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M
ultiple-input–multiple-output
(MIMO) wireless systems are those
that have multiple antenna elements
at both the transmitter and receiver
[1]. They were first investigated by

computer simulations in the 1980s [2], and later papers
explored them analytically [3], [4]. Since that time,
interest in MIMO systems has exploded. They are now
being used for third-generation cellular systems (W-
CDMA) and are discussed for future high-performance
modes of the highly successful IEEE 802.11 standard for
wireless local area networks. MIMO-related topics also
occupy a considerable part of today’s academic com-
munications research.

The multiple antennas in MIMO systems can be
exploited in two different ways. One is the creation of a
highly effective antenna diversity system; the other is

the use of the multiple antennas for the transmission of
several parallel data streams to increase the capacity of
the system.

Antenna diversity is used in wireless systems to
combat the effects of fading. If multiple, independent
copies of the same signal are available, we can combine
them into a total signal with high quality—even if some
of the copies exhibit low quality. Antenna diversity at
the receiver is well known and has been studied for
more than 50 years. The different signal copies are lin-
early combined, i.e., weighted and added. The result-
ing signal at the combiner output can then be demodu-
lated and decoded in the usual way. The optimum
weights for this combining are matched to the wireless
channel [maximum ratio combining (MRC)]. If we have
N receive antenna elements, the diversity order, which
describes the effectiveness of diversity in avoiding
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deep fades, is N; in other words, the diversity order is
related to the slope of the signal-to-noise ratio (SNR)
distribution at the combiner output. The multiple
antennas also increase the average SNR seen at the com-
biner output. The study of transmit diversity is much
more recent, starting in the 1990s. When the channel is
known to the transmitter, we can again “match” the
multiple transmitted signal copies to the channel,
resulting in the same gains as for receiver diversity. If
the channel is unknown at the transmitter, other strate-
gies, like delay diversity or space-time-coding, have to
be used. In that case, we can gain high diversity order,
but not improvement of average SNR. The logical next
step is the combination of transmit and receive diversi-
ty. It has been demonstrated that with Nt transmit and
Nr receive antennas, a diversity order of NtNr can be
achieved [5]. A MIMO system can thus be used for a
high-quality transmission of a single data stream even
in challenging environments.

An alternative way of exploiting the multiple anten-
na elements is the so-called “spatial multiplexing” [6] or
“BLAST” [7] approach. The principle of this approach is
sketched in Figure 1. Different data streams are trans-
mitted (in parallel) from the different transmit antennas.
The multiple receive antenna elements are used for sep-
arating the different data streams at the receiver. We
have Nr combinations of the Nt transmit signals. If the
channel is well-behaved, so that the Nr received signals
represent linearly independent combinations, we can
recover the transmit signals as long as Nt ≤ Nr. The
advantage of this method is that the data rate can be
increased by a factor Nt without requiring more spec-
trum! In this article, we will mostly discuss the informa-
tion-theoretic capacity, i.e., the data rate that can be
transmitted over a channel without errors if ideal coding
is used. Practical schemes, like layered space-time (ST)
receiver structures [8]–[10] combined with space-time
codes [11] allow us to approach these capacity limits.

Antenna Selection for MIMO
Regardless of the use as diversity or spatial multiplex-
ing system, the main drawback of any MIMO system is
the increased complexity, and, thus, cost. While addi-
tional antenna elements (patch or dipole antennas) are
usually inexpensive, and the additional digital signal

processing becomes ever cheaper, the RF elements are
expensive and do not follow Moore’s law. MIMO sys-
tems with Nt transmit and Nr receive antennas require
Nt (Nr) complete RF chains at the transmitter, and the
receiver, respectively, including low-noise amplifiers,
downconverters, and analog-to-digital converters.

Due to this reason, there is now great interest in so-
called hybrid-selection schemes, where the “best” L out
of N antenna signals are chosen (either at one or both
link ends), downconverted, and processed. This
reduces the number of required RF chains from N to L,

and, thus, leads to significant savings. The savings
come at the price of a (usually small) performance loss
compared to the full-complexity system. In the case
that the multiple antennas are used for diversity pur-
poses, the approach is called “hybrid selection/maxi-
mum-ratio-combining” (H-S/MRC), or sometimes also
“generalized selection combining” [12]–[14]; if they are
used for spatial multiplexing, the scheme is called
“hybrid selection/MIMO” (H-S/MIMO) [15]. In this
article, we describe the performance that can be
achieved with such a system, how the “best” antennas
can be selected in an efficient manner, and how non-
idealities affect the performance.

Notation
In this article, a vector is denoted by an arrow, −→x, a matrix
by underline A. Superscript ∗ denotes complex conjuga-
tion; superscript  † denotes the Hermitian transpose.

System Model
Figure 2 shows the generic system that we are consid-
ering. A bit stream is sent through a vector encoder and

Figure 1. Principle of spatial multiplexing.
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modulator. This encoder converts a single bit stream
into Lt parallel streams of complex symbols. These
streams can have all the same information (e.g., for a
simple transmit diversity system with channel knowl-
edge), can all have independent symbol streams (e.g.,
in V-BLAST spatial multiplexing), or have partially cor-
related data streams. Subsequently, a multiplexer
switches the modulated signals to the best Lt out of Nt

available antenna branches. For each selected branch,
the signal is multiplied by a complex weight u whose
actual value depends on the current channel realiza-
tion. If the channel is unknown at the transmitter, all
weights are set to unity.

In a realistic system, the signals are subsequently
upconverted to passband, amplified by a power ampli-
fier, and filtered. For our model, we omit these stages, as
well as their corresponding stages at the receiver, and
treat the whole problem in equivalent baseband. Note,
however, that exactly these stages are the most expen-
sive and make the use of antenna selection desirable.

Next, the signal is sent over a quasistatic flat-fading
channel. We denote the Nr × Nt matrix of the channel
as H. The entry with hk,m denotes the (complex) atten-
uation between the mth transmit and the kth receive
antenna. The output of the channel is polluted by addi-
tive white Gaussian noise, which is assumed to be inde-
pendent at all receiving antenna elements. At the
receiver, the best Lr of the available Nr antenna ele-
ments are selected, and downconverted for further pro-
cessing (note that only Lr receiver chains are required).
This further processing can consist of weighting with
complex weights −→w ∗ and linear combining (if the
transmitter uses simple transmit diversity), or space-

time-processing and -decoding.
Unless otherwise stated, we assume in the following

that 
1) The fading at the different antenna elements is

assumed to be independent identically distrib-
uted (i.i.d.) Rayleigh fading. This is fulfilled if the
directions of the multipath components at the
transmitter and receiver are approximately uni-
form, and/or the antenna elements are spaced far
apart from each other [16].

2) The fading is assumed to be frequency flat. This is
fulfilled if the coherence bandwidth of the chan-
nel is significantly larger than the transmission
bandwidth.

3) We assume that the receiver has perfect knowl-
edge of the channel. For the transmitter, we will
analyze both cases where the transmitter has no
channel knowledge, and where it has perfect
channel knowledge.

4) When talking about capacity, we also assume that
the channel is quasistatic. By quasistatic, we mean
that the coherence time of the channel is so long
that “almost infinitely” many bits can be trans-
mitted within this time. Thus, each channel real-
ization is associated with a (Shannon—AWGN)
capacity value. The capacity thus becomes a ran-
dom variable, described by its cumulative distrib-
ution function (cdf).

The input–output relationship can thus be written as

−→y = H−→s + −→n = −→x + −→n (1)

where −→s is the transmit signal vector, and −→n is the
noise vector.

Performance of Single Input—
Multiple Output (SIMO) Systems
In order to explain some of the principles, we first con-
sider the case where there is only a single transmit
antenna, and antenna selection is used at the receiver.
In that case, the multiple antennas can be used only for
H-S/MRC diversity (no parallel data streams are possi-
ble). It is optimum to select the L out of N antennas that
provide the largest SNR at each instant. These antennas

Figure 2. Block diagram of the considered system.
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are then combined using MRC [12], [13], [17]–[21].
It is well known that the output SNR of maximum

ratio combining is just the sum of the SNRs at the dif-
ferent receive antenna elements. For H-S/MRC, the
instantaneous output SNR of H-S/MRC looks decep-
tively similar to MRC, namely

γH-S/MRC =
L∑

i=1

γ(i) . (2)

The big difference to MRC is that the γ(i) are the
ordered SNRs, i.e., γ(1) > γ(2) > · · ·> γ(N) . This leads to
a different performance, and poses new mathematical
challenges for the performance analysis. Specifically,
we have to introduce the concept of “order statistics”
[22]. Note that selection diversity (where only one out
of N antennas is selected) and MRC are limiting cases
of H-S/MRC with L = 1 and L = N, respectively.

In general, the gain of multiple antennas is due to
two effects: “diversity gain” and “beamforming gain.”
The diversity gain is based on the fact that it is improb-
able that several antenna elements are in a fading dip
simultaneously; the probability for very low SNRs is
thus decreased by the use of multiple antenna elements.
The “beamforming gain” is created by the fact that
(with MRC) the combiner output SNR is the sum of the
antenna SNRs. Thus, even if the SNRs at all antenna ele-
ments are identical, the combiner output SNR is larger,
by a factor L, than the SNR at one antenna element.
Antenna selection schemes provide good diversity gain,
as they select the best antenna branches for combining.
Actually, it can be shown that the diversity order
obtained with antenna selection is proportional to N,
not to L [23]. However, they do not provide full beam-
forming gain. If the signals at all antenna elements are
completely correlated, then the SNR gain of H-S/MRC
is only L, compared to N for an MRC scheme.

The analysis of H-S/MRC based on a chosen order-
ing of the branches at first appears to be complicated,
since the SNR statistics of the ordered-branches are not
independent. Even the average combiner output SNR cal-
culation alone can require a lengthy derivation, as seen
in [17]. However, we can alleviate this problem by trans-
forming the ordered-branch variables into a new set of
random variables. It is possible to find a transformation
that leads to independently distributed random variables
(termed “virtual branch variables”) [12]. (When the aver-
age branch SNRs are not equal, it can be shown that the
virtual branch variables are conditionally independent.)
The fact that the combiner output SNR can be expressed
in terms of i.i.d. virtual branch variables enormously
simplifies the performance analysis of the system. For
example, the derivation of the symbol error probability
(SEP) for uncoded H-S/MRC systems, which normally
would require the evaluation of nested N-fold integrals,
essentially reduces to the evaluation of a single integral
with finite limits. 

The mean and the variance of the output SNR for 

H-S/MRC is thus [12]

�H-S/MRC = L

(
1 +

N∑
n=L+1

1
n

)
� , (3)

and

σ 2
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(
1 + L
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1
n2

)
�

2
, (4)

respectively, where � is the mean SNR.
The SEP for M-ary phase-shift keying (MPSK) with

H-S/MRC is derived in [13] as

PMPSK
e,H-S/MRC = 1

π

∫ �

0

[
sin2 θ

cMPSK� + sin2 θ

]L

×
N∏

n=L+1

[
sin2 θ

cMPSK� L
n + sin2 θ

]
dθ, (5)

where � = π(M − 1)/M, and cMPSK = sin2(π/M).
Similar equations for the SEP for M-ary quadrature
amplitude modulation (M-QAM) can be found in [13].

It is also important to note that the same principles
can be used for MISO systems, i.e., where there are
multiple antenna elements at the transmitter and only
one antenna at the receiver. If the transmitter has com-
plete channel state information (CSI), it can select trans-
mit weights that are matched to the channel. If the
transmitter uses all antenna elements, this is known as
“maximum ratio transmission” (MRT) [24]; if antenna
selection is applied, the system is called “hybrid—
selection/maximum ratio transmission.

Performance of MIMO Systems

Diversity
As a next step, we analyze a diversity system that has
multiple antenna elements both at the transmitter and
at the receiver, and the transmitter has perfect CSI, i.e.,
know the matrix H completely). In the block diagram of
Figure 1, our “space-time-coder” is then just a regular
coder that puts out a sequence of scalar symbols s.
These are then multiplied by the weight vector −→u, to
give the complex symbols at the different transmit
antenna elements −→s . Similarly, at the receiver, we

Channel estimation errors do not
decrease the capacity significantly 
if the SNR of the pilot tones is
comparable to, or larger than, the NR
during the actual data transmission.
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obtain a “soft” symbol estimate r as r = −→w ∗−→y . These
symbols are then demodulated and decoded in the
usual way (the “space-time decoder” is a conventional,
scalar, decoder). In the following, we look at the case
where the transmitter performs antenna selection,
while the receiver uses all available signals and thus
performs MRC. But the situation is reciprocal; all the
following considerations are also valid if it is the receiv-
er that performs the antenna selection.

The performance of this system was analyzed in [25],
[26]. It is well known that any diversity system with CSI
at the transmitter achieves an effective SNR that is equal
to the square of the largest singular value of the channel
matrix [27]. For a diversity system with antenna selec-
tion, we have to consider all possible antenna combina-
tions. Each chosen set of antenna elements leads to a dif-
ferent channel matrix, and, thus, a different effective
SNR. The antenna selection scheme finally chooses the
matrix associated with the largest effective SNR.

In mathematical terms, that can be formulated the
following way: define a set of matrices H̃,where H̃ is
created by striking Nt − Lt columns from H,and S(H̃)

denotes the set of all possible H̃ ,whose cardinality is(Nt
Lt

)
. The achievable SNR γ of the reduced-complexity

system (for a specific channel realization) is now

γ = � max
S(H̃)

(
max

i
(̃λ2

i )

)
(6)

where the λ̃i are the singular values of H̃ . Analytical
expressions for upper and lower bounds on the SNR, as
well as Monte Carlo simulations of the exact results for
the SNR and the bit error probability (BEP), and capac-
ity derived from it are given in [25] and [26]. Note that
the SNR of a diversity system is related to its capacity
by the simple transformation C = log2(1 + y).

The mean SNR (averaged over all channel realiza-
tions) E{γ } can be computed as [28]

E{γ } = �

L−1∑
i=0

Xi (7)

with

Xi = Nt!
(i − 1)!(Nt − i)!(Nr − 1)!

i−1∑
r=0

(−1)r
(

i − 1
r

)

×
(Nr−1)ξ∑

s=0
aξ

�(1 + Nr + s)
(ξ + 1)1+Nr+s (8)

where ξ is Nt − i + r, and aξ is the coefficient of xs in
the expansion of 

∑Nr−1
l=0 (xl/ l!)ξ . The case Lt = 1 is ana-

lyzed in [29]–[31].
Figure 3 shows the cdf of the

capacity for H-S/MRT with differ-
ent values of Lt,and compares it to
MRT. We see that in this example
(which uses Nr = 2, Nt = 8), the
capacity obtained with Lt = 3 is
already very close to the capacity of
a full-complexity scheme. We also
see that the improvement by going
from one to three antennas is larger
than that of going from three to
eight. For comparison, we also
show the capacity for pure MRT
with different values of Nt. The
required number of RF chains is Lt

for the H-S/MRT case and Nt for
the pure MRT case. Naturally, the
capacity is the same for H-S/MRT
with Lt = 8, and MRT with Nt = 8.
It can be seen by comparing the two
figures that, for a smaller number of
RF chains, the H-S/MRT scheme is
much more effective than a pure
MRT scheme (for the same number
of RF chains), both in terms of
diversity order (slope of the curve)
and ergodic capacity.

As discussed earlier, no diversi-
ty gain can be achieved by multiple
antenna elements in correlated
channels, and all gain is due to
beamforming. Figure 4 compares

Figure 3. (a) Capacity of a system with H-S/ MRT at the transmitter and MRC at
the receiver for various values of Lt with Nt = 8, Nr = 2, and SNR = 20 dB. (b)
capacity of a system with MRT at transmitter and MRC at receiver for various val-
ues of Nt with Nr = 2, and SNR = 20 dB. From [26].
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the performance of a 3/8 H-S/MRT sys-
tem with a 8/8 MRT. The outage capac-
ity is plotted as a function of the ratio of
the normalized correlation length at the
transmitter (normalized to antenna
spacing). As expected, the relative per-
formance loss due to correlation is high-
er for the 3/8 H-S/MRT system than for
the  8/8 MRT system. The mitigation of
those problems by the introduction of a
phase-shift only matrix that transforms
the signals in the RF domain before
selection takes place. has been suggest-
ed by [32] and [33]. This matrix can
either be fixed, e.g., a fast Fourier trans-
form (FFT), or adapting to the channel
state. For fully correlated channels, this
scheme can recover the beamforming
gain. For i.i.d. channels, antenna selec-
tion with a fixed transformation matrix
shows the same SNR distribution as a
system without a transformation
matrix; an adaptive transformation
matrix, however, performs as well as a
full-complexity system if L ≥ 2.

Spatial Multiplexing
For spatial multiplexing, different data
streams are transmitted from the different antenna ele-
ments; in the following, we consider the case where the
transmitter (TX), which has no channel knowledge, uses
all antennas, while the receiver uses antenna selection
[15]. In the block diagram of Figure 1, this means that the
transmit switch is omitted. As we assume ideal (and
unrestricted) processing in the space/time
encoder/decoder, we do not need to consider the (lin-
ear) weights −→u , −→w and can set them to unity.

Similar to the diversity case, each combination of
antenna elements is associated with its own channel
matrix H̃. (H̃ is created now striking Nr − Lr rows from
H because the selection occurs at the receiver.) However,
the quantity we wish to optimize now is the informa-
tion-theoretic capacity:

CH-S/MIMO = max
S(H̃)

(
log2

[
det

(
INr

+ �

Nt
H̃H̃

†
)])

,

(9)
where INr

is the Nr × Nr identity matrix.
Let us first discuss from an intuitive point of view

under what circumstances H-S/MIMO makes sense. It
is immediately obvious that the number of parallel data
streams we can transmit is upper-limited by the number
of transmit antennas. On the other hand, we need at
least as many receive antennas as there are data streams
in order to separate the different data streams and allow
demodulation. Thus, the capacity is linearly proportion-
al to min(Nr, Nt) [3]. Any further increase of either

Nr or Nt while keeping the other one fixed only increas-
es the system diversity, and consequently allows a loga-
rithmic increase of the capacity. But we have already
seen in the previous section that hybrid antenna selec-
tion schemes provide good diversity. We can thus antic-
ipate that a hybrid scheme with  Nr ≥ Lr ≥ Nt will give
good performance.

An upper bound for the capacity for i.i.d. fading
channels was derived in [15]. For Lr ≤ Nt, this bound is

CH−S/MIMO ≤
Lr∑

i=1

log2

(
1 + �

Nt
γ(i)

)
, (10)

where the γ( i) are obtained by ordering a set of Nr i.i.d.
chi-square random variables with 2Nt degrees of free-
dom (DOF). For Lr > Nt, the following bound is tighter 

CH−S/MIMO ≤
Nt∑
j=1

log2

[
1 + �

Nt

Lr∑
i=1

γ(i)

]
(11)

where the γ( i) are obtained by ordering a set of Nr i.i.d.
chi-square random variables with 2 DOF.

For the case that Lt = Nr, [34] derived a lower bound

CH−S/MIMO ≥ log2

[
det

(
INr

+ �

Nt
H̃H̃

†
)]

+ log2

[
det

(
Ũ

†
Ũ

)]
(12)

where U is an orthonormal basis of the column space
of H, and Ũ is the Nr × Lt submatrix corresponding to

Figure 4. A 10% outage capacity of a system with two receiving antennas and H-
S/MRT at the transmitter as a function of the normalized correlation length at the
transmitter (normalized to antenna spacing). A 3/8 system with optimum antenna
selection (dashed), and 8/8 system (dotted). Correlation coefficient between signals
at two antenna elements that are spaced d apart is exp(−d/Lcorr).
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the selected antennas. This equation can be used to
derive further, looser but simpler bounds. The impor-
tance of this equation lies in the fact that the capacity
loss log2[det(Ũ

†
Ũ)] occurs as an additive term to the

“usual” capacity expression, which has been investi-
gated extensively.

Figure 5 shows the cdf of the capacity obtained by
Monte Carlo simulations for Nr = 8, Nt = 3, and vari-
ous Lr. With full exploitation of all available elements,
a mean capacity of 23 b/s/Hz can be transmitted over
the channel. This number decreases gradually as the
number of selected elements Lr decreases, reaching
19 b/s/Hz at Lr = 3. For Lr < Nt, the capacity decreas-
es drastically, since a sufficient number of antennas to
spatially multiplex Nt independent transmission chan-
nels is no longer available.

Correlation of the fading leads to a decrease in the
achievable capacity (compare the decrease in diversity
discussed earlier). One possibility for computing the
performance loss is offered by (12): the performance
loss of any MIMO system due to antenna selection is
given by log2[det(Ũ

†
Ũ)]. This fact can be combined

with well-known results for capacity of full-complexi-
ty MIMO systems in correlated channels [35] to give
bounds of the capacity. The optimum transmit correla-
tion matrix is derived in [36]. Phase transformation
[32], [33], or beam selection [37] improve the perfor-
mance in correlated channels. Also, the combination of
constellation adaptation with subset selection is espe-
cially beneficial in correlated channels [38].

It also turns out that for antenna selection and low
SNRs, diversity can give higher capacities than spatial
multiplexing. This somewhat surprising result was
proved in [39] . For small SNRs, the capacity with spa-
tial multiplexing is

CH−S/MIMO ≈ γ

Nt ln(2)

Lr∑
i=1

Lt∑
j=1

∣∣∣H̃ij

∣∣∣2 (13)

whereas for diversity, it is

CH−S/MRC ≈ γ

Nt ln(2)

Lr∑
i=1

∣∣∣∣∣∣
Lt∑

j=1

H̃ij

∣∣∣∣∣∣
2

. (14)

In other words, the difference between the two expres-
sions are the cross terms that appear for the diversity
case. By appropriate choice of the antennas, the contri-
bution from the cross terms to the capacity is positive, so
that CH−S/MRC can be larger than CH−S/MIMO. Similar
results also hold in the case of strong interference [40].

Space-Time Coded Systems
Next, we consider space-time coded systems with
transmit and receive antenna selection in correlated
channels. We assume that the transmitter has knowl-
edge about the statistics of the fading, i.e., it knows the
correlation of the fading at the different antenna ele-
ments. Assume further that the so-called “Kronecker-
model” is valid, in which the directions (and mean
powers) of the multipath components at the transmit-
ter are independent of those at the receiver [16], [41].
The channel with its selected antenna elements is then
described by the modified correlation matrices R̃t and
R̃r, which describe the correlation of the signals at the
selected antennas. The pairwise error probability (i.e.,
confusing codeword S(i)with codeword S( j)) for a
space-time coded system can then be shown to be
[28], [42], [43]

P
(

S(i) −→ S( j)
)

≤ γ −NtNr

|R̃t|Nt |R̃r|Nr |Ei, jE
†
i, j|Nr

(15)

where Ei, j = S(i) − S( j). The optimum antenna selec-
tion is thus the one that maximizes the determinants of
R̃t and R̃r. The selection at the transmitter and the
receiver can be done independently; this is a conse-
quence of the assumptions of the Kronecker model.

This equation also confirms that the achievable
diversity order (which is the exponent of γ) is NtNr.
However, note that the coding gain of a space-time
coded antenna-selection system lies below that of a
full-complexity system [44]. The combination of space-
time block coding and antenna selection had also been
suggested in [45]; specific results for the Alamouti code
are given in [46]–[48]. Space-time trellis codes with
antenna selection are analyzed in [49]. Code designs
and performance bounds are given in [50].

Antenna Selection Algorithms
The only mechanism for a truly optimum selection of
the antenna elements is an exhaustive search of all pos-
sible combinations for the one that gives the best SNR
(for diversity) or capacity (for spatial multiplexing).
However, this requires some 

(
Nt
Lt

) (
Nr
Lr

)
computations

of determinants for each channel realizations, which
quickly becomes impractical. For this reason, various

Figure 5. Capacity for a spatial multiplexing system with
Nr = 8, Nt = 3, SNR = 20 dB, and Lr = 2, 3,...,8.
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simplified selection algorithms have been proposed.
Most of them are intended for systems where the selec-
tion is done at only one link end.

The simplest selection algorithm is the one based on
the power of the received signals. For the diversity
case, this algorithm is quite effective. However, for spa-
tial multiplexing, this approach breaks down. Only in
about 50% of all channel realizations does the power-
based selection give the same result as the capacity-
based selection, and the resulting loss in capacity can
be significant. This behavior can be interpreted physi-
cally: the goal of the receiver is to separate the different
data streams. Thus, it is not good to use the signals
from two antennas that are highly correlated, even if
both have have high SNR. Figure 6 gives the capacities
that are obtained by antenna selection based on the
power criterion compared to the optimum selection.

Based on these considerations, an alternative class
of algorithms has been suggested by [51]. Suppose
there are two rows of the H that are identical. Since
these two rows carry the same information, we can
delete either of these two rows. In addition, if they
have different powers (i.e., magnitude square of the
norm of the row), we delete the row with the lower
power. When there are no identical rows, we search for
the two rows with highest correlation and then delete
the row with the lower power. In this manner, we can
have the channel matrix H̃ whose rows have minimum
correlation and have maximum powers. This method
achieves capacities within a few b/s/Hz. A somewhat
similar approach, based on the mutual information
either between receive antennas, or between transmit
and receive antennas, has been suggested indepen-
dently by [52].

Another algorithm was suggested in [53] (see also
[54], [55]. It makes N − L passes of a loop that elimi-
nates the worst antenna, where the index ̃p of the worst
antenna is found as

p̃ = arg min
p

Hp

[
I + Es

N0
H†H

]−1
H†

p (16)

where Hp is the pth row of H. Further selection algo-
rithms are also discussed in [56] and [57].

Effect of Nonidealities

Low-Rank Channels
Previously, we have assumed that the channel is i.i.d.
complex Gaussian, or exhibits some correlation at the
transmitter and/or receiver. However, in all of those
cases, the channel matrix is full-rank, and the goal of the
antenna selection is to decrease complexity, while keep-
ing the performance loss as small as possible. There are,
however, also propagation channels where the matrix H
has reduced rank [58]–[60]. Under those circumstances,
antenna selection at the transmitter can actually increase

the capacity of the channel [61].
Note that the antenna selection increases the capac-

ity only compared to the case of equal power alloca-
tion for all antennas. It cannot increase the capacity
compared to the waterfilling approach; actually, the
selection process can be considered as an approxima-
tion to waterfilling [62].

Linear Receivers for Spatial 
Multiplexing Systems
The simplest receiver for spatial multiplexing systems
is a linear receiver that inverts the channel matrix H
(zero-forcing). While this scheme is clearly suboptimal,
it has the advantage of simplicity and is easy to analyze
mathematically. The SNR for an M-stream spatial mul-
tiplexing system with a zero-forcing receiver was cal-
culated in [63]. The SNR of the kthdata stream γk is

γ
(ZF)

k = Es

MN0

[
H̃

†
pH̃p

]−1

kk

(17)

which can be bounded as

γ
(ZF)
min ≥ λ2

min
(
H̃

) Es

MN0
. (18)

Frequency-Selective Channel
In frequency-selective channels, the effectiveness of
antenna selection is considerably reduced. Note that
different sets of antenna elements are optimum for dif-
ferent (uncorrelated) frequency bands. Thus, in the limit
that the system bandwidth is much larger than the

Figure 6. Cdf of the capacity of a system with Nr = 8,
Nt = 3. Selection of antenna by capacity criterion (solid)
and by power criterion (dashed).
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coherence bandwidth of the channel, and if the number
of resolvable multipath components is large, all possi-
ble antenna subsets become equivalent. This can also be
interpreted by the fact that such a system has a very
high diversity degree, so that any additional diversity
from antenna selection would be ineffective anyway.
However, for moderately frequency-selective channels,
antenna selection still gives significant benefits. A pre-
coding scheme for code division multiple access
(CDMA) that achieves such benefits is described in [64].

Channel Estimation Errors
We next investigate the influence of erroneous CSI on
a diversity system with transmit antenna selection
[65]. We assume that in a first stage, the complete
channel transfer matrix is estimated. Based on that
estimate, the antennas that are used for the actual data
transmission are selected, and the antenna weights are
determined. Erroneous CSI can manifest itself in dif-
ferent forms, depending on the configuration of the
training sequence and the channel statistics: 1) erro-
neous choice of the used antenna elements, 2) errors in
the transmit weights, and 3) errors in the receive
weights. Figure 7 shows the effect of those errors on
the capacity of a diversity system. The errors in the
transfer functions are assumed to have a complex
Gaussian distribution with certain SNRpilot,which is
the SNR during the transmission of the pilot tones. We
found that for an SNRpilot of 10 dB results in a still tol-
erable loss of capacity (less than 5%). However, below
that level, the capacity starts to decrease significantly,

as depicted in Figure 7.
Another type of channel estima-

tion error can be caused by a limit-
ed feedback bit rate (for feeding
back CSI from the receiver to the
transmitter in a frequency-duplex
system). This problem is especially
important for the W-CDMA stan-
dard, where the number of feed-
back bits is limited to two per slot.
ßAttempts to send the weight
information for many transmit
antennas, thus, have to be in a very
coarse quantization, or have to be
sent over many slots, so that—in a
time-variant environment—the
feedback information might be
outdated by the time it arrives at
the transmitter. Thus, the attempt
of getting full CSI to the transmit-
ter carries a penalty of its own. The
use of hybrid antenna selection
might give better results in this
case, since it reduces the number of
transmit antennas for which chan-
nel information has to be fed back.

An algorithm for optimizing the “effective” SNR is
discussed in [66].

Hardware Aspects
Finally, we consider the effects of the hardware on the per-
formance. In all the previous sections, we had assumed
“ideal” RF switches with the following properties: 

• They do not suffer any attenuation or cause addi-
tional noise in the receiver.

• They are capable of switching instantaneously.
• They have the same transfer function irrespective

of the output and input port.
Obviously, those conditions cannot be completely

fulfilled in practice:
• The attenuation of typical switches varies

between a few tenths of a decibel and several deci-
bels, depending on the size of the switch, the
required throughput power (which makes TX
switches more difficult to build than RX switches),
and the switching speed. In the TX, the attenua-
tion of the switch must be compensated by using
a power amplifier with higher output power. At
the receiver, the attenuation of the switch plays a
minor role if the switch is placed after the low-
noise receiver amplifier (LNA). However, that
implies that Nr instead of Lr receive amplifiers are
required, eliminating a considerable part of the
hardware savings of antenna selection systems.

• Switching times are usually only a minor issue.
The switch has to be able to switch between the
training sequence and the actual transmission of

Figure 7. Impact of errors in the estimation of transfer function matrix H. Cdf of
the capacity for 1) ideal CSI at TX and RX (solid), 2) imperfect antenna selection,
but perfect antenna weights (dashed), 3) imperfect antenna section as well as
weights at TX only (dotted), and 4) imperfect antenna weights at TX and RX
(dash-dotted). SNRpilot = 5 dB. From [65].
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the data, without decreasing the spectral efficien-
cy significantly. In other words, as long as the
switching time is significantly smaller than the
duration of the training sequence, it does not have
a detrimental effect.

• The transfer function has to be the same from each
input-port to each output-port, because otherwise
the transfer function of the switch distorts the
equivalent baseband channel transfer function
that forms the basis of all the algorithms. It cannot
be considered part of the training because it is not
assured that the switch uses the same input-out-
put path during the training as it does during the
actual data transmission. An upper bound for the
admissible switching errors is the error due to
imperfect channel estimation.

Summary and Conclusions
This article presented an overview of MIMO systems
with antenna selection. Either the transmitter, the
receiver, or both use only the signals from a subset of
the available antennas. This allows considerable reduc-
tions in the hardware expense. The most important
conclusions are

• Antenna selection retains the diversity degree,
compared to the full-complexity system, for both
linear diversity systems with complete channel
knowledge and space-time coded systems.
However, there is a penalty in terms of the aver-
age SNR.

• For spatial multiplexing systems (BLAST), anten-
na selection at the receiver only gives a capacity
comparable to the full-complexity system as long
as Lr ≥ Nt (and similarly for the selection at the
transmitter).

• Optimum selection algorithms have a complexity(N
L
)
. However, fast selection algorithms do exist

that have much lower (polynomial with N) com-
plexity, and perform almost as well as full-com-
plexity systems.

• For low SNR, spatial multiplexing does not neces-
sarily maximize capacity when antenna selection
is present. The same is true for strong interference.

• For low-rank channels, transmit antenna selection
can increase the capacity compared to a full-complex-
ity system without channel knowledge at the TX.

• Channel estimation errors do not decrease the
capacity significantly if the SNR of the pilot tones
is comparable to, or larger than, the SNR during
the actual data transmission.

• Frequency selectivity reduces the effectiveness of
antenna selection.

• Switches with low attenuation are required both
for transmitter and receiver.

• Antenna selection is an extremely attractive
scheme for reducing the hardware complexity in
MIMO systems.
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