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Quantum entanglement shared by remote network nodes serves as a valuable resource for promising applica-
tions in distributed computing, cryptography, and sensing. However, distributing high-quality entanglement via
fiber-optic routes could be challenging due to the various decoherence mechanisms in fibers. In particular, one of
the primary polarization decoherence mechanisms in optical fibers is polarization mode dispersion (PMD), which
is the distortion of optical pulses by randomly varying birefringences. To mitigate the effect of decoherence in
entangled particles, quantum entanglement distillation (QED) algorithms have been proposed. One particular
class, the recurrence QED algorithms, stands out because it has relatively relaxed requirements both on the
size of the quantum circuits involved and on the initial quality of entanglement between particles. However,
because the number of required particles grows exponentially with the number of distillation rounds, an efficient
recurrence algorithm needs to converge quickly. We present a recurrence QED algorithm designed for photonic
qubit pairs affected by PMD-degraded channels. Our proposed algorithm achieves the optimal fidelity as well
as the optimal success probability (conditioned on the fact that optimal fidelity is achieved) in every round of
distillation. The attainment of the maximal fidelity improves the convergence speed of fidelity with respect to the
number of distillation rounds from linear to quadratic and, hence, significantly reduces the number of rounds.
Combined with the fact that the optimal success probability is achieved, the proposed algorithm provides an
efficient method to distribute entangled states with a high fidelity via optical fibers.
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I. INTRODUCTION

Entanglement shared among quantum network nodes is the
source of quantum advantage [1–5] for many applications,
including teleportation [6–8], dense coding [9–11], quan-
tum key distribution [12–14], and quantum information relay
[15–17]. In quantum networks with more than two nodes,
entanglement can also be employed to reduce the queuing
delay of quantum data [18] or achieve quantum broadcasting
[19]. For the task of distributing entanglement in quantum net-
works, the fiber-optic infrastructure is a natural candidate. In
this context, polarization-entangled photon pairs [20] are par-
ticularly useful because of the ease with which light polariza-
tion can be manipulated using standard instrumentation [21]
and the numerous sources of polarization-entangled photons
suitable for use with standard fibers [22]. For polarization-
entangled photons, the major decoherence mechanism is bire-
fringence [23–25]. The accumulation of randomly varying
birefringence in fibers leads to a phenomenon known as
polarization mode dispersion (PMD) [26].

To mitigate the effect of decoherence mechanisms on en-
tangled qubit pairs, quantum entanglement distillation (QED)
algorithms [27–30] have been proposed to generate qubit
pairs in the target entangled state using local operations and
classical communication (LOCC). Since high-quality entan-
glement is the keystone in many important applications of
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quantum computation and quantum information, QED has
become an essential building block for the development of
quantum networks [31,32].

In the literature, three types of QED algorithms have been
proposed, namely, asymptotic [33–35], code-based [36–38],
and recurrence [39–41] algorithms. Among the three types
of algorithms, the recurrence ones require local operations
on just one or two qubits and are robust against severe
decoherence. The recurrence algorithms operate on two qubit
pairs each time, improving the quality of entanglement in one
pair at the expense of the other pair, which is then discarded.
The algorithms keep repeating this operation to progressively
increase the fidelity of the kept qubit pairs with respect to
(w.r.t.) the target entangled state. These algorithms can mit-
igate the effect of strong decoherence by performing multiple
distillation rounds. For instance, the recurrence algorithm
proposed in [27] can distill partially decoherent qubit pairs
into maximally entangled qubit pairs as long as the initial
fidelity of the contaminated qubit pairs w.r.t. the target state is
greater than 0.5. To summarize, recurrence QED algorithms
are preferable in terms of both implementability and robust-
ness. Proof-of-principle experimental demonstrations of these
algorithms [42,43] single out their importance in the near-term
development of quantum networks.

Despite their advantages, recurrence QED algorithms do
have a drawback in terms of efficiency. The efficiency of QED
algorithms is measured in terms of yield, which is defined
as the ratio between the number of highly entangled output
qubit pairs and the number of input qubit pairs impaired by
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decoherence effects. Since at least half of the entangled qubit
pairs are discarded in each round of distillation, the efficiency
of the recurrence algorithms decreases exponentially with
the number of rounds. To reduce the required number of
distillation rounds, the LOCC adopted in the algorithms need
to be designed so that the fidelity of the kept qubit pairs
quickly approaches 1 w.r.t. the number of distillation rounds.
To achieve this objective, the quantum privacy amplification
(QPA) algorithm was proposed in [39] and was shown numer-
ically to require a smaller number of distillation rounds than
the algorithm in [27] for qubit pairs impaired by a quantum
depolarizing channel. However, the performance of the QPA
algorithm was not characterized analytically. In fact, a set of
initial states was found in [40] for which the QPA algorithm
was less efficient than the algorithm in [27]. In [40], the design
of distillation operations was formulated as an optimization
problem, which was inherently nonconvex, and consequently,
the optimal solution was not found. In [30], an algorithm
is designed to numerically upper bound the output fidelity
and successful probability of single-round distillation, but the
achievability of these bounds remains unknown. Therefore,
the issue of improving the efficiency of recurrence QED
algorithms remains an interesting challenge.

In this work, we develop an efficient recurrence QED algo-
rithm for entangled photons impaired by the PMD effect. We
envision that a key enabler for designing efficient recurrence
QED algorithms is to make them adaptive to the key param-
eters of PMD. Intuitively, compared to generic algorithms,
QED algorithms that adapt to channel-specific decoherence
effects will better mitigate such effects and hence distill more
efficiently. In fact, it has been observed that knowing the
channel benefits the performance of quantum error recovery
[44], and efficient channel-adaptive quantum error correction
schemes [45,46] have been designed. In the context of QED,
adaptive recurrence QED algorithm has been designed for
channels with two Kraus operators to improve the conver-
gence speed of fidelity w.r.t. the number of distillation rounds
[47]. This work optimizes the distillation operations to most
efficiently mitigate the effect of PMD while achieving a high
success probability.

The rest of this work is organized as follows. Section II
analyzes the PMD effect on photon pairs and formulates
the optimization problems for recurrence QED algorithms.
Section III characterizes the optimal values of these prob-
lems, i.e., the maximal output fidelity and the highest success
probability, and then designs a recurrence QED algorithm
that achieves the characterized optimal values. Section IV
provides several numerical tests, showing that by achieving
the optimal fidelity and success probability in each round
of distillation, the proposed algorithm provides an efficient
method to distribute entangled photons with a high fidelity
through quantum channels impaired by fiber birefringence.
Finally, Sec. V gives the conclusion.

Notation. a, a, and A represent scalar, vector, and matrices,
respectively. · and (·)∗ denote the phase and conjugate of a
complex number, respectively. (·)†, rank{·}, det{·}, and tr{·}
denote the Hermitian transpose, rank, determinant, and trace
of a matrix, respectively. tri, j{·} denotes the partial trace w.r.t.
the ith and jth qubits in the system. ∝ denotes the proportional
relationship. In denotes the n × n identity matrix, and i is the
unit imaginary number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

This section presents the system model and then formulates
the optimization problems for recurrence QED algorithms.

A. Effect of PMD on entangled photon pairs

Consider the quantum network illustrated in Fig. 1(a), in
which a photon source is connected to two network nodes, i.e.,
Alice and Bob, via PMD-degraded optical fibers. In the liter-
ature, the PMD effect is often modeled using the first-order
approximation [23,24], which characterizes the PMD effect
as splitting one incident pulse into two orthogonally polarized
components delayed relative to each other. As illustrated in
Fig. 1(b), the polarization states of these two components
are known as the principal states of polarization (PSP) basis
{|si〉, |s′

i〉, i ∈ {A, B}}, and the delay between the two com-
ponents is called the differential group delay (DGD) τA, τB.
Since typical time constants characterizing the decorrelation
of PMD in buried optical fibers are as long as days and
sometimes months [48], PMD evolution can be considered
adiabatic in the context of quantum communication protocols.
Therefore, it is reasonable to assume that the parameters of the
PMD effect, particularly the PSP basis {|sA〉, |s′

A〉, |sB〉, |s′
B〉},

can be measured by the network nodes.
Due to the effect of PMD, the density matrix Ξ of the

photon pair after passing through fibers is given by (1). This
density matrix is written in the ordered basis {|sAsB〉, |s′

AsB〉,
|sAs′

B〉, |s′
As′

B〉}. Please refer to Appendix A for the detailed
derivation and the definition of the parameters in (1), i.e., η1,
η2, α, and the function R(·, ·). Denote the element in the pth
row and qth column of Ξ as ξpq.

As illustrated in Fig. 1(b) and (A5), with generic PSP, the
PMD effect in the two arms leads to four possible coincident
arrival times for the two photons, i.e., slow-slow (|sAsB〉),
fast-slow (|s′

AsB〉), slow-fast (|sAs′
B〉), and fast-fast (|s′

As′
B〉).

This results in a relatively complicated density matrix. As
illustrated in Fig. 1(c), to simplify the density matrix, one
could align the PSP basis with the photon polarization basis,
so that there are only two possible coincident arrival times,
i.e., slow-slow and fast-fast. The physical realization of this
operation requires a measurement of the PSP for a given fiber
and the ability

Ξ = 1

2

⎡
⎢⎢⎢⎣

|η1|2 −η1η2e−iαR∗(τA, 0) η1η
∗
2R∗(0, τB) η2

1e−iαR∗(τA, τB)

−η∗
1η

∗
2eiαR(τA, 0) |η2|2 −(η∗

2 )2eiαR∗(−τA, τB) −η1η
∗
2R∗(0, τB)

η∗
1η2R(0, τB) −(η2)2e−iαR(−τA, τB) |η2|2 η1η2e−iαR∗(τA, 0)

(η∗
1 )2eiαR(τA, τB) −η∗

1η2R(0, τB) η∗
1η

∗
2eiαR(τA, 0) |η1|2

⎤
⎥⎥⎥⎦ (1)
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FIG. 1. System model. The overall effect of PMD resembles that of pure birefringence in the sense that it causes an incident pulse to split
into two orthogonally polarized components delayed relative to each other [26]. The polarization states of these two components are known
as the PSP and the delay between them is called the DGD. Appendix B shows that even with generic PSP, a maximally entangled polarization
state prepared by the source can be viewed as if the polarization basis of one of the photons is already aligned with the PSP basis of the channel.
Hence, in this figure, the polarization basis of photon B is always aligned with the PSP basis of the channel.

to perform local rotation on the photons before they pass
through the fiber. As Appendix B shows, local rotation on one
of the photons is sufficient to achieve the alignment of the
PSP basis with the photon polarization basis. Existing studies
suggest that realignment of these states would be rare, as the
PSP in installed optical fibers can remain unchanged for as
long as months [48]. In fact, the operation of aligning PSP has
also been adopted in the algorithm design for PMD compen-
sation [24] to exploit the advantage of the decoherence-free
subspace [23].

When the PSP basis is aligned with the polarization basis,
we get η1 = 1 and η2 = 0. Hence, the density matrix, (1), is
simplified to a matrix with four nonzero elements, which are
given by

ξ11 = ξ44 = 1
2 , ξ41 = ξ ∗

14 = 1
2 eiαR(τA, τB) ,

which can be rewritten as

Ξ = 1
2

(|sAsB〉〈sAsB| + e−iαR∗(τA, τB)|sAsB〉〈s′
As′

B|
+ eiαR(τA, τB)|s′

As′
B〉〈sAsB| + |s′

As′
B〉〈s′

As′
B|) . (2)

From (2), it can be seen that when the PSP and polarization
basis are aligned, the PMD effect is equivalent to a composi-
tion of phase-shift and phase-damping channels.

B. Problem formulation

The network nodes Alice and Bob adopt a recurrence
QED algorithm to mitigate the effect of PMD. They operate
separately on every two qubit pairs, trying to improve the
quality of entanglement in one pair at the expense of the

other pair. This distillation operation D can be formulated as
follows. Denote the density matrix of a kept qubit pair after
the kth round of distillation as Ξk , with Ξ0 = Ξ. Then before
the kth round of distillation, the joint density matrix of two
qubit pairs is given by

ΞJ
k−1 = Ξk−1 ⊗ Ξk−1 .

Without loss of generality, assume that the network nodes
try to keep the first qubit pair. Then the density matrix of the
first qubit pair after the distillation operation is given by the
partial trace over the third and fourth qubits normalized by the
overall trace of the density matrix, i.e.,

Ξk =
tr3,4

{
D

{
ΞJ

k−1

}}

tr
{
D

{
ΞJ

k−1

}} , (3)

where the distillation operation D must be in the class of
LOCC, and the probability of successfully keeping the first
qubit pair is given by

Pk = tr
{
D

{
ΞJ

k−1

}}
. (4)

The fidelity of the kept qubit pairs after the kth round of
distillation w.r.t. the target state is

Fk = 〈φ+|Ξk|φ+〉 , (5)

where |φ+〉 = 1√
2
(|hAhB〉 + |vAvB〉). For notation conve-

nience, define the mapping between the input density matrix
Ξk−1 and the fidelity of the kept qubit pair Fk as FD , i.e.,

Fk = FD (Ξk−1) ,
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and denote the mapping between the input density matrix
Ξk−1 and the success probability Pk as PD , i.e.,

Pk = PD (Ξk−1) .

Note that both mappings depend on the distillation
operation D.

The objective of recurrence QED algorithms is to generate
qubit pairs with a sufficiently high fidelity, i.e.,

FK � 1 − ε , (6)

for some natural number K and small ε > 0. With this re-
currence QED algorithm, the yield of the algorithm after K
rounds of distillation is given by

YK =
K∏

k=1

Pk

2
. (7)

It can be seen from (7) that the yield of the algorithm drops
by at least half with one more round of distillation. Hence, to
improve the yield of the QED algorithm, a primary task is to
minimize the required number of distillation rounds, i.e., max-
imize Fk at each round. Meanwhile, the success probability
Pk also affects YK . Hence, a secondary task is to maximize Pk

conditional on Fk being maximized. The problems of fulfilling
these two tasks are formulated as follows.

In a certain round of distillation, given the input density
matrix Ξ, we maximize the fidelity of the kept qubit pair
FD (Ξ) w.r.t. the distillation operation D. This problem can
be formulated as

PF: max
D∈D

FD (Ξ) ,

where D is the set of all possible LOCC operations. Denote
the optimal fidelity as ̑F (Ξ). We maximize the success proba-
bility of the distillation operation PD (Ξ) w.r.t. the distillation
operation D conditioned on the fact that optimal fidelity is
achieved. This problem can be formulated as

PP: max
D∈DF

PD (Ξ) ,

where DF = {D : FD (Ξ) = ̑F (Ξ)} .

III. EFFICIENT QED FOR PMD CHANNELS

This section first characterizes the optimal value of prob-
lems PF and PP and then gives an algorithm which achieves
the optimal performance in every round of distillation. For
conciseness, in the following, both |hA〉 and |hB〉 are denoted
as |0〉, and both |vA〉 and |vB〉 are denoted as |1〉. The network
node index can be omitted without causing confusion because
only local operations are involved in the distillation process.

A. Characterization of performance upper bounds

This subsection considers a set of density matrices that in-
cludes those given in (2) and characterizes the corresponding
optimal performance of problems PF and PP. Specifically,
consider the following set of density matrices

S = {
Ξ : Ξ is in the form of (8)

}
,

where

Ξ = 1
2

(|ab〉〈ab| + e−iαR∗|ab〉〈a′b′|
+ eiαR|a′b′〉〈ab| + |a′b′〉〈a′b′|) , (8)

in which

〈x|x′〉 = 0 , x ∈ {a, b} ,

α ∈ [0, 2π ) , and

|R| ∈ [0, 1] .

By performing matrix spectral decomposition, the density
matrix Ξ can be rewritten as

Ξ = F |φ1〉〈φ1| + (1 − F )|φ2〉〈φ2| , (9)

where

F = 1

2

(
1 + |R|) ,

|φ1〉 = 1√
2

(|ab〉 + eiθ |a′b′〉) ,

|φ2〉 = 1√
2

(|ab〉 − eiθ |a′b′〉) ,

θ = α + R .

The following theorem characterizes the optimal fidelity
that can be achieved when input density matrix Ξ ∈ S .

Theorem 1. Optimal fidelity. Let Ξ ∈ S . Then the optimal
value of PF is given by

̑F (Ξ) = F 2

F 2 + (1 − F )2
. (10)

Proof. The two network nodes perform the local unitary
operations

UA = |0〉 + |1〉√
2

〈a| + |0〉 − |1〉√
2

〈a′| ,

UB = |0〉 + |1〉√
2

〈b| + e−iθ |0〉 − |1〉√
2

〈b′| ,
(11)

on a pair of qubits with density matrix Ξ. The updated density
matrix is given by

Ξ̌ = (UA ⊗ UB) Ξ (UA ⊗ UB)†

= F |φ+〉〈φ+| + (1 − F )|ψ+〉〈ψ+| , (12)

where

|φ+〉 = 1√
2

(|00〉 + |11〉) , |ψ+〉 = 1√
2

(|01〉 + |10〉) .

The density matrix in (12) has the structure of the density
matrix in Eq. (6) of Ref. [47], with α = β = γ = δ = 1√

2
.

Therefore, one can apply Theorem 2 of Ref. [47] and get

̑F (Ξ̌) = F 2

F 2 + (1 − F )2
.

Moreover, since unitary operations are reversible, the same
optimal fidelity can be achieved starting with either Ξ̌ or Ξ,
i.e., ̑F (Ξ̌) = ̑F (Ξ). This completes the proof. �
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The next theorem characterizes the upper bound of the suc-
cess probability conditioned on the fact that optimal fidelity is
achieved.

Theorem 2. Optimal probability of success. Let Ξ ∈ S with
|R| > 0. Then the optimal value of PP is given by

̑P(Ξ) = F 2 + (1 − F )2 . (13)

Proof. We first prove that the proposed success probability
is an upper bound, i.e.,

̑P(Ξ) � F 2 + (1 − F )2 . (14)

The statement will be proved by contradiction. Suppose the
theorem does not hold, i.e., for some Ξ ∈ S with |R| > 0 there
exists a distillation operation D such that

FD (Ξ) = F 2

F 2 + (1 − F )2
, (15)

PD (Ξ) > F 2 + (1 − F )2 . (16)

From (9), the spectral decomposition of the joint density
matrix of two qubit pairs is given by

ΞJ = F 2|φ1φ1〉〈φ1φ1| + F (1 − F )|φ1φ2〉〈φ1φ2|
+ (1 − F )F |φ2φ1〉〈φ2φ1| + (1 − F )2|φ2φ2〉〈φ2φ2| .

Define

Vnm = tr3,4

{
D

{|φnφm〉〈φnφm|}},

fnm = 〈φ+|Vnm|φ+〉 , pnm = tr{Vnm} ,

where n, m ∈ {1, 2}. As along as D is a valid quantum opera-
tion, Vnm must be a positive semidefinite matrix with trace no
greater than 1. Therefore,

0 � fnm � pnm � 1 . (17)

It is straightforward that

FD (Ξ) = F 2 f11 + F (1 − F )( f12 + f21) + (1 − F )2 f22

F 2 p11 + F (1 − F )(p12 + p21) + (1 − F )2 p22
,

(18)

PD (Ξ) = F 2 p11 + F (1 − F )(p12 + p21) + (1 − F )2 p22 .

(19)

Combining (16) and (19), and noting that pnm � 1, it can be
derived that

p12 + p21 > 0 . (20)

Denote

S(F ) = F 2 f11 + F (1 − F )( f12 + f21) + (1 − F )2 f22 ,

N (F ) = F 2(p11 − f11) + F (1 − F )(p12 + p21 − f12 − f21)

+ (1 − F )2(p22 − f22) .

Then from (15) and (18)

FD (Ξ) = S(F )

S(F ) + N (F )
= F 2

F 2 + (1 − F )2

⇒ N (F )

S(F )
= (1 − F )2

F 2
. (21)

Note that F > 1
2 as |R| > 0. Hence, one can construct

another density matrix Ξ̃ satisfying (9), with a different F̃ ∈
( 1

2 , F ). By repeating the analysis above, it can be derived that

FD (Ξ̃) = S(F̃ )

S(F̃ ) + N (F̃ )
. (22)

From (17) and (20), either p12 + p21 = f12 + f21 > 0, or
p12 + p21 > f12 + f21 � 0. If p12 + p21 = f12 + f21 > 0,
then

S(F̃ ) = F̃ 2

F 2

(
F 2 f11+ F 2

F̃
(1−F̃ )( f12+ f21)+ F 2

F̃ 2
(1−F̃ )2 f22

)

>
F̃ 2

F 2

(
F 2 f11 + F (1 − F )( f12 + f21) + (1 − F )2 f22

)

= F̃ 2

F 2
S(F ) , (23)

N (F̃ ) = (1 − F̃ )2

(1 − F )2

(
(1 − F )2

(1 − F̃ )2
F̃ 2(p11 − f11)

+ F̃
(1 − F )2

(1 − F̃ )
(p12 + p21 − f12 − f21)

+ (1 − F )2(p22 − f22)

)

� (1 − F̃ )2

(1 − F )2

(
F 2(p11 − f11)

+ F (1 − F )(p12 + p21 − f12 − f21)

+ (1 − F )2(p22 − f22)
)

= (1 − F̃ )2

(1 − F )2
N (F ) . (24)

Substituting (21), (23), and (24) into (22), one can get

FD (Ξ̃) >
F̃ 2

F̃ 2 + (1 − F̃ )2
,

which leads to

̑F (Ξ̃) � FD (Ξ̃) >
F̃ 2

F̃ 2 + (1 − F̃ )2
. (25)

However, (25) contradicts with (10).
Otherwise, if p12 + p21 > f12 + f21 � 0, one can use a

similar analysis and get

S(F̃ ) � F̃ 2

F 2
S(F ) and N (F̃ ) <

(1 − F̃ )2

(1 − F )2
N (F ) ,

which also lead to a contradiction between (25) and (10). This
contradiction shows that the success probability given in (13)
is indeed an upper bound.

The achievability of (13) is proved by exhibiting the QED
algorithm that achieves the upper bound. Please refer to
Sec. III B for details. �

B. Algorithm design

The two theorems in the previous subsection characterize
the optimal fidelity and the corresponding optimal success
probability of distillation operations on two pairs of qubits.
In this subsection, guided by the insights obtained from the
proofs of Theorem 1 and Theorem 2, a recurrence QED
algorithm is designed to achieve the optimal fidelity and the
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corresponding optimal success probability in every round of
distillation.
Algorithm: Efficient QED for PMD channel.

(a) Local state preparation: For each qubit pair, the
network nodes transform the density matrix to Ξ̌ using
the local unitary operators UA and UB defined in (11).

(b) Single-round distillation: The nodes take two of the
kept qubit pairs and perform the following operations.
(i) Each node locally performs a CNOT operation,

i.e., U=|00〉〈00|+|01〉〈01|+|10〉〈11| + |11〉〈10|,
on the two qubits at hand.

(ii) Each node measures the target bit (i.e., the qubit
in the second pair) using the operators |0〉〈0|, |1〉〈1|
and transmits the measurement result to the other
node via classical communication.

(iii) If their measurement results do not agree, the
nodes discard the source qubit pair (i.e., the first
pair). Otherwise, the nodes keep the source qubit
pair.

The nodes repeat operations (i)–(iii) on all other kept
qubits, two pairs at a time.

(c) Stopping criterion: Network nodes recurrently perform
the single-round distillation described in (b), until the
fidelity of the kept qubit pairs exceeds the required
threshold. �

In the following, we first characterize the performance
of the proposed algorithm in Theorem 3, then provide the
insights of the theorem in two remarks.

Theorem 3. Performance of the proposed algorithm. In the
kth round of distillation, a qubit pair is kept with fidelity

Fk = F 2
k−1

F 2
k−1 + (1 − Fk−1)2

, (26)

probability

Pk = F 2
k−1 + (1 − Fk−1)2 , (27)

and density matrix

Ξk = Fk|φ+〉〈φ+| + (1 − Fk )|ψ+〉〈ψ+| . (28)

Proof. From (12), after the first step of the algorithm, the
joint density matrix of two qubit pairs is given by

Ξ̌J = PΞ̌ ⊗ Ξ̌ P†

= F 2|ϕ(1)〉〈ϕ(1)| + F (1 − F )
(|ϕ(2)〉〈ϕ(2)| + |ϕ(3)〉〈ϕ(3)|)

+ (1 − F )2|ϕ(4)〉〈ϕ(4)| ,
where P is the permutation operator that switches the second
and third qubits, and

|ϕ(1)〉 = 1
2 |0000〉 + 1

2 |0101〉 + 1
2 |1010〉 + 1

2 |1111〉 ,

|ϕ(2)〉 = 1
2 |0001〉 + 1

2 |0100〉 + 1
2 |1011〉 + 1

2 |1110〉 ,

|ϕ(3)〉 = 1
2 |0010〉 + 1

2 |0111〉 + 1
2 |1000〉 + 1

2 |1101〉 ,

|ϕ(4)〉 = 1
2 |0011〉 + 1

2 |0110〉 + 1
2 |1001〉 + 1

2 |1100〉 .

In the first round of distillation, after both nodes perform
the CNOT operation, the joint density matrix of two qubit pairs
becomes

Ξ̀J = F 2|ϕ̀(1)〉〈ϕ̀(1)| + F (1 − F )
(|ϕ̀(2)〉〈ϕ̀(2)|

+ |ϕ̀(3)〉〈ϕ̀(3)|) + (1 − F )2|ϕ̀(4)〉〈ϕ̀(4)| , (29)

where

|ϕ̀(1)〉 = 1
2 |0000〉 + 1

2 |0101〉 + 1
2 |1111〉 + 1

2 |1010〉 ,

|ϕ̀(2)〉 = 1
2 |0001〉 + 1

2 |0100〉 + 1
2 |1110〉 + 1

2 |1011〉 ,

|ϕ̀(3)〉 = 1
2 |0011〉 + 1

2 |0110〉 + 1
2 |1100〉 + 1

2 |1001〉 ,

|ϕ̀(4)〉 = 1
2 |0010〉 + 1

2 |0111〉 + 1
2 |1101〉 + 1

2 |1000〉 .

From (29), if both measurement results correspond to
|0〉〈0|, the (unnormalized) density matrix of the source qubit
pair is given by

Ξ00 = (
I2 ⊗ 〈0| ⊗ I2 ⊗ 〈0|) Ξ̀J

(
I2 ⊗ |0〉 ⊗ I2 ⊗ |0〉)

= 1
2

(
F 2|φ+〉〈φ+| + (1 − F )2|ψ+〉〈ψ+|) . (30)

Similarly, if both measurement results correspond to |1〉〈1|,
the (unnormalized) density matrix of the source qubit pair is
given by

Ξ11 = (
I2 ⊗ 〈1| ⊗ I2 ⊗ 〈1|) Ξ̀J

(
I2 ⊗ |1〉 ⊗ I2 ⊗ |1〉)

= 1
2

(
F 2|φ+〉〈φ+| + (1 − F )2|ψ+〉〈ψ+|) . (31)

From (30), and (31), the probability of preserving the
source qubit pair is

P = tr
{
Ξ00 + Ξ11

} = F 2 + (1 − F )2 , (32)

the fidelity of the kept qubit pairs is

F1 =
1
2 F 2 + 1

2 F 2

P
= F 2

F 2 + (1 − F )2
, (33)

and the density matrix of the kept qubit pair can be written as

Ξ1 = Ξ00 + Ξ11

P
= F1|φ+〉〈φ+| + (1 − F1)|ψ+〉〈ψ+| .

(34)

With (32) and (33), the proof for the first round of distil-
lation is complete. For the following distillation rounds, one
can take (34) as input and repeat the analysis in (29)–(33).
This competes the proof. �

Remark 1. Optimality of the proposed algorithm. In Theo-
rem 3, (28) shows that the proposed algorithm always keeps
the density matrix of qubit pairs in set S , which means that
the results in Theorem 1 and Theorem 2 apply to every
round of distillation. Therefore, by comparing (10) and (13)
with (26) and (27), one can see that the proposed algorithm
achieves the optimal fidelity and the corresponding optimal
success probability in every round of distillation. As verified
in Sec. IV, this feature enables the proposed algorithm to
achieve a high efficiency. �

Remark 2. Convergence speed of fidelity. In terms of the
convergence speed of fidelity w.r.t. the number of distillation
rounds, the only existing theoretical result was given in [27],
which shows that the relation of the fidelity of kept qubit pairs
in consecutive rounds is given by

Fk = F 2
k−1 + 1

9 (1 − Fk−1)2

F 2
k−1 + 2

3 Fk−1(1 − Fk−1) + 5
9 (1 − Fk−1)2

. (35)

In this case, when F0 > 1
2 , it can be obtained that

lim
k→∞

1 − Fk

1 − Fk−1
= 2

3
. (36)
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For the proposed algorithms, it can be shown from (26) that
when F0 > 1

2 ,

lim
k→∞

1 − Fk

1 − Fk−1
= 0 , lim

k→∞
1 − Fk

(1 − Fk−1)2
= 1 . (37)

Equation (36) shows that with the algorithm proposed in [27],
the fidelity of the qubit pairs converges to 1 linearly at rate
2/3, whereas (37) shows that with the proposed algorithms,
the fidelity converges to 1 quadratically. Hence, the conver-
gence speed of our algorithm is quadratic in number of dis-
tillation rounds, which is a significant improvement over the
linear convergence achieved by the recurrence QED algorithm
proposed in [27]. On the other hand, the algorithm proposed
in [27] applies to generic channels (with F0 > 1

2 ), whereas
the proposed algorithm is tailored for the PMD channel. The
issue of improving the convergence speed of recurrence QED
algorithms for generic channels remains an interesting open
question. �

IV. NUMERICAL RESULTS

We now demonstrate the dependence of the proposed re-
currence QED algorithm on the parameters of the PMD chan-
nel by numerically calculating the yield and output fidelity for
different channel configurations. To perform numerical tests,
we specify the optical properties of the entanglement source
to determine the form of R(τA, τB) under the generally con-
sidered assumption that the pulsed pump laser and frequency
response of the filters are Gaussian [24]. Please see the last
paragraph in Appendix A for more details.

We compare the yield of our algorithm with that obtained
by an existing recurrence QED algorithm [27]. As an ad-
ditional benchmark, an upper bound of yield derived from
distillable entanglement [49,50] is also calculated and plotted.
While the achievability of this bound remains unknown, it is
arguably the best-known upper bound on the yield of any QED
algorithms [51]. We find that our algorithm has a significant
performance advantage in parameter regimes where partial
PMD compensation occurs [23,24] and achieves a yield close
to the theoretical upper bound despite its simple recurrent
distillation operations that involve only two qubit pairs. Ad-
ditionally, we have performed tests to examine the robustness
of the proposed algorithm to basis alignment errors.

In the numerical tests, the target fidelity is set to be 0.99.
The number of distillation rounds K is set to be the first round
that achieves the target fidelity, and the yield of the algorithm
is calculated according to (7). We assume that the photon
bandwidths BA and BB are equal, and we set τABA = 1 while
varying the DGD on photon B, given by τB, the pump laser
bandwidth Bp, and η, which specifies the alignment between
the qubit and PSP basis.

Figures 2 and 3 plot the yield as a function of the ratio
of the magnitudes of the DGD in each optical path for two
different pulse pump bandwidths. Figure 2 plots the case
where the pump bandwidth is given by Bp = 0.1/τA, which
corresponds to a relatively long pump duration compared to
the DGD. Alternatively, Fig. 3 plots a case where a pump
bandwidth is of the order of the DGD, given by Bp = 1/τA.

In Fig. 2 we see that both algorithms achieve a yield
of unity for a finite region of τA/τB centered around the
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Y
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τB/τA

BBPSSW algorithm
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Upper bound

Gain: 450%

Gap: 36%

FIG. 2. Comparison of the yield as a function of τB/τA for the
proposed algorithm and the benchmarks, i.e., the upper bound [49]
and the recurrence QED algorithm proposed in [27] (referred to as
the BBPSSW algorithm here). In this plot, Bp = 0.1, BA = BB = 1,
τA = 1.

decoherence-free subspace at τA = τB [23,24]. For regions of
partial or no compensation, the regions outside of unit yield in
Fig. 2 and all of Fig. 3, the proposed algorithm achieves a yield
that is significantly higher than the baseline algorithm from
[27]. For instance, when τB/τA = 0.5, the proposed algorithm
increases the yield by 450% and 5660% compared to the
baseline algorithm, and the yield of the proposed algorithm
is 36% and 53% away from the upper bound. Given that
the proposed algorithm adopts simple recurrent distillation
operations that involve only two qubit pairs, it achieves a
desirable balance between efficiency and implementability.
We also note that the peak of the yield for both algorithms

0
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0.2

0.3

0.4

0.5

0 0.5 1 1.5 2 2.5 3

τB/τA

Y
ie

ld

BBPSSW algorithm
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Upper bound

Gain: 5660%

Gap: 53%

FIG. 3. Comparison of the yield as a function of τB/τA for the
proposed algorithm and the benchmarks, i.e., the upper bound [49]
and the BBPSSW algorithm [27]. In this plot, Bp = 1, BA = BB = 1,
τA = 1.
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FIG. 4. The efficiency of the proposed algorithm as a function of
the bandwidth of the source laser pump. In this figure, BA = BB = 1,
τA = 1.

in Fig. 3 is shifted away from τA = τB, as opposed to the peak
being centered around this point in Fig. 2. This observation
is consistent with those of [24] on PMD compensation, which
emphasizes the fact that our algorithm attempts to make use of
nonlocal PMD compensation to whatever extent is possible.

To further demonstrate the impact of pump bandwidth on
the performance of the proposed algorithm, the yield as a
function of Bp is plotted in Fig. 4 for several values of τB.
From the figure, it can be observed that the yield of the
algorithm is a decreasing function of the pump bandwidth
Bp. This is because the larger Bp is, the more distinguishable
are the photon pairs advanced and delayed by PMD. For
analogous reasons, we see that when Bp is large, the yield
of the algorithm is likely to decrease when τB increases.
However, when Bp is small, the yield of the algorithm is
highest when the values of τA and τB are similar, illustrating
the benefits of the decoherence-free subspace created by PMD
compensation.

Finally, the performance of the proposed algorithm is
evaluated in the presence of basis alignment errors. Until now,
perfect alignment between the polarization basis and the PSP
basis has been assumed. As mentioned in Sec. II A, such
an alignment is not expected to be performed frequently, as
the PSP of installed optical fiber has been shown to remain
unchanged on the time scale of months [48]. However, any
realistic implementation will have to deal with errors in the
initial alignment process and the eventual drift of the PSP
with time. To help us quantify the effects of implementation
error on the performance of the proposed algorithm, we define
the misalignment angle between the polarization and the PSP
basis as θ , where η1 = arcsin( θπ

180 ). In Fig. 5, the output
fidelity and the yield of the proposed algorithm are plotted
as a function of the misalignment angle θ for several values
of τ , where τA = τB = τ . The output fidelities shown in the
plot are the maximum achievable fidelity with the proposed
algorithm with a required fidelity of 0.99. It can be seen that
for all considered values of τ , the algorithm can generate qubit
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FIG. 5. The output fidelity and the efficiency of the proposed al-
gorithm as a function of the misalignment angle θ . η1 = arcsin( θπ

180 ).
In this figure, BA = BB = 1, Bp = 0.1, τA = τB = τ . The output
fidelity is the maximum achievable by the algorithm, up to a fidelity
of 0.99.

pairs with the required fidelity when the misalignment angle
is no more than 5◦. When the misalignment angle θ is greater
than 5◦, the output fidelities are higher for smaller values of
τ , meaning that the robustness of the algorithm is inversely
proportional to the magnitude of the DGD. Finally, it can be
observed that the yield of the algorithm drops significantly
for misalignment angle θ beyond 5◦. This means that, even
though the algorithm can still obtain photon pairs with high
fidelity when θ > 5◦, it demands a significant increase in re-
sources. This result can be used to bound the precision of local
unitary operations needed for an experimental implementation
of this algorithm.

Figure 5 also serves as an indication of how the proposed
algorithm performs in scenarios with imperfect operations or
noise other than PMD. The proposed algorithm will perform
well if the effects of operation imperfection or other noise are
not significant. Otherwise, both the highest achievable fidelity
and the efficiency of the proposed algorithm will drop.

V. CONCLUSION

This paper presents a recurrence QED algorithm to ob-
tain high-quality entanglement from polarization-entangled
photon pairs affected by PMD-degraded channels. For these
photon pairs, we have characterized the optimal fidelity that
can be achieved by recurrence QED operations as well as
the optimal success probability conditioned on the fact that
optimal fidelity is achieved. We then proposed a recurrence
QED algorithm that achieves both optimal fidelity and optimal
success probability in every round of distillation. Analytical
results show that the proposed algorithm improves the con-
vergence speed of fidelity w.r.t. the number of distillation
rounds from linear to quadratic. Numerical tests show that the
proposed algorithm significantly improves the efficiency of
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QED in a wide range of operation regions and achieves a yield
close to the best-known upper bound for any QED algorithms.

ACKNOWLEDGMENTS

The authors would like to thank S. Guerrini for his helpful
suggestions and careful reading of the manuscript. The fun-
damental research described in this paper was supported, in
part, by the Army Research Office through the MIT Institute
for Soldier Nanotechnologies under Contract No. W911NF-
13-D-0001.

APPENDIX A: ANALYSIS OF THE EFFECT OF PMD

The effect of PMD on a polarization-entangled photon
pair depends on the way that the photons are generated, in
particular, the type of nonlinear media and laser pump. A
rigorous treatment dealing with χ(3) media and a continuous-
wave (CW) pump was given in [23], and that dealing with
χ(2) media and a pulsed pump was presented in [24]. Here
we present an analytical treatment for χ(2) media and a pulsed
pump. In particular, we consider the limit where the frequency
content of the pulse approaches a delta function, effectively
becoming a CW beam.

Consider a pair of photons which are entangled in two
orthogonal polarizations as well as time. These pairs can be
created using parametric down conversion or fiber nonlineari-
ties [52,53] and are notated as

|ψ〉 = | f0,0〉 ⊗ 1√
2

(|hA〉|hB〉 + eiα|vA〉|vB〉) , (A1)

where hi and vi are orthogonal polarization basis states of
photons A and B. The time-related component | f0,0〉 in the
state representation (A1) is a special case of

| fςA,ςB〉 =
∫∫

dtAdtB f
(

tA + ςA

2
, tB + ςB

2

)
|tA, tB〉 , (A2)

where ςi/2 represents the shift of the arrival time at node
i ∈ {A, B}. The function f (tA, tB) is normalized so that
| f (tA, tB)|2 represents the probability that the two photons
overlap in time, and

∫∫
dtAdtB| f (tA, tB)|2 = 1. Since the en-

tanglement is generated via χ(2) media, we have

f (tA, tB) ∝
∫

dt h∗
A(t − tA) h∗

B(t − tB) ep(t ) , (A3)

where hi(t ) represents the inverse Fourier transform of the
frequency filter Hi(ω) at node i ∈ {A, B} and ep(t ) is the
envelope of the pump signal.

The two types of laser pumps, pulsed and CW, are charac-
terized by the envelope of the pump signal ep(t ) and its Fourier
transform Ep(ω), which describes the frequency content of the
input pulse. Experimentally, pulsed pump lasers are conve-
nient because they allow experiments to be broken into dis-
crete detection time bins, resulting in wider bandwidth signal
and idler photons, which enables multiple channels. For CW
lasers, |Ep(ω)|2 approaches a δ function, which is a constant
in the time domain. In this case, f (tA, tB) becomes a function
of only the time difference, hence simplifying the analysis.

The PMD advances or delays photon arrival times, with
the maximum and minimum alterations occurring for photons
with polarizations equal to the PSP of the fiber [23]. There-
fore, it is convenient to write the initial state in terms of the

PSP basis {|si〉, |s′
i〉}, i ∈ {A, B}. In this basis the initial state

becomes

|ψ〉 = | f0,0〉 ⊗
[

η1√
2

(|sA〉|sB〉 + eiα1 |s′
A〉|s′

B〉)

+ η2√
2

(|sA〉|s′
B〉 − eiα2 |s′

A〉|sB〉)
]

, (A4)

where

η1 = 〈sA|hA〉〈sB|hB〉 + eiα〈sA|vA〉〈sB|vB〉 ,

η2 = 〈sA|hA〉〈s′
B|hB〉 + eiα〈sA|vA〉〈s′

B|vB〉 ,

and αi satisfies the relation ηi = |ηi|ei(α−αi )/2. Time delays
resulting from PMD in the fibers can now be described as

|ψPMD〉 = η1√
2
| f−τA,−τB〉 ⊗ |sAsB〉

− η2eiα2

√
2

| f+τA,−τB〉 ⊗ |s′
AsB〉

+ η2√
2
| f−τA,+τB〉 ⊗ |sAs′

B〉

+ η1eiα1

√
2

| f+τA,+τB〉 ⊗ |s′
As′

B〉 . (A5)

We assume that the coincidence time window of the two
photon detectors is much larger than the DGD τA, τB, so
that the photon pair can be detected correctly. To account
for the fact that the photodetection process is not sensitive
to the photon’s time of arrival, the time modes of the two
photons are to be traced out. Hence, the polarization state of
the two photons can be characterized by a density matrix for
two qubits. When written in the ordered basis {|sAsB〉, |s′

AsB〉,
|sAs′

B〉, |s′
As′

B〉}, the density matrix resulting from integration
w.r.t. time is given by (1), in which

R(τA, τB) =
∫∫

dtAdtB f (tA + τA, tB + τB) f ∗(tA, tB) ,

(A6)

with the property that R(0, 0) = 1.
The approach above can also be applied to scenarios in-

volving χ(3) media, which changes (A3) and in turn (A6).
Since these changes have a minor impact on the analytical
results as well as the numerical findings in this paper, we omit
the analysis for χ(3) here.

In the numerical study, the frequency content of a pulsed
pump laser and the frequency response of filters are assumed
to be Gaussian. Under this assumption, the form of R(τA, τB)
is given by [25]

R(τA, τB) = κ

∫∫
dωAdωB

∣∣HA(ωA)
∣∣2∣∣HB(ωB)

∣∣2

× ∣∣Ep(ωA + ωB)
∣∣2

ei(τAωA+τBωB ) ,

where Ep(ω) ∝ e−ω/4B2
p and Hi(ω) ∝ e−(ω±��)2/4B2

i , i ∈
{A, B}, with the Bi terms representing the root mean square
bandwidth of each filter. The central frequency of the pump is
set to 0 and Alice and Bob’s filters are each offset from it by
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±��. The integral results in

R(τA, τB) = e
−

B2
AB2

B(τA−τB )2+B2
AB2

pτ
2
A+B2

BB2
pτ

2
B

2
(

B2
A+B2

B+B2
p

)
e−i��(τA−τB ) .

APPENDIX B: LOCAL ROTATION ON ONE PHOTON IS
SUFFICIENT FOR ALIGNMENT

We first prove a lemma and then show that, as a special case
of the lemma, local rotation on one of the photons can achieve
the alignment of the PSP basis with the photon polarization
basis.

Lemma 1 Basis of maximally entangled states. Let |φ〉 be
a maximally entangled state of two qubits. Then for all qubit
basis {|s〉, |s′〉}, there exists some basis of a qubit {|s̃〉, |s̃′〉}
such that

|φ〉 = 1√
2

(|s̃s〉 + |s̃′s′〉) . (B1)

Proof. Express |φ〉 in the basis of {|s〉, |s′〉}, i.e.,

|φ〉 = α00|ss〉 + α01|ss′〉 + α10|s′s〉 + α11|s′s′〉
= (

α00|s〉 + α10|s′〉) ⊗ |s〉 + (
α01|s〉 + α11|s′〉) ⊗ |s′〉 .

(B2)

Denote

A =
[
α00 α01

α10 α11

]
,

and perform singular value decomposition on A, i.e.,

A = UDV ,

where U , V are unitary matrices and D is a diagonal matrix.
Since |φ〉 is a maximally entangled state of two qubits, all the
singular values of A must be 1√

2
. Hence, D = 1√

2
I2, and A can

be rewritten as

A = 1√
2

UV = 1√
2

Ũ . (B3)

Since U , V are unitary matrices, so is Ũ . Define

|s̃〉 =
√

2
(
α00|s〉 + α10|s′〉)

|s̃′〉 =
√

2
(
α01|s〉 + α11|s′〉) . (B4)

Then from (B3), since Ũ is unitary, {|s̃〉, |s̃′〉} is also a basis of
a qubit. Substituting (B4) into (B2), one can obtain (B1). This
completes the proof. �

Remark 3. Comparison with Schmidt decomposition. In
Lemma 1, the decomposition of the maximally entangled
state, i.e., (B1), takes the form of Schmidt decomposition.
However, Lemma 1 is not a special case of the Schmidt
decomposition theorem. This is because the Schmidt decom-
position theorem shows that there exists some basis {|s〉, |s′〉}
and {|s̃〉, |s̃′〉} such that (B1) holds, while Lemma 1 shows
that for all qubit bases {|s〉, |s′〉}, there exists {|s̃〉, |s̃′〉} such
that (B1) holds. The “for all” requirement makes a stronger
statement that enables us to save photon basis rotation at one
node. �

The photon source generates photon pairs whose polariza-
tion state is maximally entangled, i.e.,

|φ〉 = 1√
2

(|hA〉|hB〉 + eiα|vA〉|vB〉) .

From Lemma 1, there exists some basis {|s̃A〉, |s̃′
A〉} such that

|φ〉 can be rewritten as

|φ〉 = 1√
2

(|s̃A〉|sB〉 + |s̃′
A〉|s′

B〉) . (B5)

From (B5), the polarization state prepared by the source
can be viewed as a state in which the polarization basis of
photon B is already aligned with the PSP basis of the channel.
Hence, rotating photon A to align {|s̃A〉, |s̃′

A〉} with the PSP
basis {|sA〉, |s′

A〉} is sufficient to reduce the possible coincident
arrival times of the photon pair to two.
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