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Belief Condensation
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Abstract—Inertial navigation systems suffer from drift errors
that degrade their performance. Main current techniques mitigate
such errors by detecting stance phases under the specific context of
pedestrian walking with a foot-mounted inertial measurement unit
(IMU). Existing approaches achieve acceptable performances only
in simple circumstances, such as smooth movements and short pe-
riods of time. In addition, they lack a principled unifying method-
ology to exploit contextual information. In this paper, we estab-
lish a general framework for context-aided inertial navigation, and
present efficient algorithms for its implementation based on the
inference technique called belief condensation (BC). The perfor-
mance of the proposed techniques is evaluated against the state of
the art through an experimental case study. Our results show that
the proposed techniques can remarkably improve the navigation
accuracy while keeping moderate complexities.

Index Terms—Inertial navigation, belief condensation, contex-
tual information, context learning, pedestrian dead reckoning.

I. INTRODUCTION

N ETWORK NAVIGATION can enable critical applica-
tions including logistics, medical services, search and

rescue operations, automotive safety, and military systems
[1]–[5]. The performance of the global navigation satellite
systems (GNSS) in open areas boosted the development of a
wide range of location-based services [6] and currently there
is an increasing interest for high-accuracy navigation in harsh
propagation environments [7]–[14]. Techniques based on wire-
less networks can provide suitable performance under certain
circumstances but become inefficient in situations where it is
not desirable to rely on an infrastructure [15]–[18].
Inertial navigation is becoming an increasingly popular posi-

tioning paradigm, especially given the recent emergence of iner-
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tial measurement units (IMUs) based on micro-electro-mechan-
ical systems (MEMS). Inertial navigation systems determine the
position and orientation of a mobile agent by integrating mea-
surements from an IMU carried by the agent [19]–[31]. These
systems do not require any infrastructure other than the IMU
itself, which makes them a preferred option for navigation in
many scenarios, e.g., blue-force tracking, search and rescue op-
erations, and pedestrian guidance.
Inertial navigation systems collect measurements related to

positions and orientations. In particular, most IMUs obtain force
measurements and angular velocities from accelerometers and
gyroscopes. IMUmeasurements are used to estimate the agent’s
position by means of its variation in time. Such position es-
timation is commonly addressed from a Bayesian perspective
through filtering algorithms. These algorithms recursively es-
timate the current positional state from previous estimates and
current measurements [20]–[31].
The performance of inertial navigation systems degrades due

to the accumulation of positional errors in time, resulting in the
so-called positional drift [21]. Since the IMUmeasurements are
related to positions’ time derivatives, the positional error in-
evitably increases with time. Conventional techniques can only
offer acceptable performance for short time periods [19]–[24].
Even minuscule errors present in the measurements collected
by high-performance IMUs based on fiber-optic-gyros (FOG)
lead to growth in the position estimation error [32]. Therefore,
finding a solution to the drift problem is crucial to the develop-
ment of robust inertial navigation systems.
The drift problem can be mitigated by exploiting the agent’s

specific context. Most of existing approaches are limited to
the context in which the agent is a pedestrian and the IMU is
mounted on the foot. Under that context, small values of ac-
celeration and angular velocity imply stance phases of walking
(i.e., the foot is on the ground) and hence small values of
velocity (i.e., the IMU is motionless). Currently, the constraints
imposed by such a context are used by performing zero-velocity
updates (ZUPTs) when stationary stance phases are detected.
At each time step, this detection is accomplished either by
using a window of both past and future inertial measurements
[19]–[24] or by exploiting additional measurements obtained
from radar or RF sensors [25], [26]. More recent works
also exploit other contextual information besides pedestrian
foot-mounted IMU. For instance, the authors in [33] extend
the ZUPT methodology to more general contexts for agents
with other types of movements such as crawling, climbing,
or jumping, while the authors in [34] use road-maps and to-
pographic information to tune the agent’s dynamic model. In
summary, existing approaches incur additional complexities
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(supplementary detection stages or auxiliary hardware), and
exploit contextual information in an ad-hoc intuitive manner
lacking a general and principled framework. Such a framework
can result in navigation techniques that effectively utilize any
contextual information.
In this paper, we present a general framework and algorithms

for context-aided inertial navigation that exploit the available
sources of information in a principled manner. Specifically, the
main contributions of the paper are as follows.
• We establish a general framework for context-aided iner-
tial navigation, and propose a principled methodology to
incorporate general contextual information.

• We present a systematic approach to effectively exploit the
contextual information by modeling such information as a
potential function.

• We develop a recursive algorithm for context-aided inertial
navigation based on the inference technique called belief
condensation (BC) [35] that enables the implementation of
the proposed framework.

• We demonstrate the performance improvements of the pro-
posed methods in comparison to existing techniques via
experimentation in the case study of indoor pedestrian nav-
igation based on foot-mounted IMU.

The paper is organized as follows: Section II formulates the
problem of inertial navigation and defines the system models;
Section III describes the augmented graphicalmodel that enables
the incorporation of contextual information; Section IV presents
algorithms to efficiently implement the proposed navigation
framework via BC; Section V applies the general framework
for the case study where the context is pedestrian walking with
a foot-mounted IMU; Section VI assesses the performance of
the presented techniques via experimentation in two indoor
scenarios; finally, Section VII draws the conclusions.
Notations: denotes the sequence of random vectors

denotes the transpose of its argument;
denotes the identity matrix; denotes the set of quater-
nions; if , and denote the quaternion
multiplication and exponential, respectively, defined according
to Appendix A; denotes the probability density function
(pdf) or the probability mass function (pmf) of a continuous or
discrete random variable , respectively; finally,
indicates that the random vector follows a Gaussian distri-
bution with mean and covariance matrix , and
denotes the pdf of .

II. INERTIAL NAVIGATION

In this section, we formulate the problem of inertial naviga-
tion in a three-dimensional scenario from IMU measurements.
The corresponding graphical model is a hidden Markov model
(HMM) that enables optimal recursive Bayesian filtering
[36], [37].

A. Problem Formulation
We assume a scenario where an agent carries an IMU that
collects inertial measurements , at discrete time in
stants . From these measurements, the goal is to
estimate the agent’s positional states that include
its positions. The IMU provides measurements in its own

Fig. 1. HMM for states and measurements evolution. The relationship between
and , and the relationship between and are the only two kinds

of dependence.

body reference frame (moving) whereas the aim is to obtain
the positional states in the navigation reference frame (fixed).
Therefore, the positional state has to include the rotation from
the navigation frame to the body frame, referred in this paper
as orientation. The state also includes the first and second
derivatives of position to relate the positional state and the
measurements coming from the accelerometer. Similarly, it
includes the first derivative of rotation to relate the positional
state and the measurements coming from the gyroscope. In the
following, we detail the specific components of both states and
measurements.
The positional state of the agent at time is

, where
, , and denote position, velocity,

acceleration, orientation, and angular velocity, respectively,
all of them represented in the navigation reference frame.1
The vector includes biases of the mea-
surements collected by the accelerometers, , and the
gyroscopes, .
The measurements vector is , where

is the force measurement from the accelerometers,
and is the angular velocity measurement from the
gyroscopes.

B. Hidden Markov Model

With the defined states and measurements, it can be assumed
that given the current positional state, , the measurements
vector, , is independent of all previous and future states and
measurements [36]. Therefore, we can build an HMM deter-
mined by two kinds of dependence among the random variables:
the relationship between the positional state at time and the
positional state at time , i.e., , called dynamic
model; and the relationship between the measurements and the
positional state at each time, i.e., , called measure-
ments model (see Fig. 1) [36], [37].
This modeling as an HMM enables us to infer the positional

state at time , from the measurements up to time ,
through a recursive process known as Bayesian filtering. In this
process, the posterior distribution is recursively
determined from the previous posterior , and

1The orientation represents a rotation from the navigation frame to the
sensor body frame. Different orientation representations can be selected ranging
from minimal three-dimensional vectors to nine-element rotation matrices [28],
[38]. In this paper, we use the unit quaternion since it is the most concise and
efficient representation for real-time navigation systems [39], [40].
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the current measurements , by using the dynamic model,
, and the measurements model, , as

follows [35]–[37]

(1)

where .
When the dynamic and measurements models are linear and

Gaussian, recursion (1) can be implemented in closed-form via
the celebrated Kalman filter (KF). When the system models
are nonlinear or non-Gaussian, filtering techniques have to
resort to approximations that deal with the complexity vs. ac-
curacy trade-off, such as extended KFs (EKFs) [41], unscented
KFs (UKFs) [42], particle filters (PFs) [37], and BC filters
(BCFs) [35].

C. Dynamic and Measurements Models

In the following, we describe the statistical models that char-
acterize the HMM for inertial navigation.
1) Dynamic Model: The conditional pdf

models the dynamics of the positional state. Given the position,
velocity, and acceleration at time , and ,
the position, velocity, and acceleration at time , and
, can be modeled as

(2)

where and is the error term
commonly modeled as white Gaussian noise [36].
Given the orientation and angular velocity at time

and , the orientation and angular velocity at time and
, can be modeled as2

(3)

where [18], [30]. The terms and
can be assumed to be four- and three-dimensional white

Gaussian noise, respectively. Notice that this model is non-
linear. In Section VI, we use its linearized version shown in
Appendix B in accordance with the existing literature [30].
Given the biases at time , the biases at time ,

can be modeled as,

(4)

where the term is modeled as white Gaussian noise.
In summary, the dynamic model is Gaussian

with mean given by the right-hand sides of (2), (3) and (4), and
covariance given by the covariances corresponding to ,
for , respectively.

2In (3) we assume that the direction of is constant during the time in-
terval between two measurements [39]. This is a mild assumption since MEMS-
based IMUs provide measurements at frequencies around 100 Hz.

2) Measurement Model: The conditional pdf
models the relationship between the state and measurements
from accelerometers and gyroscopes.
The accelerometer integrated in the IMU provides force mea-

surements in the sensor body frame, [28]. However,
we want to estimate the acceleration in the navigation frame,
. The relationship between both vectors is given by3 [30]

(5)

where is the force in the sensor body frame,
is the gravity, and is the rotation matrix,

which represents the same rotation as the unit quaternion
and is given in Appendix A. The term is modeled as
white Gaussian noise, and is the bias introduced by
the sensor.
The gyroscope integrated in the IMU provides angular ve-

locity measurements, , related to the positional state
by,

(6)

where is modeled as white Gaussian noise and
is the bias introduced by the sensor.

In summary, the measurements model is Gaussian
with mean given by the right-hand sides of (5) and (6), and co-
variance given by the covariances and corresponding to

and , respectively.

III. CONTEXTUAL KNOWLEDGE

In this section, we augment the HMM described in the pre-
vious section to incorporate contextual knowledge.

A. Graphical Model for Context-Aided Inertial Navigation

Let be the context of the agent at time . Such a context
can take different values depending on the circumstances at time
. For instance, can specify the part of the body where the

agent carries the IMU (e.g., foot, waist, and chest), the motion
patterns (e.g., walking, running, and jumping), or the navigation
environment (e.g., corridor, ramp, and elevator).4 The context
can be provided by external inputs such as the agent itself, or es-
timated by identifiers such as image classification methods [43].
With the defined states, measurements, and contexts, it can

be assumed that given the current positional state, , the mea-
surements vector and context, and , are independent. No-
tice that the state vector includes acceleration, orientation, an-
gular velocity, and biases; therefore, the previous conditional
independence assumption only implies that the white Gaussian
noises in (5) and (6) are independent of the context. In addition,
analogously to the previous section, given the current positional

3We consider that the region of interest is small enough to assume a negligible
Earth’s rotation and constant gravity [40].

4For example, the context, , can take the value “the agent is a human
walking inside the Louvre with the IMU on his or her foot.”
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Fig. 2. Graphical model for measurements, states and context evolution. The
HMM shown in Fig. 1 is augmented to include contextual information.

state, current measurements and contexts can be assumed to be
independent of all previous and future states, measurements,
and contexts. These conditional independences allow us to rep-
resent the evolution in time of states, measurements, and con-
texts by the graphical model shown in Fig. 2. This augmented
graphical model enables us to include contextual information
while keeping a tree-structure that allows for optimal recursive
computation of posterior distributions [44].
The relationship between the context and the state at time
can be described by the potential function . For

each specific context, such a potential is a function of the state,
, and characterizes the odds of different state values for

that context. This potential function conveys “soft” knowledge
concerning the relationship among the state variables for each
context. For example, such a potential function can represent
the knowledge that very low acceleration and angular velocity
for a foot-mounted IMU makes more likely low velocity. In
the following, we present a systematic approach to model such
knowledge.

B. Context Modeling
For each context , the potential is a function of
. Notice that the context does not necessarily influence all the

variables in the state,5 i.e., , where
is a matrix projecting the components of into the relevant

components for the context . In the remaining of this section,
we drop the subindex for notational convenience.
By using Bayes’ rule, we have

(7)

Therefore, for each context, an estimate of the potential function
can be found from an estimate of the density corre-

sponding to the context-relevant state components .
When no relevant prior knowledge about the positional state
components is available, the distribution can be
assumed constant and an estimate of the potential function,

5For instance, only velocities, accelerations, and angular velocities are influ-
enced by the context of a pedestrian walking with a foot-mounted IMU.

, can be directly obtained from an estimate of the
density .6 When relevant prior knowledge about the
positional state components is available, the prior
accounts for this knowledge in (7), and an estimate of
can be obtained from the estimate of the density
divided by such prior knowledge.
Let with , a general density estimate

of can be represented as a mixture, i.e.,

(8)

where ,
and is a pdf parametrized by some . The mix-
ture form in (8) covers density estimates based on kernels and
mixtures of Gaussians [45]–[48]. The modeling as a mixture
also helps interpretation both in terms of components and mix-
ture weights. For example, in the case where the context corre-
sponds to a foot-mounted IMU, a simple model for the density

can be obtained as the sum of two components cor-
responding to the stance and swing phases of the foot in pedes-
trian movement. In addition, one component can model lateral
walking where a small weight indicates little likelihood of such
a type of walking.
As we describe in the following, the density estimate

can be obtained by an expert-based or by a
learning-based modeling of the context. In the former case,
the mixture components can be approximated based on the
logical constraints imposed by the context. In the latter case,
the mixture parameters can be estimated by density estimation
techniques [48] such as the Expectation-Maximization (EM)
algorithm [49]. In both cases, considering a Gaussian kernel
for the mixture components and unavailable prior knowledge
about the states, the estimated potential function is given by

(9)

where and are, respectively, the
mean vector and covariance matrix of the th component in the
mixture.
In the following section, we present a recursive algorithm

for context-aided inertial navigation based on BC and the aug-
mented HMM. In Section V, we obtain estimates of the poten-
tial function using both expert-based and learning-based
modeling for the context corresponding to a pedestrian walking
with a foot-mounted IMU.

IV. CONTEXT-AIDED INERTIAL NAVIGATION

The graphical model depicted in Fig. 2 allows for recursive
computation of posterior distributions, analogously to the HMM
of Section II. In this section, we describe a generalized frame-
work for Bayesian inference under such a graphical model and
provide an efficient implementation based on BC.

6Note that for Bayesian inference such a potential function just needs to be
known up to a proportionality constant.
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A. Bayesian Inference for Context-Aided Inertial Navigation
The inference process described in Section II.B can be gen-

eralized to incorporate contextual information as follows. The
graphical model for positional states, measurements, and con-
texts depicted in Fig. 2 accounts for the following factorization
of the corresponding probability distributions,

(10)

In addition, as described in Section III.A, contexts and measure-
ments can be assumed to be independent conditioned on the cur-
rent positional state. That is,

Therefore, the posterior distribution of the positional state
at time given measurements and contexts up to time

, can be obtained as

(11)

Algorithm 1 shows the pseudocode of the proposed Bayesian
inference for context-aided inertial navigation. In Algo-
rithm 1, we recursively obtain the th posterior distribution,

, from the th posterior together with
new measurements and context at time .

Algorithm 1: Bayesian Inference for Context-aided Inertial
Navigation.

1: INITIALIZATION:
2: Set equal to the prior distribution of .
3: RECURSIVE BAYESIAN INFERENCE:
4: for do
5: (i) FORWARD RECURSION:

6: (ii) NORMALIZATION:

7: return
8: end for

B. Efficient Implementation of Context-Aided Inertial
Navigation
The Bayesian inference for context-aided inertial navigation

described in Algorithm 1 is not directly implementable due to

the lack of closed-form expressions for (11). In addition, the
specific nature of contextual data together with low complexity
requirements for real-time implementation prevent the usage
of conventional approximation techniques. On the one hand,
Kalman-like approaches such as EKF [41] and UKF [42] would
require an explicit model relating contexts and states of the form

. Such an explicit model is hardly accessible due
to the qualitative nature of contexts, and it is not needed to obtain
the potential . On the other hand, Monte Carlo-based
approaches such as PF [37] would require complexities unaf-
fordable for real-time operation due to the high dimensionality
of the state [35], [50]. In particular, the state for context-aided
inertial navigation is 22-dimensional and the complexity of PF
increases exponentially with the state dimension; notice that PFs
already require a number of particles in the order of for
problems with less than 10 dimensions [35], [50].
BC techniques have been recently proposed [35] showing a

remarkable performance in terms of the complexity vs. accuracy
trade-off. In particular, these techniques do not suffer from the
limitations described above and can be readily used with the
models shown in Sections II and III while keeping moderate
complexities.
In the following, we first briefly describe the concept of BC in

the setting of context-aided inertial navigation and then present
the efficient implementation of Algorithm 1 based on BC.

C. Context-Aided Inertial Navigation via Belief Condensation
The recursion given by (11) can be viewed as amapping be-

tween probability distributions. Due to the lack of closed-form
solutions for (11), each implementable inference technique, in
turn, can be viewed as a mapping that approximates the exact
mapping under tractability constraints. The implementation
constraints require that inputs and outputs of such a mapping
belong to tractable families of distributions. Arguments analo-
gous to those given in [35] show that inference techniques that
optimally deal with the complexity vs. accuracy trade-off are
characterized as

(12)

where and are a chosen tractable family of distributions
and a discrepancy function, respectively.
Under the complexity constraints imposed by a real-time nav-

igation system, the tractability of Gaussian family favors its se-
lection as the family of distributions for the implementation of
BC. The following result together with Algorithm 2 show how
BC can be implemented for context-aided inertial navigation by
approximating the posterior distribution as a
Gaussian distribution for each time step .
Proposition 1: Let be an approximation of

, and

If is the family of Gaussian distributions and is the Kull-
back-Leibler (KL) divergence, then

(13)
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Algorithm 2: BC for Context-aided Inertial Navigation.

1: INITIALIZATION:
2: Set equal to the prior distribution of .

3:
4: RECURSIVE BAYESIAN INFERENCE:
5: for do
6: Belief Condensation of

7:
8: return
9: end for

where

(14)
and

(15)

Proof: The result is a consequence of the Corollary 1 in
[35] for .
The implementation of BC for context-aided inertial navi-

gation amounts to compute in each time step the four 22-di-
mensional integrals in stage 6 of Algorithm 2, i.e., (14) and
(15). These integrals can be numerically approximated through
Monte Carlo integration or by efficient quadrature rules that ex-
ploit the fact that they are integrals with respect to Gaussians
[51]. Notice, for example, that in stage
6 of Algorithm 2 has a simple closed-form expression using the
linearized version of the dynamic model since
is Gaussian.
The above BC-based implementation enables inertial navi-

gation under the graphical model augmented with contextual
information. Next section particularizes the general framework
presented and specifies the context modeling for the case study
of a pedestrian walking with a foot-mounted IMU.

V. CASE STUDY: PEDESTRIAN NAVIGATION WITH A
FOOT-MOUNTED IMU

In this section, we evaluate the proposed techniques through
the case study of pedestrian navigation based on foot-mounted
IMU inertial measurements. In this case study, the context rep-
resents the fact that the IMU is mounted on the pedestrian’s
foot and is constant for all time steps. This context is the most
studied in the literature and hence enables a proper assessment
of the methods presented in this paper. In comparison to existing
approaches [19]–[26], we show that the proposed techniques can
capture the contextual information and fully exploit the available
measurements leading to a more accurate pedestrian navigation.

A. Existing Approaches
The movement of the foot whilst walking is comprised of two

distinguished phases: stance phase (i.e., staying on the ground),
and swing phase (i.e., moving in the air), where the stance phase
is characterized by very low values of velocity, acceleration, and
angular velocity. Conventional approaches use this knowledge
to mitigate the drift in navigation [19]–[26].
Existing techniques mitigate velocity drifts by detecting

stance phases from measurements collected by both accelerom-
eters and gyroscopes [19]–[24]. For example, the procedure
shown in [22] imposes certain thresholds on the magnitude
and variance of the force and on the magnitude of the angular
velocity. Other schemes that incorporate additional hardware
detect stance phases from measurements provided by shoe-em-
bedded radar or RF sensors [16], [25], [26]. For example,
the procedure shown in [26] sets different thresholds on the
position and velocity relative to the ground.
When the foot is assumed to be in a stance phase, conven-

tional approaches utilize this knowledge to correct the estimated
velocity (the so-called ZUPT). This correction is accomplished
before position integration by resetting the current estimated ve-
locity to zero, taking into account that the foot is motionless
during the stance phase [19]–[24].
As described in previous sections, the proposed framework

enables a more principled treatment of the contextual informa-
tion by incorporating such information in the Bayesian infer-
ence process through the potential function that can
be approximated as

(16)

where the right-hand side does not show the dependence with
because in this section we only consider one context. In the fol-
lowing,wedescribe suchapotential function thatmodels the spe-
cific context of pedestrian navigation with a foot-mounted IMU.

B. Expert-Based Context Modeling
Using a similar expert knowledge as the one used by ZUPT-

based approaches, the potential function at a time instant
, can be approximated by a mixture with two compo-

nents corresponding to stance and swing phases. By selecting a
Gaussian kernel, the potential function for the positional state at
time for the specific context herein considered is

(17)
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Fig. 3. The phases of the foot whilst walking allow the recognition of velocity,
acceleration and angular velocity potential function characterizing stance and
swing phases. Such a function can be modeled by expert knowledge, assigning
a narrow component to the first and a wide component to the second. (a)
rad/s, (b) rad/s, (c) rad/s.

where and are the covariance
matrices for the Gaussian pdfs modeling the stance and swing
phases, respectively, and is the probability of oc-
currence of the first. The covariances satisfy so that
the component related to the stance phase imposes much higher
odds to low values of the variables.
In order to describe how this expert-based potential func-

tion establishes soft constraints onto the positional state, we
plot in Fig. 3 its behavior in a one-dimensional case. This
figure represents the variation of the potential function given
three specific values of angular velocity for . We
selected two diagonal covariances with standard deviation re-
garding velocity, acceleration and angular velocity of 0.05 m/s,
0.3 m/s and 0.2 rad/s, respectively, for the stance phase and
2.5 m/s, 7.5 m/s and 2 rad/s, respectively, for the swing
phase. When the acceleration and the angular velocity take
values close to zero, the potential of low velocities is sig-
nificantly larger than the potential of high velocities, i.e., the
narrower component in the mixture is dominant over the wider
component in the mixture. When the acceleration or the an-
gular velocity become higher, the potential of low velocities
is similar to the potential of high velocities, i.e., the wider
component in the mixture is dominant over the narrower com-
ponent in the mixture.
In the following, we describe a systematic methodology for

learning-based context modeling that can exploit more complex
relationships among the state variables and does not rely on ex-
pert knowledge about the context.

C. Learning-Based Context Modeling

The movement pattern of a bipedal walk is more complex
than a simple combination of stance and swing phases [52].
This is manifested in Fig. 4(a) that shows the module of ve-
locity, acceleration and angular velocity values estimated for
a 5-minutes’ walk with a foot-mounted IMU.7 Fig. 4(a) shows
that bipedal walk imposes clear constraints on velocities, ac-
celerations, and angular velocities, leading to a complex be-
havior of the values of these variables. In the following, we
detail the training phase to learn the model describing the con-
straints imposed by the context, that is, the potential function

.
Let be a set of positional states obtained in a

specific context , the distribution (and hence the
potential function ) can be learned from
those positional states through density estimation. In this paper,
we model the distribution as a mixture of Gaussians
and obtain its parameters by using the EM algorithm [53].
Fig. 4 compares the conventional 2-component (stance and
swing) clustering of state values and a more intricate 4-com-
ponents mixture approach. Fig. 4(a) shows the module of
estimated values of velocity, acceleration and angular velocity.
Fig. 4(b) illustrates the stance and swing clusters resulting
from the thresholds imposed by conventional approaches.
Fig. 4(c) depicts the proposed 4-component clustering based
on the EM algorithm. The last figure reflects that the proposed

7The estimation of such variables was carried out by using a conventional
inertial navigation technique based on EKF and ZUPT [21]–[24].
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approach is not only able to correctly model stance phase by
a single mixture component, but also obtains other 3 mixture
components that aids the navigation performance as we show
in the next section.8

VI. PERFORMANCE EVALUATION
In this section, we assess the performance of the naviga-

tion framework presented in this paper using the case study
described in Section V. In the following, we characterize the
setup for the experiments and present the performance results
in comparison with existing techniques.

A. Experimental Setup
The performance evaluation is based on measurements

obtained using the commercial XSens MTi IMU (based on
MEMS technology) working at the frequency of 100 Hz
( s). We obtained experimental data in two indoor
scenarios from different pedestrians subject to the selected
foot-mounted IMU context. Fig. 5 shows the map plans of
the two scenarios together with the respective trajectories
followed by the agents.
In the first scenario (see Fig. 5(a)), the agent walked slowly

with gentle movements completing a route of 320 meters in
approximately 7 minutes with an average speed of 0.8 m/s
and smooth turns. Along this route, the agent stopped and sat
down for approximately 25 seconds at the place marked as
“SEAT”.
In the second scenario (see Fig. 5(b)), the agent walked fast

with sudden movements completing a route of 435 meters in
approximately 7 minutes with an average speed of 1.1 m/s
and abrupt turns. Along this route, the agent stopped and
stood still between 5 and 10 seconds in the 5 places marked
as “STOP”.
Table I summarizes the values assigned to the covariances of

the dynamic and measurements models defined in Section II.C.
Dynamic-related values are roughly 50% of their maximum,
which is a common practice in tracking applications [36]. Mea-
surement-related values come from specification, which is com-
monly found in manufacturer’s certificate.
We used the learning-based context modeling described in

Section V.C. Specifically, the initialization of the EM algorithm
was obtained as the expert-based mixture shown in Section V.B,
and the samples used by the EM algorithm were the state es-
timates obtained by a conventional implementation based on
EKF and ZUPT. In addition, we tested the performance of the
proposed techniques by using 2-fold cross validation where we
used the first scenario for training and the second scenario for
testing, and vice-versa.

B. Results and Discussion
We use the center of the corridors as a proxy for the

actual trajectory due to the inherent difficulty of knowing
the exact ground-truth. Then, for each trajectory, we use two

8In Fig. 4(c), the cluster corresponding to the stance phase contains 36% of
observed states. This component has a mean vector close to zero and a covari-
ance matrix with standard deviation values of 0.03 m/s, 0.3 m/s and 0.15 rad/s
for velocity, acceleration and angular velocity components, respectively.

Fig. 4. The phases of the foot whilst walking allow the division of velocity,
acceleration and angular velocity values into clusters or components. A mix-
ture of such components can be obtained from previously observed states, en-
abling the approximation of the potential function representing the context in-
fluence. (a) Original data, (b) Conventional thershold-based clustering, (c) Pro-
posed EM-based clustering.
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Fig. 5. The proposed context modeling avoids the rapid growth of the error over time of conventional approaches, resulting in a very high (sub-meter) accuracy.
(a) Smooth movements, (b) Abrupt movements.

Fig. 6. The drift between the actual path and the position estimates is significantly smaller using the proposed techniques compared to conventional approaches. In
addition, increasing the complexity of context modeling (number of components in the mixture) results in enhanced performance in cases with abrupt movements.
(a) Smooth movements, (b) Abrupt movements.

performance metrics obtained from the estimated trajectory
and the trajectory formed by the center of the corridors:
1) the time-varying accumulated area between both trajectories
(“cumulative error area”), and 2) the instantaneous distance
between both trajectories (“error bar”). In the following we
denote
• -mix-context-BC (proposed): the positions are estimated
with the presented BC-based algorithm by fusing inertial
measurements and a -component mixture modeling of
the context.

• ZUPT-EKF (conventional): the positions are estimated
with an implementation of conventional pedestrian navi-
gation techniques based on ZUPT [18]–[26]. Specifically,
stance phases are detected from online inertial measure-
ments as in [18]–[24]; filtering is implemented using an
EKF as in [21]–[24]; the detection of stance phases is car-
ried out by thresholds imposed to a measurements window

as in [22]; and the zero velocity updates are performed as
in [18].

In order to ensure a fair comparison, both proposed and
conventional techniques use the dynamic and measurements
models shown in Section II.C.
The complexity of both techniques is similar since both use

Gaussian distributions to characterize posteriors. Specifically,
the BC-based method requires performing additional numerical
integration as described in Section IV.C while the ZUPT-based
method requires performing additional stance/swing phases de-
tection over a window of inertial measurements. For both tech-
niques, the processing time is on the order of tens of millisec-
onds, which allows for real-time implementation at the data ac-
quisition rate of 100 Hz.
Figs. 5 and 6 as well as Table II summarize the results of the

proposed and conventional approaches over the two mentioned
scenarios.
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TABLE I
EXPERIMENTAL VALUES FOR PERFORMANCE EVALUATION

TABLE II
QUARTILES AND MEAN OF ERROR BARS (METERS)

Fig. 5 displays the estimated paths with 4-mix-context-BC
and ZUPT-EKF implementations, together with the center of the
corridors used as performance benchmark. It reveals the flexi-
bility of the proposed techniques in adapting to different pedes-
trian navigation scenarios especially when compared to conven-
tional approaches, which have difficulty adapting to abrupt sit-
ting and turning actions.
Fig. 6 shows the cumulative error areas over time and the

time-slots where the agent stayed seated or still. It manifests the
higher drift of conventional approaches in comparison to the
proposed framework, and the suitability of additional mixture
components to tackle more complex scenarios.
Table II shows the quartile and mean values of the error bars

of the proposed techniques against the conventional approach.
It also reflects a 68% error reduction for the 2-, 3- and 4-
components mixtures under smooth conditions, and a 65%,
68% and 72% error reduction, respectively, under more com-
plex conditions.

VII. CONCLUSION
The paper established a general framework for context-aided

inertial navigation and presented efficient algorithms for its
implementation based on BC. The proposed framework pro-
vides a principled methodology to merge information from
inertial measurements and situational context through Bayesian
inference over an augmented HMM. In addition, the developed
techniques facilitate accurate learning-based context modeling
and efficient data fusion through BC. The experimental results
show that the presented algorithms can outperform existing
techniques while keeping a processing time in the order of
milliseconds. Moreover, the proposed theoretical framework
and algorithmic techniques can enable seamless integration
of contextual information in inertial navigation systems and
significantly improve localization accuracy and robustness.

APPENDIX A
OPERATIONS WITH QUATERNIONS

Let and
be two quaternions, and their
respective scalar parts, and and

their respective vector parts. Their product is
defined according to

where the dot and cross symbols, and , denote the dot and
cross product of vectors, respectively. The product of quater-
nions can likewise be written as a matrix product

or, equivalently,

where we have defined the left- and right-multiplication ma-
trices, and , respectively.
The exponential of a quaternion is defined

as

Given a unit quaternion representing
a rotation, the orthogonal matrix

corresponds to the same rotation.

APPENDIX B
LINEARIZED DYNAMIC MODEL

The nonlinear part of the dynamic model given
by (2), (3) and (4) is

(18)

where . Its linearization via first-order Taylor
expansion is

(19)
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where is the approximation of for
time step , and

(20)

is the Jacobian of in (18) evaluated in , with

(21)
and

(22)
where , the value for can be ob-
tained as the limit when , and the left- and right-mul-
tiplication matrices, and , are defined according to
Appendix A.
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