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Abstract—Establishing bounds on the accuracy achievable by
localization techniques represents a fundamental technical issue.
Bounds on localization accuracy have been derived for cases in
which the position of an agent is estimated on the basis of a set
of observations and, possibly, of some a priori information related
to them (e.g., information about anchor positions and properties of
the communication channel). In this paper, new bounds are derived
under the assumption that the localization system is map-aware,
i.e., it can benefit not only from the availability of observations, but
also from the a priori knowledge provided by the map of the envi-
ronment where it operates. Our results show that: a) map-aware
estimation accuracy can be related to some features of the map
(e.g., its shape and area) even though, in general, the relation is
complicated; b)maps are really useful in the presence of some com-
bination of low SNRs and specific geometrical features of the map
(e.g., the size of obstructions); c) in most cases, there is no need
of refined maps since additional details do not improve estimation
accuracy.

Index Terms—A priori information, Cramer–Rao bound, local-
ization, map, Weiss–Weinstein bound, Ziv–Zikai bound.

I. INTRODUCTION

R ECENTLY, localization systems have found widespread
application, since they allow us to develop a number of

new services in both outdoor and indoor environments [1], [2].
Conventional localization systems acquire positional informa-
tion from a set of observations; these are usually extracted from
noisy wireless signals propagating in harsh environments. Un-
avoidably, this limits the accuracy that can be achieved by such
systems.
Localization accuracy can certainly benefit from the avail-

ability of any form of a priori knowledge. In the technical
literature, the sources of prior knowledge commonly exploited
are represented by the positions of some specific nodes (called
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anchors) or by some characteristic of the communication
channel; for instance in [3]–[6] the impact of different factors
[like nonline-of-sight (NLOS), propagation and network syn-
chronization] on localization accuracy have been thoroughly
analyzed employing Cramer–Rao bounds (CRBs) and, when a
priori knowledge is available, Bayesian Cramer–Rao bounds
(BCRBs). In [7]–[10], multipath propagation in ultra wide band
(UWB) systems and its effects on time-of-arrival (TOA) esti-
mation have been investigated by means of CRBs or BCRBs.
In [11]–[13], CRBs and BCRBs for the analysis of cooperative
localization techniques have been derived.
In recent times, however, some attention has been paid to the

possibility of improving accuracy by endowing localization sys-
tems with map-awareness, i.e., with the knowledge of the map
of the environment in which they operate. Specific examples of
map-aware algorithms have been developed in [14]–[18], which
propose the adoption of nonlinear filtering techniques (namely,
particle filtering and extended Kalman filtering) to embed map-
based a priori information in navigation systems. These papers
evidence that this kind of information plays an important role in
improving localization and navigation accuracy; however, the
impact of map-awareness on the performance limits of localiza-
tion systems is still an open problem. In fact, as far as we know,
the technical literature dealing with the fundamental limits of lo-
calization accuracy [9], [10], [12], [13] has not considered this
issue yet.
In this paper, novel accuracy bounds for map-aware lo-

calization systems are developed and their applications to
specific environments are analyzed. Specifically, the BCRB,
the extended Zik–Zakai bound (EZZB) and the Weiss–We-
instein bound (WWB) for the aforementioned systems are
derived. These bounds, which provide several novel insights
into map-aware localization, have the following features.
1) They are characterized by different tightness/analytical
complexity.

2) They can be evaluated for any map geometry and, in the
cases of the BCRB and the EZZB, admit a closed form for
rectangular maps.

3) They allow us to a) identify map features (e.g., shape, area,
etc.) influencing localization accuracy and b) quantify such
an influence.

Then, such bounds are evaluated and compared for simple rep-
resentative environments. Our results allow us to assess the im-
portance of map-awareness in localization systems in the pres-
ence of noisy observations. In particular, they evidence that
1) maps should be expected to play a significant role at low
SNRs and in the presence of obstructions;

0018-9448/$31.00 © 2013 IEEE



5024 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

2) in some cases simplified map models can be adopted for
localization purposes, since map details have a negligible
impact on estimation accuracy.

The paper is organized as follows. In Section II, our reference
scenario is illustrated and the map model is defined. Perfor-
mance bounds for map-aware localization are derived and eval-
uated in specific scenarios in Sections III and IV, respectively.
Finally, some conclusions are offered in Section V.
Notations: Matrices are denoted by upper-case bold letters,

vectors by lower-case bold letters, and scalar quantities by italic
letters. The notation denotes expectation with respect to
the random vector ; denotes the trace of a square ma-
trix; denotes a square matrix with the arguments on its
main diagonal and zeros elsewhere; is the element on the
th row and th column of its argument. denotes the
identity matrix; means that the matrix is posi-
tive semidefinite. The probability density function (pdf) of the
random vector evaluated at the point is denoted as ,
whereas denotes the pdf of a Gaussian random
vector having mean and covariance matrix , evaluated at
the point . denotes the so-called indicator function for
the set (it is equal to 1 when and zero otherwise).

II. REFERENCE SCENARIO AND MAP MODELING

In the following, we focus on the problem of localizing a
single device, called agent, in a 2-D environment, i.e., of esti-
mating its position , in the presence of the following
information: a) a map representing the a priori knowledge about
the environment in which the localization system operates; b) an
observation vector related to the true position of the agent.

A. Map Modeling

In a Bayesian framework, the map of a given environment
can be modeled for localization purposes as a pdf of the
random variable , representing the agent position. Such a pdf
is characterized by a 2-D support having a finite size and
consisting of the set of points in the environment not occupied
by obstructions (e.g., walls, buildings, etc.). In the absence of
other prior knowledge, a natural choice for is a simple
uniform model, i.e.,

elsewhere
(1)

where denotes the area of . This model is referred to as
uniform map in the following and is preferable to other, more
detailed, prior models since it can be adopted when only basic
knowledge of the environment is available1 (e.g., the floor plan
of a building in indoor environments or satellite photos in out-
door environments). An alternative statistical model for maps,
better suited to mathematical analysis in the BCRB case, is a
“smoothed” version of (1); this is obtained modifying the uni-
form pdf in a narrow area around the edges of in order to
introduce a smooth transition to zero along the boundaries of its

1More detailed prior modeling requires additional information both for out-
door and indoor environments (e.g., the end use of rooms, the authorization
levels to access them, furniture disposition, etc.). Such information are often
time-variant (e.g., the furniture may be moved), agent-specific (e.g., authoriza-
tion levels and human habits may vary) and difficult to acquire. On the contrary,
uniform maps only require the knowledge of building maps.

support. Note that the adoption of a smoothed uniform model
leads to analytical results similar to those found with the uni-
form model if the transition region is small with respect to the
size of .
As it will become clearer in the following, for a generic map,

a detailed description of the structure of its support should be
provided to ease the formulation of the accuracy bounds refer-
ring to the map itself.
To begin, let us define, for each , the sets

and repre-
senting the intersection between and an horizontal and
vertical line identified by the abscissa and ordinate ,
respectively. Then, let
• and denote the number of connected com-
ponents of and , respectively;

• and denote the set of the odd values
and , re-

spectively;
• and , with and ,
denote the length of the connected components of
and , respectively;

• and denote the set of the even values
and ,

respectively.
• and , with and ,
denote the length of the connected components of
and , respectively [note that and rep-
resent the complementary sets of and with
respect to ]; in other words, they denote the horizontal
and vertical size of map obstructions, respectively;

• and denote the projection of on the and axes,
respectively;

The graphical meaning of these parameters for a specific uni-
form map is exemplified by Fig. 1.

B. Observation Modeling

In the following, we assume that the localization system is
able to acquire a set of noisy observations, collected in a vector
and related to the agent position according to a specific sta-
tistical model. Note that, on the one hand, the results illustrated
in Section III-A hold for a general statistical model relating to
; on the other hand, in Sections III-B and III-C, it is assumed
that

(2)

for mathematical convenience, where and
(i.e., is affected by uncorrelated noise). It

is important to point out that
1) The model (2) is purposely abstract and does not explic-
itly refer to a specific localization technique [e.g., TOA
or received signal strength (RSS)] or to particular propa-
gation conditions. Generally speaking, it is suitable to de-
scribe the position estimate generated by a map-unaware
and unbiased localization algorithm; in addition, it leads to
useful bounds which unveil the impact of map modeling
(instead of that of observation modeling) on estimation
performance; readers interested in an in-depth analysis on
the impact of observation modeling can refer to [3]–[10].
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Fig. 1. Support region of a nonconvex uniform map (the notation introduced in Section II-A has been adopted). Note that (gray region)
represents the area where the agent has nonzero probability to lie, so that everything else has to be considered as an “obstruction” [see (1)].

2) In principle, the bounds derived in this paper can be ex-
tended to the case of correlated noise, accounting for the
presence of an off-diagonal term in . How-
ever, the presence of noise correlation is neglected in the
following derivations since: a) the magnitude of in a
real-world system depends on several parameters (the type
of measurements processed by the system, the multilat-
eration or angulation technique employed, the properties
of the propagation channel, etc.) and cannot be easily as-
sessed; b) our research work evidenced that the presence
of noise correlation does not provide significant additional
insights on the impact of map-awareness on performance
bounds.

III. PERFORMANCE BOUNDS FOR MAP-AWARE
POSITION ESTIMATORS

In this section, various bounds about the accuracy of map-
aware position estimation are derived and their implications are
analyzed.

A. Bayesian Cramer–Rao Bounds

Given an estimator of based on the observation vector
, the BCRB establishes that the Bayesian mean square error
(BMSE) matrix

satisfies [19], [20], where is the Bayesian
Fisher information matrix (BFIM) associated with the statistical

models employed by . This result entails that, for 2-D lo-
calization

(3)

where , ,
, and . It is not difficult

to show that the BFIM can be put in the form (e.g., see [19,
p. 183, (75)])

(4)

where

(5)

and

(6)

represent the contributions originating from the observation
vector (i.e., the so-called conditional information) and that due
to a priori information, respectively. The last decomposition
allows us to analyze the two aforementioned sources of infor-
mation in a separate fashion. Therefore, in the following, we
mainly focus on the evaluation of the matrix (6), since this
term unveils the contribution of map information in the estima-
tion of agent position. As already mentioned in Section II-A a
smoothed uniform map model is adopted in the derivation of
(analytical details are provided in Appendix A) so that its
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pdf , unlike its (discontinuous) uniform counterpart (1),
satisfies the regularity condition [20]

(7)

required for the evaluation of the Bayesian Fisher information.
Moreover, it is assumed that
1) the smoothing of is described by a smoothing func-
tion , which is required to be a continuous and differ-
entiable pdf for which the a priori Fisher information (FI)

can be evaluated;

2) the smoothing of along the axis is independent from
that along the axis.

In Appendix A it is proved that, given the assumptions illus-
trated earlier, (6) can be approximated as

(8)
Note that such an expression is independent from the observa-
tion model and depends from the smoothing function through its
FI only2. Given , the computation of the BCRB requires
the knowledge of (5) [see (4)]; for its evaluation, instead
of considering a specific observation model, we just assume that
the cross-information about and is negligible, so that such a
matrix can be put in the form3

(9)

Then, the BCRB associated with the pdf can be put in the
form [see (8), (9), and (4)]

(10)

It can be shown that the last two expressions are exact, and can
be put in a closed form (not involving any integral), if is the
union of a set of disjoint rectangles (all having parallel sides).
From (8) and (10), it can be inferred that
1) Map-aware estimators should be expected to be always
more accurate than their map-unaware counterparts; in fact
(8) is positive definite, so that the trace of the matrix

(10) (which bounds the accuracy of map-aware estimators)
is smaller than the trace of

2In Section III-B, the value to be assigned to is derived for the case of
rectangular maps.
3The following expression becomes if the specific

observation model (2) is adopted; this result will be exploited later for compar-
ison with other bounds derived for the model (2).

[see (9)] which represents the CRB in the considered sce-
nario (and bounds the accuracy of map-unaware estima-
tors). Note that this is a well-known result (the contribution
of a priori information is positive and lowers the BCRB),
but may be concealed by the complex analytical form of
(10).

2) The BCRB (10) exhibits a complicated dependence on
the map properties and, in particular, a complex nonlinear
dependence on the map area ; in fact, this parameter
can be related to the functions and ap-
pearing in the right-hand side (RHS) of (10) as

However, the following asymptotic result suggests that the
BCRB is expected to increase (and thus the accuracy of
map-aware estimation to worsen) as gets larger: if

the BCRB tends to the CRB (since the map sup-
port and the contribution coming from prior in-
formation vanishes4) which always takes on a bigger value
(see point 1).

3) Only the smallest elements in the set
significantly contribute to

the sum

appearing in (8) and (10) and, consequently, may
appreciably influence estimation accuracy; in the limit,
if for some and ( and
), then the information about coordinate becomes
infinite because the agent is constrained to lie, for those
values of and ( and ), in a single point of the map
support.

4) Thematrices (8) and (10) can be easily put in a closed
form when and are step functions (i.e.,
the map is made by union of rectangles).

Further insights can be obtained taking a specific class of maps
into consideration. In particular, here we focus on the case of
a map without obstructions, i.e., characterized by a support
such that and , (note that convex
maps belong to this class); under these assumptions, it is easy
to show that (8) can be simplified as

(11)

From the RHS of the last expression, it can be easily inferred
that:
1) Even in this case the dependence of from is com-
plicated. However, analyzing (11), it is easy to note that if

(so that ) the elements of tend to
zero, so that the impact of prior information vanishes, as
already mentioned earlier.

2) The amount of information concerning the agent
position along the axis direction is pro-
portional to , where

4If the prior expressed by (1) becomes “improper” (see [21, Sec.
4.2]).
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; the last inte-
gral can be interpreted as the area of a “virtual map”
characterized by the same projection as the real
map, but whose width (height) at each point
is the reciprocal of the width (height) of the real map.

3) When prior information dominates over conditional infor-
mation, the map support minimizing the trace of the
BCRB under the constraint of a constant area has
a square shape. In fact, if is a rectangle whose sides
have lengths and , it is easy to show that

; then, if we set

, , where and denote two real posi-
tive parameters, the trace of the inverse of (11) can be put
in the form and is minimized for
(i.e., for ).

4) In (11) the only contribution coming from the smoothing
function is represented by the factor .

Further comments about the BCRB (10) will be provided in
Section IV, where this bound is computed for some specific
maps.
Finally, it is important to point out that: a) in localization

problems BCRB’s often provide useful insights [9], [10], [12],
but these bounds are usually loose for low SNR conditions [22],
[23], i.e., when a priori information (the map in this context)
plays a critical role due to the poor quality of observations; b)
the BCRB analysis requires the adoption of the smoothed uni-
form pdf model for prior information (see Section II-A).
These considerations motivate the search for other bounds

and, in particular, for the EZZB, which is usually tighter than
the BCRB at low SNRs [23]–[27] and does not require (7) to
hold [so that the uniform model (1) can be employed as it is];
this is further discussed in Section IV.

B. Zik–Zakai Bounds

Similarly to (3), the EZZB for 2-D localization can be ex-
pressed as

(12)

where (see Appendix B)

(13)

, , , repre-
sents the error probability referring to the likelihood ratio test in
a binary detection problem involving the hypotheses

and the observation ; finally, the integration domain is

The EZZB (12) and (13) deserves the following comments.
1) Its formulation is obtained from the standard formulation
(see [25, eq. (32)]) removing the so-called valley-filling
function and the maximization operator, as shown in
Appendix B; these modifications simplify the derivation
of the bound at the price of a small reduction in its tight-
ness.

2) It exhibits a complicated dependence on the observation
model, which comes into play in the evaluation of the prob-
ability .

3) It cannot be put in a form similar to (4), so that, generally
speaking, the contribution coming from conditional infor-
mation (i.e., observations) cannot be easily separated from
that associated with a priori information (map awareness
in this case).

As shown in Appendix B, for a uniformmap and the observation
model (2) the EZZB (13) can be put in the form (14) shown at
the bottom of the page, where

(15)

(16)

An accurate analysis of the EZZB (14) and a comparison with
the BCRB (10) lead to the following conclusions.
1) The EZZB (14) exhibits a similar dependence as the BCRB
(10) in terms of the quantities , . In fact,
if and/or increases, the trace of matrix
in (14) gets larger, since (15) is a monotonically in-

creasing function.

(14)
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2) In the same environment the EZZB (14) takes on larger
values than the BCRB (10) and results to be a bound tighter
to the performance of optimal estimators. This is due to
the fact that the terms appearing in the RHS of (14) give
the EZZB approximately the same behavior of the BCRB;
however, the EZZB also contains terms based on (16),
which is a positive valued function.

3) The EZZB (14), unlike the BCRB, is influenced by the
shape of map obstructions (through the function and
the , parameters).

4) The two terms of (14) depending on the function
(16) are influenced by the spatial extensions
and of the obstructions separating consec-
utive map segments (which are characterized by the
lengths and ,
respectively); in particular, the impact of obstructions is
significant when is greater than one
of .

5) The integrals in the RHS of (14) can be easily put in a
closed form when and are step func-
tions (i.e., the map is made by union of rectangles).

Similarly to the BCRB, further insights can be obtained consid-
ering the class of maps without obstructions. In this case, the
EZZB (14) simplifies as

(17)

It is also worth mentioning that, if the map support can be
expressed as the union of a set of disjoint rectangles (all having
parallel sides), the EZZB (17) can be simplified further, ob-
taining a closed-form bound.
The result (17) deserves the following comments.
1) The structure of its RHS is similar to that of the equivalent
BFIM (11). Despite the differences between the integrand
functions, our numerical results show that in this case both
the EZZB and the BCRB are tight and that the EZZB does
not provide additional hints on localization accuracy with
respect to the BCRB (see Section IV).

2) The EZZB predicts the correct variance of map-aware es-
timation when the SNR is very low whereas a specific as-
sumption about the value of is required to obtain the
same result in the BCRB case. For instance, let us consider
a uniform map whose support is a rectangle whose sides
have lengths and ; with model (2) and for
and (i.e., for a SNR approaching zero), the BMSE
of the MMSE estimator tends to .
The EZZB provides this exact result since the RHS of (17)
can be put in the closed form

(18)

and for a SNR approaching
zero5. This result can be compared with its BCRB coun-

5This proof requires developing a Taylor expansion of the function
around .

terpart; in this case, from (11) it can be inferred that
, so that should be

selected to match the correct variance.
3) The EZZB (17) confirms that map-aware estimators should
be expected to be more accurate than their map-unaware
counterparts, at least for maps without obstructions: for
instance, if a rectangular map of sides , is consid-
ered, then (18) is easily proved to be always smaller than

[because ] which is the
trivial EZZB6 for the observation model (2) when the map
is unavailable (i.e., when no prior information is available).
This derives from the fact that a priori information lowers
the EZZB (similarly to what occurs in the case of the CRB
and the BCRB); this is a well-known result, but may not
be evident in (17).

4) Similarly to the BCRB, the dependence on the map area is
complicated; however, it should be expected that the ele-
ments of get larger when increases as suggested by
the following asymptotic result: when the con-
tribution coming from a priori information vanishes and
the EZZB (18) tends to , i.e., to the map-un-
aware EZZB, which is larger (see point 3).

As already mentioned earlier, the EZZB allows us to understand
the role played by some map features, which do not have any
impact on the BCRB. However, our numerical results evidence
that, for complex maps and, in particular, at very low SNRs,
this bound turns out to be somewhat far from the performance
offered by aMMSE estimator. This has motivated the derivation
of the WWB [28], which can be tighter than the EZZB at very
low SNRs.

C. Wess–Weinstein Bounds

Similarly to the BCRB and the EZZB [see (3) and (12), re-
spectively], theWWB, for 2-D localization, can be expressed as

(19)

where [29]

(20)

and

are functions of the parameter; moreover

(21)

is a likelihood ratio and . Note that (20) can be
obtained from [29, eqs. (7) and (8)] setting ,

for the WWB optimization parameters7 and

6This result is obtained from (18) after proving that for
.

7These choices make the bound tighter, as pointed out in [28].



MONTORSI et al.: ON THE PERFORMANCE LIMITS OF MAP-AWARE LOCALIZATION 5029

, since we are interested in a bound on the vari-
ance (not on the covariance) of the estimates of .
As shown in Appendix C, for a uniform map and the observa-

tion model (2) the WWB (20) can be put in the form (22) shown
at the bottom of the page, where , denote the parameters
to be optimized to make the bound tighter,

(23)

and

(24)

are functions of the parameters , and of the geometrical
features of the map support [dual expressions hold for

and ]; finally

(25)

(26)

Note that the structure of (23) is similar to that of
some terms contained in the RHS of the EZZB (14); however,
in the WWB the noise variances appear in some exponential
functions (22) only.
Unfortunately, it is hard to infer from (22) any conclusion

about the dependence of the WWB on the features of a given
map; this is mainly due to the presence of the opera-
tors and to the discontinuous behavior of the functions
and . Despite this, the WWB may play an important role,
since, as shown in Section IV for specific maps, it is tighter than
the BCRB and the EZZB at low-SNRs.
In Section IV, the general bounds provided earlier are eval-

uated for specific maps, so that some additional insights about
the ultimate accuracy achieved by map-aware estimators can be
obtained.

IV. NUMERICAL RESULTS

The bounds illustrated in the previous section have been eval-
uated for the following three specific maps.
1) map #1: a one-dimensional (1-D) map whose support
consists of disjoint segments (denoted and
in the following) having the same length and separated
by meters.

2) map #2: the “L-shaped” 2-D map shown in Fig. 2 and fully
described by the set of geometrical pa-
rameters.

3) map #3: the 2-D map shown in Fig. 3; note that such a map
models the floor of a large building and is quite complex, so
that its geometrical parameters are not given and analytical
bounds are not evaluated for it; instead, some numerical
results generated by means of computer simulations will
be illustrated.

It is important to point out that maps #2 and #3 are examples
of 2-D rectangular uniform maps, i.e., each of them is char-
acterized by a support that can be represented as the union
of nonoverlapping rectangles, all having parallel sides; such
nonoverlapping rectangles form the so-called rectangular cov-
ering of the map support [30]–[32]. Note that any map char-
acterized by a support of arbitrary shape can be always approx-
imated, up to an arbitrary precision, by a rectangular map if a
proper covering, containing a sufficiently large number of rect-
angles, is selected. For this reason, maps #2 and #3 are relevant
and practical examples. Map #1 can be also deemed relevant
from a practical point of view since it can be thought of as a
transversal slice of a 2-D map (consisting, for instance, of two
road lanes or two rooms facing each other); in addition, such a
simple scenario allows us to acquire more insights than maps #2
and #3, as shown later.
In all cases the observation model (2) has been adopted (with

and in the 1-D and 2-D scenarios, re-
spectively) and the tightness of the bounds has been assessed
comparing them with the root-mean-square error (RMSE) per-
formance of optimal estimators evaluated by means of exten-
sive computer simulations8. In addition, in accordance with the
theoretical arguments of Section III-B [see the comments to
(17)], has been selected in the evaluation of all the
BCRB results illustrated in this section. Finally, in our simu-
lations realizations of the random parameter
have been generated according to a uniform distribution over
the map support ; then Gaussian noise samples (characterized

8The software developed to generate our numerical results is available at
in accordance with the

philosophy of reproducible research standard [33].

(22)
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Fig. 2. Support region of a “L-shaped” map (map #2).

by if not explicitly stated) have been added to generate
the noisy observations, according to (2).

A. Map #1

Bounds—The BCRB, the EZZB, and WWB for map #1 are
[see (10), (14), and (22), respectively]

(27)

(28)

and , respectively, where

(29)
is the SNR, ,

and . It is important to point out that
that no approximations have been adopted in the derivations of
the BCRB, the EZZB, and the WWB for the considered 1-D
scenario, so that (27)–(29) represent exact bounds (of course, a
smoothed uniform map has been assumed for the BCRB only).
Estimators—Map-aware localization can be accomplished

exploiting the MMSE estimator

(30)

where is a normalization
factor, or the maximum a posteriori (MAP) estimator

(31)

Fig. 3. Support region of a map modeling the floor of a big building (map
#3).

On the contrary, if the map is unknown, the (map-unaware)
maximum likelihood (ML) estimator can be used
(obviously, the resulting estimate has the same variance as
the observation noise). Note that the RMSE performance of
these estimators is influenced by the geometrical parameters
and and by the noise standard deviation .
Numerical results—Figs. 4 and 5 compare the square roots

of the BCRB, EZZB, and WWB bounds , , and
the RMSE of , , and versus (with
and fixed) and (with and fixed), respectively.
These results evidence that:
1) The BCRB is tight at high SNRs only; in such condi-
tions all the bounds and the RMSE of both map-aware and
map-unaware estimators tend to (see Fig. 4): conditional
knowledge dominates.

2) Unlike the BCRB, the EZZB and, in particular, the WWB
exhibit a dependence on and are much tighter (see
Fig. 5) to the performance of optimal estimators and, for
this reason, represent more useful tools for predicting
system accuracy.

3) The role played by map knowledge in estimation accuracy
becomes significant as decreases, i.e., as the quality of the
observations gets worse; indeed map knowledge prevents
the bounds and the RMSE of the map-aware estimators
from diverging (note that in Fig. 4 the map-unaware RMSE
diverges for ).

4) The performance gap among the MMSE, the MAP, and
especially the ML estimators is significant for low SNRs
(see Fig. 4).

5) If the gap is small (i.e., if the segments and
are close), the RMSE of the considered estimators is low.
On the contrary, if increases, the RMSE gets larger,
reaches a maximum and then decreases, tending to
(see Fig. 5). This behavior can be explained as follows: if
the noise level is large with respect to , the estimate of
the agent position may belong to the wrong segment, thus
resulting in a large error. However, a further increase of
entails a reduction of the RMSE, since, for a large spacing
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Fig. 4. RMSE versus the SNR for the MMSE (30), MAP (31), and ML es-
timators. Map #1, and are assumed. The BCRB (27),
EZZB (28), and WWB (29) are shown for comparison.

Fig. 5. RMSE versus for the MMSE (30), MAP (31), and ML estimators.
Map #1, , and are assumed. The BCRB (27), EZZB (28),
and WWB (29) are shown for comparison.

between and , it is unlikely that the wrong segment
is selected in map-aware estimation.

Further insights are provided by Fig. 6, which shows the
RMSE versus and for the MMSE estimator (note that
the MMSE data shown in Fig. 5 can be extracted from Fig. 6
setting ). In fact, the numerical results shown in this
figure evidence that:
1) For , the RMSE decreases only mildly as
gets larger and the main geometric feature of the map af-
fecting estimation accuracy is the area of ; in this case
a map-aware estimator still provides an advantage over
map-unaware counterparts (the maximum RMSE for the
first estimator is 2.6 m, as shown in Fig. 6, and is smaller
than , which represents the RMSE for the ML es-
timator, as shown in Fig. 5).

Fig. 6. RMSE versus and for the MMSE estimator (30). Map #1 and
are assumed. The data has been smoothed to remove simulation noise

and improve readability.

2) For the RMSE reaches its maximum for
; for this reason, any combination of the geometric

parameters and noise level satisfying such equality should
be avoided.

Based on the numerical results shown in Fig. 6, we can draw
some observations about an indoor localization system oper-
ating in two adjacent rooms, each having width and
separated by a wall having thickness , and
processing noisy observations characterized by
(realistic value for RSS systems, see [34]–[36]). From Fig. 6
we can infer that, even if , since
is appreciably smaller than , the advantage in terms of
RMSE provided by a map modeling wall obstructions is small
with respect to that offered by a map modeling the environment
as a single connected room having width .
In fact, in Fig. 6, if the presence of the wall is accounted for,
the map-aware estimator performance is associated with the
point , whereas, if it is not, with the point

. Unless the room size is very
small (i.e., ) the two “operating points” will
be very close (due to the small value of ) and the
resulting RMSE values will be similar so that, in this case, a
map modeling wall obstructions is not very useful. Note also
that, if the quality of observations improves substantially (i.e.,

), map information plays a less significant role than
the conditional information provided by such observations, so
that a detailed a priori map modeling walls is not useful in
this case, too. On the contrary, maps may play an important
role in localization in outdoor environments, where the region
characterized by and in the
plane is easier to reach, since noisy observations and large
obstructions should be expected; for this reason, in this case
the presence of the obstructions in map modeling should not be
neglected.
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B. Map #2

Bounds— Let us now focus on map #2. The BCRB and the
EZZB in this case are [see (10) and (14), respectively]

(32)

(33)

respectively, where . The WWB derived from (22)
is shown in (34) at the bottom of the page; in (34) the
and functions have the expressions

respectively [dual expressions hold for and
]. Note that and ( and ) play a sym-

metric role in (32) and (33) and (34); this suggests that a
change in the geometrical features improving will reduce
and vice versa, when the overall area of the map is kept

constant.
Estimators—Map-aware localization can be accomplished

exploiting the MMSE estimator

(35)
where . On the contrary, the (map-
unaware) ML estimate is given by .
Numerical results — Fig. 7 shows the square roots of the

BCRB components , , its trace and the
RMSE of the estimators , , , and

[the EZZB (33) and WWB (34) are not shown to ease
the reading]; , , and have been
assumed in this case. In addition, when increasing , is
reduced according to the law

Fig. 7. RMSE versus for the MMSE estimator (35). Map #2 (Fig. 2),
, and are assumed. The BCRB components , ,

[see (32)] and the RMSE for the ML estimator are also shown for
comparison.

so that the equality always holds. From these
results, it is inferred that:
1) As already noted for map #1, map-unaware estimation,
which is unaffected by a change in the geometrical features
of the map, provides a worse accuracy than its map-aware
counterpart (the RMSE of ML estimator is larger
than that of its MMSE counterpart).

2) Increasing and decreasing changes the aspect ratio
of a portion of the map (see Fig. 2); this results in an appre-
ciable reduction in the RMSE of the parameter , but also
in a mild increase of the RMSE of the parameter . There-
fore, the improvement along one direction is compensated
for by the worsening in the orthogonal direction, so that no
significant advantage for the RMSE of is found.

The last result suggests that when the accuracy in the estimation
of a given element of is improved maintaining constant, a
reduction in the estimation accuracy of the other element should
be expected, so that that the overall accuracy does not change
much.

C. Map #3

Observation model—Finally, let us analyze the RMSE per-
formance of localization systems operating in the environment
described by map #3 in two cases: A) the map-aware estimator
knows map #3 exactly; B) the map-aware estimator assumes
that the localization environment is described by the bounding

(34)
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box of map #3. Note that the last case is significant from a prac-
tical point of view, since, in the absence of detailed information
about the floor of a building, the bounding box represents the
best a priori model which can be adopted to describe the floor
itself.
In addition, in this paragraph model (2) is compared against a

more specific counterpart, called “ranging observation model”
in the following; for such modeling we assume that 1) the obser-
vations are acquired by four anchors placed in the map corners;
2) the observation provided by the th anchor can be expressed
as9

(36)

with , 2, 3, 4, where represents Gaussian noise with
variance and represents the th anchor position.
The scenario considered in this example is helpful to assess

1) to what extent a detailed knowledge of the geometrical fea-
tures of a map can improve localization accuracy with respect to
the availability of a simplified map model (like a bounding box
model) and 2) if a localization system based on the Gaussian
model (2) can exhibit a similar behavior as that of a localization
system based on (36), at least in the considered cases.
Estimators—Given the model (36), the MAP estimator can

be expressed as

(37)

where and . If
the observation model (2) is adopted in place of (36), the MAP
estimator

(38)

is obtained, where .
Numerical results — Fig. 8 compares the RMSE perfor-

mance achieved by the MAP estimators (37) and (38) versus
in cases A and B. These results show the following comments.
1) Surprisingly, the selection of the map model (map #3 in
case A or its bounding box in case B) does not affect the
MMSE estimation performance, whatever the model for
the observations. This result can be motivated as follows.
For each value of , there is some portion of the map where
the combination of noise level and geometrical features
(see the analysis of map #1) entails a large RMSE and
where a detailed map (map #3) does not provide a sub-
stantial advantage over simpler maps (e.g., the bounding
box); since the Bayesian RMSE results from an average of
the agent position over the entire map, it is biased by such
portions of the map for each value of . Such an effect in-
fluences also any global Bayesian bound, like the BCRB,
the EZZB, and the WWB: their values result from an av-
erage over the entire parameter space (in this case ) and
can be strongly influenced by the parameter values (in this
case, the values of ) characterized by the largest errors
[37]. Note also that local bounds (e.g., CRB), which model
the parameters to be estimated as deterministic variables,
do not suffer from this problem, but cannot exploit a priori

9This model is commonly used in the study of localization systems exploiting
TOA and, with some slight changes, RSS.

Fig. 8. RMSE versus for the MAP estimators (37) and (38), using either
the Gaussian observation model [see (2)] or the ranging observation model [see
(36)]. The a priori map is map #3 (case A) or its bounding box (case B). The
RMSE of ML estimators is also shown for comparison.

information and represent performance limits for unbiased
estimators only [25]. In our case study, a detailed knowl-
edge of map #3 (case A) provides, in various subsets of ,
a substantial improvement with respect to the knowledge
of the bounding box (case B), but the effects of such sub-
sets are then “averaged out” when evaluating the Bayesian
RMSE, as shown in Fig. 8.

2) The adoption of the Gaussian observation model (2) entails
a worse accuracy than that provided by the ranging obser-
vation model (36). This can be related to the placement of
the anchors and to their number; in fact, range observa-
tions coming from anchors displaced with a constant an-
gular spacing allow us to average out the measurement er-
rors better than the positional observation of the Gaussian
model (2) when the same noise variance is assumed in
both models10. If the offset between the curves referring
to the Gaussian and the ranging model is neglected, our
results show that both curves exhibit the same behavior,
when is varied; this is an hint to the fact that the insights
obtained from the bounds derived for the model (2) may be
useful also in the analysis of systems employing different
observation models [like (36)].

Finally, comment 1 suggests that, when assessing the improve-
ment in localization accuracy coming from map awareness, the
evaluation of the overall RMSE does not provide sufficient in-
formation about the importance of a given map. In fact, if the
effects of different portions of the maps are analyzed, it is found
that some of them play a more relevant role than other ones; in
this perspective, the insights and the intuition acquired from the
results referring to map #1 are very useful, given that map #1
can be thought of as a transversal slice of a subset of any 2-D
map.

10It is important to note that using the same number of observations for both
models may generate misleading results. In fact, on the one hand the minimal
number of measurements usually considered for the ranging observation model
is 3 (this allows nonambiguous 2-D localization); our choice of four anchors
and four measurements is perhaps more realistic. On the other hand, for the
Gaussian observation model, two positional observations (one about and one
about ) are considered since 2-D localization is performed.
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V. CONCLUSION

In this paper, the impact of map awareness on localization
performance has been investigated from a theoretical perspec-
tive, evaluating different accuracy bounds. Such bounds pro-
vide some general indications about the role and importance of
this form of a priori information. Our study has evidenced that,
unluckily, the tighter is an accuracy bound, the more compli-
cated is its dependence on the geometric parameters of maps.
This has motivated the analysis of the developed bounds in spe-
cific environments; in particular, three different maps have been
considered and, for each of them, the accuracy bounds have
been evaluated and compared with the performance offered by
map-aware and map-unaware estimators. Our analytical and nu-
merical results have evidenced that: a) map-aware estimation
accuracy can be related to some features of the map (e.g., its
shape and area) even though, in general, the relation is compli-
cated; b) maps are really useful in the presence of some com-
bination of low SNRs and specific geometrical features of the
map (e.g., the size of obstructions); c) for some combinations
of SNRs and geometrical features, there is no need of refined
maps since knowledge of map details provides only a negligible
performance gain; d) in a given environment the EZZB and, in
particular, the WWB are usually much tighter than the BCRB;
e) in the cases of maps containingmany features, the importance
of map awareness is better captured by the analysis of subsets
of those map.
Future improvements include the development of map-aware

bounds for specific observation models; in particular models in-
cluding bias due to the NLOS propagation may unveil impor-
tant insights about map-aware localization systems operating in
NLOS conditions.
Finally, it is important to point out that all the bounds derived

in this paper can be also exploited for other estimation problems
(provided that the vector of random parameters to be estimated
is characterized by a uniform a priori pdf) and can be easily
generalized to the case of estimation of an -dimensional pa-
rameter vector, with .

APPENDIX A
DERIVATION OF THE BFIM AND BCRB

In this Appendix, the derivation of (8) and (11) is sketched.
To begin, we consider a real function having the following
properties:

P.1) it is continuous and differentiable;
P.2) ;
P.3) ;
P.4) ;
P.5) its support is the interval11 ;
P.6) .

These properties have the following implications: a) is a pdf
function (see P.1–P.3); b) an a priori FI can be computed for
it (the regularity condition P.4 ensures the FI existence) [20]; c)

can be used to model bounded statistical distributions (i.e.,
maps), eventually after some scaling and translation (see P.5,

11The measurement unit for the support of is the same as that adopted
for and (see Section II).

P.6). As far as the last point is concerned, it is worth mentioning
that

with , is still a pdf function and its FI is .
Any function sharing the properties P.1–P.6 represents a
“smoothing function”; specific examples of smoothing func-
tions can be found in [38].
Any smoothing function can be used to define the analyt-

ical model of a smoothed uniformmap. To show how this can be
done, we start considering a 1-D scenario first, where the agent
position to estimate is the scalar . The support of a 1-D
uniform map can be always represented as the union of dis-
joint segments spaced by segments where the map pdf

is equal to 0. Let the segments of the support be in-
dexed by the odd numbers of the set
and let denote the center (width) of the th segment,
with . Then the map pdf associated with this sce-
nario can be expressed as

(39)
where . The a priori FI associated with
is given by

(40)

Let us extend these results to 2-D maps. Exploiting some def-
initions given in Section II and assuming that the smoothing
along and that along are independent, the pdf for an arbi-
trary smoothed uniform 2-D map can be put in the form12

(41)

where and denote the center
and the length, respectively, of the th ( th) segment. Let us
now compute the elements of the BFIM associated with this
pdf [see (6)]. The analysis of (41) can be connected to that of
(39) exploiting the formula (iterated expectation)

(42)

12It can be easily proved that this pdf satisfies regularity condition
.
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and adopting the approximation

(43)

where . It is worth noting that in
(43) the smoothing along the coordinate is ignored. This is a
reasonable approximation whenever the smoothing only modi-
fies a narrow area of the edges of compared to the area of the
flat regions of (41); the selection of a proper smoothing function
ensures that such a condition holds (see Section II-A and [38]).
Thanks to (43), the evaluation of the inner expectation in (42)

is equivalent to that of the FI referring to a 1-D map which
consists of segments having widths
and centered around the points ; for this reason, from
(39)–(40) it is easily inferred that

(44)
Substituting the last result in the RHS of (42) produces

(45)

where is the pdf of only and it has been ig-
nored in the integral since the smoothing only affects a small
portion of the integration domain (see Section II). A similar ap-
proach can be adopted in the evaluation of (ignoring, in
this case, the smoothing along ); this leads to

(46)

Note also that the approximated results (45)–(46) become exact
if is a rectangle having its sides parallel to the reference axes,
since in this case the smoothing along is truly independent
from the smoothing along . For the same reason, the cross
terms and are exactly equal to zero for a rec-
tangle; however since 2-D maps usually exhibit a weak correla-
tion between the variables and , these terms can be neglected;
this leads to (8), from which (11) is easily obtained assuming
that and , .

APPENDIX B
DERIVATION OF THE EZZB

In this Appendix the EZZB (13) is derived following a proce-
dure conceptually similar to the one provided in [25, Sec. II-B].
We start from the identity (see [39, p. 24])

(47)

where . Following [25], the probability ap-
pearing in (47) can be put in the form

(48)

where denotes the pdf of . Let and
, where is some function of the integration variable

of (47). If the integration domain of (48) is constrained to be
a subset of the map support , such that and

, then, dividing and multiplying the RHS of
(48) by , produces the expression [25,
eqs. (22)–(30)]

(49)

is defined in Section III-B] which holds for
any satisfying the equality , where .
Note that (49) generalizes [25, eq. (30)] to the case where the
pdf of the parameter to estimate has a bounded support.
Here is selected so that . Then substituting
(49) in (47) produces (13), where the integration domains of
and have been merged in the set .
Like in the previous Appendix, let us evaluate now (13) for a

1-D uniform map whose support consists of the union
of disjoint segments. In the following, such segments are
indexed by the odd numbers of the set
and the lower (upper) limit of the segment is denoted

, where represents the
center (length) of the segment itself. Moreover, it is assumed,
without any loss of generality, that . In
this 1-D scenario (13) simplifies as

(50)

where ,

and represents the minimum error probability of
a binary detector which, on the basis of a noisy datum and a
likelihood ratio test, has to select one of the following two hy-
potheses and . Note that, for any

, we have that (with
), because of the uniformity of the consid-

ered map. If the Gaussian observation model (2) adopted to the
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1-D case is assumed, the average error probability of the afore-
mentioned detector is easily shown to be

(where denotes the standard deviation of the noise observation
model), which is independent of ; then, (50) simplifies as

(51)

where , and

can be shown to be 2-D domain consisting of the union of
triangles and parallelograms in the plane ,
as exemplified by Fig. 9, which refers to the case .
In particular, the contribution to the RHS of (51) from the th
triangle

can be shown to be , where ,
, the function is defined in (15) and

(see [38] for more details). As far as the parallelograms are
concerned, we retain only the contributions coming from

parallelograms

with (see Fig. 9); such
contributions are given by ,
where , , and
are defined in (16) for [it can be shown that

]. Note that the contributions
to (51) coming from the discarded parallelograms are always
positive since for . Then, substituting
the aforementioned contributions in (51) produces the lower
bound

(52)
for the EZZB. The approach developed for a 1-D uniform map
can be extended to a 2-D scenario keeping into account that a)
the term of (13) takes on a similar form as

of (50), b) the integral on can be decomposed in

Fig. 9. Representation of the set and of its subsets and
in the plane ( is assumed). Note that the con-

tribution from the “discarded” parallelogram is neglected in the evaluation of
both (24)–(23) and (51).

a couple of nested integrals, one over and the other one over
, and c) (52) can be exploited for the inner integral. Further
details can be found in [38].

APPENDIX C
DERIVATION OF THE WWB

In this Appendix, we first derive the WWB for a 2-D uni-
form map characterized by a support , assuming the observa-
tion model (2). Note that this derivation can be easily general-
ized to a -D scenario. To begin, we note that, since

[see (2)], the likelihood ratio (21) is
given by , . Then, it is
not difficult to prove that the expectation appearing in the nu-
merator of (20) is given by

(53)

where is a slice
of the integration domain involved in the evaluation
of the EZZB [38] and . The expectation appearing in
the denominator of (19) can be expressed as
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i.e., as the sum of three terms which are denoted , , and ,
respectively, in the following. It is important to note that

(54)
and

(55)

where

and the functions and are defined in (23)
and (24). Then, substituting (53)–(55) in (20) produces (22).
Finally, it is worth pointing out that (23) and

(24) can be explicitly related to the functions
, , , introduced in

Section II. To clarify this point, let us focus on
and which can be derived, for a given ordinate ,
analyzing the integration domain

If the variables and are defined, this domain
can be put in the form

which describes a slice of the plane of
Fig. 9. The contribution of the th triangle
to is given by

where
is defined in (25), is

defined in (26) and is the slice of the map support
at the ordinate . Similarly, the contribution from the
th parallelogram to is given by

. Therefore, the overall
contribution to can be expressed as

(56)

whereas that to as

(57)

Finally, integrating (56) and (57) produces (23) and (24),
respectively.
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