOMB/P-
SPA, Total-SPA-S, and Total-SPA-P use 3000 particles for 
each target. In TOMB/P-SPA, the mean number of targets 
at time  k = 0  is   μ  p   = 5 , and the spatial pdf   f p   ( x 0  )  is uni-
form on the ROI. In TOMB/P-SPA, Total-SPA-S, and Total-
SPA-P, after each single-sensor update step, targets with 
existence probability smaller than   P pr   =  10   −3   are removed. 
All remaining parameters are as in Section XIV-A.

Table 1 shows the time-on-target (TOT) and the false 
alarm rate (FAR) [1] obtained with the various methods 
for 24 h of measurement data. TOT is the fraction of time 
that the target is successfully detected, which is considered 
to be true if the estimated target position is within 500 m 
of the true target position. FAR is the number of false tra-
jectories (or false detections) generated in the surveillance 
region per unit of 2-D space and unit of time. Ideally, the 
TOT would be one and the FAR would be zero. It can be 
seen in Table 1 that the SPA-based methods achieve an 
attractive TOT-FAR compromise. In particular, the TOT of 
Total-SPA-S, Total-SPA-P, and TOMB/P-SPA is very similar, 
and larger than that of the other filters. The smaller TOT 
of JPDA-SPA-S and JPDA-SPA-P (the sequential and paral-
lel multisensor extensions of JPDA-SPA discussed in Section 
VII-C) can be explained by the heuristic that is used to ini-
tialize new targets. The relatively high TOT of MS-PHD and 
MS-CPHD is seen to come at the cost of an increased FAR, 
while Total-SPA-S, Total-SPA-P, and TOMB/P-SPA achieve 
both a high TOT and a rather low FAR. We caution that the 
FAR reported in Table 1 is pessimistic in that the AIS ground 
truth information is incomplete and thus measurements 
that are generated by targets without ground truth informa-
tion and detected by a tracking algorithm are considered as 

Fig. 6. Time-averaged MOSPA error versus number of sensors   
n s    for   p d   = 0 . 6 . (The curves for Total-SPA-S and TOMB/P-SPA 
coincide.)

Fig. 7. Three hours of measurements acquired by two HFSW radar 
stations on the west coast of Italy. The positions of radar stations 
#1 (near Pisa) and #2 (near La Spezia) are indicated by a green and 
a blue square, respectively. The corresponding measurements are 
indicated by green and blue dots, respectively. AIS ground truth 
information is indicated by black lines.
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false alarms. In this light, the relatively low FAR of IC-PHD, 
JPDA-SPA-S, and JPDA-SPA-P can be partly attributed to 
the fact that these methods, as evidenced by their low TOT, 
are unable to track some targets that do not provide AIS 
information (and that would thus contribute to the FAR if 
successfully tracked).

X V. CONCLUSION

Multitarget tracking (MTT) is an important contribution 
to acquiring and maintaining an awareness of the environ-
ment. Although measurement origin uncertainty makes 
MTT a complicated and challenging task, large-scale 
scenarios and real-time operation on resource-limited 
devices call for MTT methods whose complexity is mod-
erate and scales well with the number of targets, sensors, 
and measurements. In this tutorial paper, we showed that 
the development of high-performance MTT methods with 
moderate complexity and excellent scalability can be based 
on the recently emerged paradigm of factor graphs and 
message passing using the sum–product algorithm (SPA). 
We presented SPA-based Bayesian MTT methods within 
both a random vector framework and a random finite set 
framework. A core component of these methods, and a 
major reason for their scalability, is a highly effective and 

efficient SPA-based algorithm for probabilistic data asso-
ciation. We discussed the integration of SPA-based prob-
abilistic data association into existing MTT methods and 
showed that certain existing methods can be reformulated 
within the SPA framework. We also presented new vector-
type and set-type MTT methods in which the SPA is used 
either for probabilistic data association or for the entire 
MTT problem.

The SPA approach to designing MTT methods has 
important advantages regarding scalability, accuracy, com-
plexity, versatility, and intuitiveness. While rooted in the 
framework of optimum Bayesian inference, the SPA-based 
approach easily accommodates different system models and 
application-related aspects. In particular, it is suited to gen-
eral nonlinear, non-Gaussian, and time-varying scenarios. 
The factor graph formulation of the MTT system model 
combined with the principle of stretching factor nodes 
introduces a beneficial intuitiveness and flexibility into 
the SPA-based design of MTT methods. Finally, SPA-based 
MTT methods are able to cope with unknown and time-var-
ying hyperparameters, such as detection probabilities [54] 
and motion model parameters [158]. Using both simulated 
and real measurements, we demonstrated the excellent per-
formance and low complexity of the presented SPA-based 
MTT methods.

The beliefs obtained by the loopy SPA can be overconfi-
dent in that their spread underestimates the uncertainty of 
the estimates [144]. This can be a limitation in certain appli-
cations, e.g., [159]. A variational message passing approach 
that performs iterative data association across multiple sen-
sors and/or time steps and avoids overconfident beliefs will 
be proposed in forthcoming work [144].

Possible directions of future research include an exten-
sion of the network localization and navigation (NLN) 
paradigm [160]–[164] to noncollaborative objects; a com-
bination of MTT with resource allocation, sensor selec-
tion, and control [165]–[172]; network experimentation  
[173]–[175] with noncollaborative objects; network locali-
zation systems [176]–[178] for MTT; and distributed SPA-
based MTT methods for decentralized wireless sensor 
 networks [179]–[181]. 
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