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The Feasibility Conditions for Interference
Alignment in MIMO Networks
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Abstract—Interference alignment (IA) has attracted great atten-
tion in the last few years for its breakthrough performance in inter-
ference networks. However, despite the numerous works dedicated
to IA, the feasibility conditions of IA remains unclear for most net-
work topologies. The IA feasibility analysis is challenging as the
IA constraints are sets of high-degree polynomials, for which no
systematic tool to analyze the solvability conditions exists. In this
work, by developing a newmathematical framework that maps the
solvability of sets of polynomial equations to the linear indepen-
dence of their first-order terms, we propose a sufficient condition
that applies to MIMO interference networks with general configu-
rations. We have further proved that this sufficient condition coin-
cides with the necessary conditions under a wide range of config-
urations. These results further consolidate the theoretical basis of
IA.

Index Terms—Algebraic independence, feasibility conditions, in-
terference alignment.

I. INTRODUCTION

I NTERFERENCE has been a fundamental performance bot-
tleneck in wireless communication. Conventional schemes

either treat interference as noise or use channel orthogonaliza-
tion to avoid interference. However, these schemes are non-ca-
pacity achieving in general. Interference alignment (IA), first
proposed in [1], significantly improves the performance of inter-
ference networks by aligning the aggregated interference from
multiple sources into a lower dimensional subspace. For in-
stance, in a system with transmitter-receiver (Tx-Rx) pairs
and antennas at each node, the IA achieves a total throughput
that scales as [2]. This scaling law is optimal
and dominates that of conventional orthogonalization schemes,
i.e., . The IA solution in [2] is also applied to
other topologies such as the MIMO-X channels [3] and MIMO
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relay channels [4] and achieves the optimal throughput scaling
law. As such, there is an interest surge in the research of IA.
To achieve the optimal scaling law of throughput, the IA solu-

tion in [2] requires dimensions of signal space,
which is realized by time or frequency domain symbol exten-
sion. Such symbol extension approach is difficult to implement
in practice due to the large dimensions of the signal space in-
volved. To overcome this problem, IA designs with signal space
dimension limited by the number of antennas, are proposed in
[5]–[9] for practical MIMO systems. In the IA designs proposed
in [5]–[7], closed-form solutions are obtained for a few specific
and simple configurations. For instance, in [5], all Rx have 2 an-
tennas. In [6], all nodes have antennas. And in [7], there
are only 2 Rxs in the network. Moreover, in all the works men-
tioned above, each Tx only has one independent data stream.
Iterative IA solutions based on alternating optimization are pro-
posed for MIMO interference networks with general configura-
tions in [8], [9]. However, these approaches may not converge
to the global optimal solution.
When the signal space dimension is limited, the IA is not al-

ways feasible. Therefore, the characterization of the feasibility
conditions under limited signal space dimension is the para-
mount issue to address. In general, the feasibility of the IA
problem is associated with the solvability of a set of polynomial
equations, which is the focus of algebraic geometry [10], [11].
There are very few works that have studied the feasibility con-
dition of IA problems using algebraic geometry [12]–[15]. In
[12], the authors studied the feasibility condition of IA problem
in single streamMIMO interference networks using Bernstein’s
Theorem in algebraic geometry [11], [11, Thm. 5.4]. This work
has been extended to the multiple stream case by two parallel
works [13], and [14], [15], respectively. The first approach in
[13] established some necessary conditions for IA feasibility for
general network topology by analyzing the dimension of the al-
gebraic varieties [10]. The authors further showed that these
conditions are also sufficient when the number of antennas and
data streams at every node are identical. The second approach
in [14], [15] established similar necessary conditions for the IA
feasibility problem based on algebraic independence between
the IA constraints. The authors further proved that these condi-
tions are also sufficient when the number of data stream at every
node is the same and the number of antennas at every node is
divisible by the number of data streams. In summary, the afore-
mentioned works have proposed some necessary conditions for
MIMO interference networks with general configurations, but
the proposed sufficient conditions are limited to specific config-
urations.
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In this paper, we develop a new tool in algebraic geometry
which allows us to address the IA feasibility issue in the general
configuration. The newly developed tool maps the solvability
of a set of general polynomial equations to the linear indepen-
dence of their first order terms. Based on this new tool, we can
extend our understanding of the IA feasibility conditions in the
following aspects:
• Further tighten the IA feasibility conditions from the nec-
essary side;

• Propose and prove a sufficient condition of IA feasibility
which applies to MIMO interference networks with gen-
eral configurations;

• Prove that simultaneously scaling the number of antennas
and data streams of a network preserves IA feasibility;

• Determine the necessary and sufficient conditions of IA
feasibility in a wider range of network configurations com-
pared with the results given in [13]–[15].

Organization: Section II presents the systemmodel and define
the IA feasibility problem. Section III-A pairs the analytical re-
sults of this paper to their contributions. Section III-B provides
the proofs of the results based on a new mathematical frame-
work. Section IV gives the conclusion.
Notations: , , , and represent scalar, vector, matrix,

set/space, respectively. , and denote the set of natural
numbers, integers and complex numbers, respectively. The op-
erators , , , , , and denote trans-
pose, Hermitian transpose, determinate, rank, null space ,and
vectorization of a matrix. For a field , represents
the field of rational functions in variables with co-
efficients drawn from . Operation represents the size
of a vector and , represents the cardinality and comple-
ment of a set. is the indicator function. denotes the
dimension of a space. and denote the linear
space spanned by the column vectors of and the vectors in set

, respectively. denotes the greatest common di-
visor of and , denotes that divides , and
denotes modulo , . represents
a block diagonal matrix with submatrixes on its -th
diagonal. For instance,

, and
. The symbol “ ” denotes the isomorphism

[16].

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a MIMO interference network consisting of
Tx-Rx pairs, with Tx sending independent data streams
to Rx . Tx is equipped with antennas and Rx has
antennas. The received signal at Rx is given by:

(1)

where is the channel state matrix from Tx
to Rx , whose entries are independent random variables drawn
from continuous distributions. is the encoded infor-
mation symbol for Rx , is the decorrelator of
Rx , is the transmit precoding matrix at Tx ,
and is the white Gaussian noise with zero mean and
unit variance.
Following the previous works on IA for -pairs MIMO in-

terference networks [12]–[15], [17], in this work, we focus on
the feasibility issue of the following problem:
1) Problem 1 (IA on MIMO Interference Networks):

For a MIMO interference network with configuration
,

design transceivers ,
that satisfy the following constraints:

(2)

(3)

III. FEASIBILITY CONDITIONS

In this section, we will first list the main results and pair them
with the contributions. Thenwe prove these results in the second
subsection. The reader can refer to [18] for a summary of the
main theoretical approaches prior to this work, and a brief in-
troduction to the concept of algebraic independence.

A. Main Results

Theorems Applicable to General Configurations: The fol-
lowing two theorems summarize the main result on the neces-
sary side and the sufficient side, respectively.
Theorem 3.1 (Necessary Conditions of IA Feasibility): If

Problem 1 has solutions, then the network configuration must
satisfy the following inequalities:

(4)

(5)

(6)

, where
, (or ) denote that there exists (or )

such that .
Remark 3.1 (Tighter Necessary Conditions): Equation (5) is

the newly proposed necessary condition. If the cardinality of set
is restricted to be 1, we have that (5) is reduced to

(7)

which is one of the necessary inequalities given in the prior
works [13]–[15]. Note that the necessary conditions given in
Thm. 3.1 are strictly tighter than those given in [13]–[15].
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Fig. 1. The matrix scattered by the coefficient vectors of the linear terms in the polynomial form of IA constraints, i.e., (19).

Fig. 2. Illustration of the new systematic tool that links linear independence to the solvability of polynomial equation sets.

Theorem 3.2 (Sufficient Condition of IA Feasibility): If the
matrix described in Fig. 1 (denote this matrix as ) is full
row rank, Problem 1 has solutions almost surely.
The submatrices ,

in Fig. 1 are defined by:

...
...

. . .
...

(8)

(9)

where denotes the element in the -th row and -th
column of , .
Remark 3.2 (Interpretation of the Sufficient Condition): The

row vectors of are the coefficients of the linear terms of
polynomials in the IA constraint (3). Please refer to(19),(20)
for details. Hence, Thm. 3.2 claims that the linear independence
of these coefficient vectors is sufficient for the IA problem to
be feasible. This fact is a direct consequence of the mathemat-
ical tool we developed in algebraic geometry, i.e., Lem. 3.1–3.2.
Please refer to Fig. 2 for an intuitive illustration of this mathe-
matical tool.
Remark 3.3 (Contributions of Thm. 3.2): In literature, suffi-

cient conditions of IA feasibility are limited to special network
configurations. Thm. 3.2 proposes a sufficient condition which
applies to MIMO interference networks with general configura-
tion.
Following Thm. 3.2, we have two corollaries that depict the

relation between network configuration and IA feasibility.
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Corollary 3.1 (Configuration Dominates IA Feasibility):
Under a network configuration , is either always rank
deficient or full row rank almost surely. Hence, if is
full row rank under one realization of channel state ,
Problem 1 has solutions almost surely in this network.
Following Cor. 3.1, we define the notation of “IA feasible net-

work”, if Problem 1 has solutions almost surely in this network.
Remark 3.4 (Numerical and Analytical Contributions): Cor.

3.1 highlights the fact that the network configuration , rather
than the specific channel state dominates the IA feasi-
bility. This phenomenon is useful in both numerical test and the-
oretical analysis: In practice, to test the IA feasibility of a spe-
cific network, we only need to randomly generate one channel
state and check if is full rank. Similarly, to prove that a cer-
tain category of network is IA feasible, we can try to construct
some specific channel state that makes full row rank for all
the networks in this category. In fact, we will exploit this prop-
erty in the proof of Cor. 3.3.
Corollary 3.2 (Scalability of IA Feasibility): If a network

with configuration
is IA feasible, then scaling it by a factor, i.e.,

, preserves
its IA feasibility.
1) Corollaries Applicable to Special Configurations: In the

following analysis, we show that the necessary conditions in
Thm. 3.1 and the sufficient condition in Thm. 3.2 match in some
network configurations, which are broader than existing results
in [12]–[15].
Corollary 3.3 (Symmetric Case): When the network config-

uration is symmetric, i.e., , , ,
, and , Problem 1 has so-

lutions almost surely if and only if inequality (10) is true, where

(10)

Remark 3.5 [Backward Compatible to [13]] : If we further
assume that and , the feasibility conditions in
Cor. 3.3 is reduced to , which is consistent
with the IA feasibility condition given in [13].
Corollary 3.4 (“Divisible” Case): When the network config-

uration satisfies 1) , , and 2) , or , ,
Problem 1 has solutions almost surely if and only if inequality
(11) is satisfied, where

(11)

Remark 3.6 (Backward Compatible to [12], [14], and [15]):
If we further assume that , then , for all

. In this case, Cor. 3.4 corresponds to the fea-
sibility condition in [12]. Similarly, if we require that both
and are divisible by , Cor. 3.4 is reduced to the feasibility
conditions given by [14], [15].

Proof of the Feasibility Conditions

Proof of Theorem 3.1: Note that the necessity of (4) and(6)
are proved in [13]–[15]. We need to prove the necessity of (5).
Suppose Problem 1 is feasible. Without loss of generality,

assume

(12)

for a certain set . Then for , (5) can be rewritten
as:

(13)

We will prove that if Problem 1 has solutions, (13) must
be true. Denote as the set of the indices which appear in

as Tx index but not Rx index, i.e.,
, and denote

as the set of indices which appear in as Rx index, i.e.,
. Denote

as one of the solution. Construct three matrices:

Then from (2) and(3), we have that:

(14)

(15)

From (12), ,

which means in , the number of rows is no more than the
number of columns. Further note that the elements of are
independent random variables, we have that
almost surely. Therefore

(16)

almost surely. From (15), ,
hence we have:

(17)

From (17),(13) is true. This completes the proof.
Proof of Theorem 3.2: The IA feasibility issue is challenging

as there is no systematic tool to address the solvability issue
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of high-degree polynomial equation sets. Before turning to the
main flow of the proof, we first elaborate two lemmas. As illus-
trated in Fig. 2, these lemmas construct a new systematic tool
that links linear independence to the solvability of polynomial
equation sets. The newly developed tool is not only the key steps
to handle the IA feasibility issue in this work, but also a effective
mechanism for handling the solvability issue of sets of polyno-
mial equations in general.
Lemma 3.1 (Linear Independence Leads to Algebraic Inde-

pendence): is an algebraically closed field. Consider poly-
nomials , which are given
by: , where are polynomials consisting
of terms with degree no less than 2. If the coefficient vectors

are linearly independent, then polyno-
mials are algebraically independent.

Proof: Please refer to Appendix A for the proof.
Lemma 3.2 (Algebraic Independence Leads to Existence of

Solutions): is an algebraically closed field, and are in-
dependent random variables drawn from continuous distribu-
tions in . If polynomials ,
are algebraically independent, then equation set

has solutions almost surely.
Proof: Please refer to Appendix B for the proof.

In the following analysis, we prove Thm. 3.2 by applying
the new tool developed above. First we transfer the IA problem
(Problem 1) into another equivalent form.
Lemma 3.3 (Problem Transformation): Problem 1 is equiva-

lent to Problem 2 (defined below) almost surely.
2) Problem 2 (Transformed IA Processing): Find

such that and satisfy (3).
Proof: Please refer to Appendix C for the proof.

In Problem 2, to ensure that , it
is sufficient to assume that the first submatrices of ,
, denoted by , , are invertible. Then we can define

, as follows:

(18)

Then (3) is transformed into the following form:1

(19)

1Here , , , and represent the index of Rx, Tx, data stream at Rx side, and
data stream at Tx side, respectively. We intensively use this subscript sequence
in this paper, e.g., , , and .

where , , and are the elements in the
-th row and -th column of , and , respectively,

and is the -th row of defined in Fig. 1, where
is given by:

(20)

Substituting (19) to Lem. 3.1, 3.2, we can prove that Problem
1 has solutions almost surely if defined in Fig. 1 is full row
rank.
Proof of Corollary 3.1: Note that , where

, . is full

row rank if and only if at least one of its sub-matrices has
non-zero determinant. Therefore, the statement is proved if the
following proposition holds:
Proposition 3.1: Under a network configuration , the deter-

minant of a sub-matrix of is either always zero or
non-zero almost surely.
To prove Prop. 3.1, we first have the following lemma:
Lemma 3.4: Suppose are independent

random variables drawn from continuous distribution,
is a non-constant polynomial . Then

almost surely, i.e., the polynomial evalu-
ated at is non zero with probability 1.

Proof: When , from the Fundamental Theorem of
Algebra [16], only has finite number of solutions.
On the other hand, is drawn from continuous distribution.
Hence almost surely.
For , the lemma can be proved by using mathematical

induction w.r.t. . We omit the details for conciseness.
From the Leibniz formula [19, 6.1.1], the determinant

of a sub-matrix of can be written as a poly-
nomial with no constant term, where

, , .
Further note that the coefficients of is determined by the
configuration of the network . Hence, under a certain , is
either a zero polynomial or a non-constant polynomial. In the
latter case, by applying Lem. 3.4, we have that almost
surely. This completes the proof.
Proof of Corollary 3.2: As illustrated in Fig. 3, from (8)

and(9), after the scaling, each (or ) is composed of
repeating a submatrix with independent elements (or )
times. Denote the -th time of appearance of this matrix as

(or ). Moreover, we can evenly partition every
, into independent blocks. Denote the -th di-

agonal block in (or ) as (or ),
. Rewritten as a sum of two matrices, one

consists of the diagonal blocks , and the
other contains the rest of the blocks. Denote the two matrices as

, , respectively.
Since , are independent, it is sufficient to show that
is full row rank. As illustrated in Fig. 3, by combining

with
,
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Fig. 3. Partition of . In this figure, , .

, we obtain combinations. By collecting the
blocks with the same combination index in different
and , we obtain submatrices identical to the before
scaling. Since these submatrices are full rank almost surely and
are on different rows and columns of , is full rank
almost surely. This completes the proof.
Proof of Corollary 3.3: For notational convenience, we will

use notation to represent the configuration of a
symmetric MIMO interference network, where the meaning of
the letters are the as same those in Cor. 3.3. The “only if” side
can be easily derived from(6). We adopt the following proce-
dures to prove the “if” side:
A. Construct one special category of channel state .
B. Show that is full rank almost surely under the special

category of channel state.
C. From Cor. 3.1, if Procedure B is completed, is full

rank almost surely and hence we prove the corollary.
Now we start the detailed proof following the outline illus-

trated above. We first have two lemmas.
Lemma 3.5 (Sufficient Condition for Full Rankness): De-

note

, where ,

, . When , is full row rank
almost surely if the basis vectors of all , are
linearly independent.

Proof: Please refer to Appendix D for the proof.
Lemma 3.6 (Full Rankness of Special Matrices): A matrix
with the following structure is full rank almost surely.

S1. is composed of blocks, each block is com-
posed of sub-blocks, and each sub-block is ag-
gregated by number of vectors. Matrix
in Fig. 4 illustrates an example with , ,

.
S2. Denote the sub-blocks as , ,

, where , denote the vertical and
horizontal position of the block, and , denote the
vertical and horizontal position of the sub-block within
the block (e.g., in Fig. 4). All diagonal blocks are
block-diagonal, i.e., , if . Denote the
-th diagonal sub-block in block as (e.g., in
Fig. 4).

Fig. 4. Outline of the proof of Lem. 3.6.

S3. The elements in every are independent random vari-
ables drawn from continuous distribution.

S4. is independent of all the diagonal sub-blocks with
different sub-block index, i.e., and
all the sub-blocks in the same columns and rows, i.e.,

. The vectors in
the off-diagonal blocks are either , or independent of
all diagonal sub-blocks, or repetition of a certain vector
in the diagonal sub-blocks (positioned in different
columns).

S5. Define diagonal sub-blocks and are asso-
ciated, if a certain vectors in sub-blocks or

, , is a repetition of a certain vector
in the diagonal sub-blocks. Each diagonal sub-block

is associated with at most one diagonal sub-block
in the neighboring blocks with different sub-block
index, i.e., and , for some .
Note that when or , each diagonal sub-block is
associated with at most one sub-block.

Proof: Please refer to Appendix E for the proof.
Now we start the main procedures of the proof. We first

narrow down the scope:
—When , the proof is straightforward.
— If the corollary is true in the boundary cases, i.e.,

, it is true in general.
—With Cor. 3.2, it is sufficient to consider the case in which

. In the boundary cases, since
, .

— If , the corollary is reduced to a special case of Cor.
3.4.

Hence, we focus on cases in which , ,
, and . To improve readability of the proof,

we adopt a network as an example. From Fig. 1,
matrix of the example network is given by the first matrix2

in Fig. 5.
A. Specify as in Fig. 6, in which

(21)

2Note that here the value of the submatrices are specified. We will ex-
plain how we construct this specification later.
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Fig. 5. Illustration of proving that is full rank in a network.

(22)

Matrix in Fig. 5 serves as an example of this spec-
ification. Both (21), (22) are cyclic symmetrical w.r.t.
user indices , i.e., index pairs and

lead to the same and ,
. This property will help us to exploit the sym-

metry of the network configuration in the proof.
B. From (9), each consists of independent

vectors repeating for times. For notational convenience,
denote these vectors as and denote their
-th time of appearance as the -th block of . The
small matrix below matrix in Fig. 5 has given such
an example. As illustrated by matrix in Fig. 5, under
the specification in Fig. 6, we can adopt row operations
to remove the “1”s that reappear in the same columns.
FromLem. 3.5, it is sufficient to prove that the row vectors
which are occupied by the -th block of are linearly
independent, where , , and satisfy:

(23)

Also note that after the row operation, the -th
block of , is replicated,
taken a minus sign and moved to other rows. Denote these
new submatrices as , ,

. Now we can adopt Lem. 3.6 to prove
the linear independence of the row vectors specified by

Fig. 6. Specify .

(23). Specifically, for every , select the
following vectors:
—When :
in the -th block of , where .

—When :
in the -th block of , where

, .
—When :

in the -th block of , where
, .

—When : :
all vectors in .

Then as illustrated by the small matrices on the right side of
Fig. 5, by adopting this selection mechanism, we have chosen

vectors, which form number of
submatrices positioned on different rows and columns.

Denote these submatrices as , where and
represent the block and user index, respec-

tively. Map to in Lem. 3.6, where and satisfy:
. As ,

this is a one to one mapping. Since the submatrices are posi-
tioned on different rows and columns, we can move them to the
principle diagonal and verify that the structures required in Lem.
3.6 are satisfied. This completes the proof.
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Fig. 7. Illustration of the matrix aggregated by vectors and its proper-
ties. Here , , and denote the element in the -th row
and -th column of , and , respectively.

Proof of Corollary 3.4: We first prove some key lemmas and
then turn to the main flow of the proof.
Lemma 3.7 (Sufficient Conditions for IA Feasibility): If there

exists a set of binary variables ,
, , , that

satisfy the following constraints, Problem 1 has solutions almost
surely.

(24)

(25)

(26)

(27)

Proof: Please refer to Appendix F for the proof.
Remark 3.7 (Interpretation of ): The binary vari-

ables represent a constraint allocation policy. An
IA constraint (defined in (19)) can be assigned to
transceivers with non-zero coefficients in , i.e.,

or . Here denotes the
-th column of . ( ) means that

the IA constraint is assigned to the decorrelator (pre-
coder) for the ( )-th stream at Rx (Tx ).
Remark 3.8 (Meaning of Constraints in Lem. 3.7):
• Equation (24) Each IA constraint is assigned
once and only once.

• Equation (25) The total number of constraints assigned to
the decorrelator of any stream, i.e., is no more than the
length of this decorrelator, i.e., .

• Equation (26) The dual version of (25).
• Equation (27) The constraint assignment policy

is symmetric w.r.t. Rx side stream index
or Tx side stream index .

The following lemma illustrate the relation between the suf-
ficient conditions proposed in Lem. 3.7 and the necessary con-
ditions proposed in Thm. 3.1.
Lemma 3.8 (Necessary Conditions of IA Feasibility): A net-

work configuration satisfies the necessary feasibility condi-
tion (6), if and only if there exists a set of binary variables

, , ,
, that satisfy (24)–(26).

Proof: Please refer to Appendix G for the proof.
Remark 3.9 (Insight of Lem. 3.7, 3.8): Prior works studying

the IA feasibility problem on MIMO interference networks
have shown that the properness3condition, i.e., (6), is the major
factor that characterizes the IA feasibility conditions. How-
ever,(6) contains number of correlated inequalities.
Such a complicated condition is hard to trace in both analysis
and practice.
Lem. 3.8 enables us to significantly simplify (6). By ex-

ploiting the idea of constraint allocation, Lem. 3.8 converts
(6) to(24)–(26), which consist of only number of con-
straints. Lem. 3.7 shows that with an additional requirement
(27) on the constraint allocation policy , the IA
feasibility is guaranteed.
Now we turn to the main flow of the proof for Cor. 3.4. The

“only if” side is directly derived from (6). The “if” side is com-
pleted by adopting Lem. 3.7. Please refer to Appendix H for the
details of constructing which satisfy (24)–(27).

IV. SUMMARY AND FUTURE WORK

This work further consolidates the theoretical basis of IA.
We have proved a sufficient condition of IA feasibility which
applies to MIMO interference networks with general config-
urations and discovered that IA feasibility is preserved when
scaling the network. Further analysis show that the sufficient
condition and the necessary conditions coincide in a wide range
of network configurations and provide some simple analytical
conditions. These results unify and extend the pertaining the-
oretical works in the literature [12]–[15] and facilitate future
analysis on MIMO interference networks.
Despite the progress made in the prior works and this work,

the issue of IA feasibility is yet not fully solved. In particular,
there may be gaps between the necessary conditions in Thm. 3.1
and the sufficient condition in Thm. 3.2 and therefore the exact
feasibility conditions of IA are still not determined in general.
Merging the gap between the necessary and the sufficient side
shall be the direction for future works.

APPENDIX

Proof of Lemma 3.1: When vectors are linearly in-
dependent, we have that . Note that if the lemma holds
when , it must hold in general. We will use contradiction
to prove the statement. Suppose , are alge-
braically dependent. Then from the definition, there must exist a
nonzero polynomial , such that . Without

3This terminology is first defined in [12], which means the number of the
free variables in transceiver design must be no less than the number of the IA
constraints.
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loss of generality, denote , where
contains all the -th degree terms in , . Then we have:

(28)

Note that all the terms in
have degree no less than 2,

from (28), ,

. Denote , we have that:

(29)

Note that the coefficient vectors are linearly independent,
is a bijective linear map. Therefore,

. Hence, from (29), we
have that , which means must
be a zero polynomial.
When is a zero polynomial, from (28), we have that

all the second order terms in is given
by . Hence, we have

, which shows . Therefore,
is also a zero polynomial. By using mathematical induction, we
can sequentially prove that are zero polynomials
and hence a zero polynomial, which is a contradiction with
the assumption that , are algebraically
dependent. This completes the proof.

Proof of Lemma 3.2: Denote as the poly-
nomial map defined by . Since are algebraically inde-
pendent, from [20, Thm.0.4], ,
where are variables in . Hence, .
Moreover, since is a regular map, from [21, Thm.10.2],

is constructible. With these two facts, we have that
is contained by the union of the vanishing sets of

some non-trivial ideals [22], whose dimension are at most
. Noticing that are independent random vari-

ables drawn from continuous distribution, the probability that
is zero. This completes the proof.

Proof of Lemma 3.3: Firstly, it is easy to see that a solution
of Problem 1 is a solution of Problem 2. Conversely, since the
channel state of the direct links are full rank with proba-
bility 1 and are independent of that of cross links ,
a solution of Problem 2 is also a solution of Problem 1with prob-
ability 1.

Proof of Lemma 3.5: We first have two lemmas.
Lemma D.1: In , the row vectors that are related to a

same Rx are linearly independent almost surely, i.e., for every
, vectors ,

, are linearly independent almost surely.
Proof: From (8), and the fact , we have that

every submatrix is full rank almost surely. Since for a given
, submatrices position on dif-
ferent rows and columns in , the lemma is proved.

Lemma D.2: As illustrated in Fig. 5, denote as the
vector consists of the first elements of . For
all , , ,

: .
Proof: Straight forward from the structure of .

We will prove the lemma by proving its converse-negative
proposition. From Lem. D.1, if is not full row rank, there
must exists a non-zero vector and set ,

such that

(30)

where
. Furthermore, from Lem.D.2 and the fact that

, we have that the first elements of must be
0. By combining this fact with (31), we have that:

(31)

which means the basis vectors of , are linearly
dependent. This completes the proof.

Proof of Lemma 3.6: As illustrated by matrix and in
Fig. 4, we can separate into two matrices, one consists of
the diagonal sub-blocks and sub-blocks that are not independent
of the diagonal blocks and the other consists of the sub-blocks
that are independent of the diagonal sub-blocks. It is sufficient
to show that the first matrix is full rank almost surely. From S3,
each diagonal block is full rank almost surely. Hence, as illus-
trated by matrix in Fig. 4, we can sequentially use row op-
eration to make sub-blocks ,

equal to and make the matrix block upper-trian-
gular. Noticing the association pattern S5, and the inter-block
independence property S4, these operations preserves the block
diagonal structure S2 and the full rankness of the diagonal sub-
blocks. Then we can further adopt row operation to make the
matrix block diagonal, e.g., matrix in Fig. 4. Since each
sub-block is full rank almost surely, the entire matrix is full rank
almost surely.

Proof of Lemma 3.7:
Illustration of the Proof: We first illustrate the outline of

the proof via an example and give out the rigorous proof in the
next subsection.
Consider a 3-pairs MIMO interference network with config-

uration . The constraint allo-
cation is given by (32).

(32)

From Thm. 3.2, to prove the lemma, we only need to show
that is full row rank almost surely.
As illustrated by Fig. 7, consider the matrix (we have

rearranged the order of the rows for clearer illustration). In this
network, we have 10 polynomials in (19) and 10 variables in

. Hence is a 10 10 matrix. We need to prove that
is nonsingular, i.e., almost surely.

The major properties of that lead to its nonsingularity
are labeled in Fig. 7. We first carefully arrange the order of
vectors . In particular, index sequences that
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satisfy or are placed in the upper and
lower part of , respectively. We partition by rows ac-
cording to whether or , and by columns ac-
cording to whether the column is occupied by or .
Then as illustrated by Label A in Fig. 7, is partitioned
into four submatrices. and are block-diagonal as we
have reordered the rows in . As highlighted by Label C, all
the diagonal blocks of , are full rank almost surely.
Thus we have , are nonsingular almost surely, i.e.,

, almost surely.
From condition (27), if an element appears in ,

it will not appear in other sub-matrices of . Hence, as il-
lustrated by Label D in Fig. 7, is independent of the other
three submatrices. Then from the Leibniz formula, we have that

holds almost surely.
Extending to General Configurations: We will show that

properties of illustrated by Labels A-D in Fig. 7 hold for
generic configurations.
Denote as a set binary variables that satisfy

(24)–(27). Without loss of generality, suppose condition(27)
holds for .
Reorder the rows of such that the row vec-

tors which satisfy appear in the
upper part of the matrix. To show that is full row
rank, we need to show there exists a sub-matrix

of , whose
determinant is non-zero almost surely. Construct by re-
moving the columns which contain the coefficients of ,

, where , , , , , and satisfy:

(33)

(34)

where , .

In the following analysis, we will partition in the same
way as that in the example above and show that the major prop-
erties labeled in Fig. 7 still hold.
• is full rank almost surely: Consider the
columns of . From (33), these columns are also the
first (note that from (25), ) columns
of . Hence from the form of vectors , we
have that elements in these columns are non-vanishing
if and only if index , . In , only the
first rows are non-vanishing. Repeat the same anal-
ysis for other columns and we can show that is a

block diagonal ma-
trix, with diagonal block sizes ,
respectively. From Fig. 1, (8), and (9), we have that the
elements in a same diagonal blocks are independent of
each other, hence almost surely.

• is full rank almost surely : Using the analysis similar
to above, we can show that is also block-diagonal and

almost surely.
• is independent of , , and : From Fig. 1,
(8), and(9), an element , ,

only appears in vectors
. Hence condition (27) assure that if

appears in , it appears in neither of
the other three sub-matrices. This proves that is
independent of , , and .

The three facts above show that almost
surely. This completes the proof.

Proof of Lemma 3.8: We first prove the “only if” side.
Denote as a set of binary variables that satisfy
(24)–(26). Then we have:

(35)

(36)

, where (35) is true due to (25), (26), and (36) is given by
(24). This completes the “only if” side of the proof.
Then we turn to the “if” side. We adopt a constructive

approach. In following algorithm4, we will propose a method
to construct the binary variables and show that
when conditions (6) is true, the binary variables
constructed by Alg. H3 satisfy (24)–(26).
We first define two notions which will be used in the al-

gorithm. To indicate how far the constraint assignment policy
is from satisfying constraints (25), (26), we de-

fine:
Definition 1 (Constraint Pressure):

(37)

To update the constraint assignment policy, we introduce the
following data structure.

Definition 2 (Pressure Transfer Tree (PTT)): As illustrated
by Fig. 8(a), define a weighted tree data structure with the fol-
lowing properties:
— The weight of the nodes in this tree is given by the con-
straint pressure, i.e., .

— The constraint pressure of a parent node and its child nodes
have different superscript, i.e., or .

— The link strength between two nodes, e.g., and is
given by , if is the parent node, or , if
is the parent node.
Algorithm 1 (Construct ) :

• Initialize the constraint allocation: Randomly gen-
erate a constraint allocation policy, i.e.,
such that: , ,

, , .
Calculate according to (37).

4Note that this algorithm may not be the only way to construct
.
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Fig. 8. Illustrative example of the “pressure transfer tree” and the corresponding operations in Alg. 1. A) A tree generated in Step A and B; B) Pressure transfer
in Step C; C) Removal of depleted links and neutralized roots in Step D.

• Update the constraint allocation policy: While there
exist “overloaded streams”, i.e., or , do
the following to update :
A. Initialization: Select a negative pressure, e.g.,

. Set to be the root node of a PTT.
B. Add Leaf nodes to the pressure transfer tree: For

every leaf nodes (i.e., nodes without child nodes) e.g.,
, with depths equal to the height of the tree (i.e.,

the nodes at the bottom in Fig. 8):
For every , : If

, add as a child node of .
C. Transfer pressure from root to leaf nodes: For

every leaf node just added to the tree in Step B
with positive pressure, i.e., ,
transfer pressure from root to these leafs by updating

. For instance, as illustrated in Fig. 8(b),

is a
root-to-leaf branch of the tree (red lines). Transfer
pressure from to by setting: ,

, , . Hence
we have is increased by 1 and is reduced
by 1. This operation can also be done for the green
line in Fig. 8(b).

D. Remove the “depleted” links and “neutralized”
roots:
• If the strength of a link, i.e., or , becomes
0 after Step C: Separate the subtree rooted from the
child node of this link from the original tree.

• If the root of a pressure transfer tree (including
the subtrees just separated from the original tree)
is nonnegative, remove the root and hence the
subtrees rooted from each child node of the root
become new trees. Repeat this process until all
roots are negative. For each newly generated pres-
sure transfer tree, repeat Steps B-D (Please refer to
Fig. 8(c) for an example).

E. Exit Conditions: Repeat Steps A-D until one of the
following cases appears.
Case 1: All trees become empty.
Case 2: No new leaf node can added for any of the
non-empty trees in Step B.
Set to be the current value of

Exit the algorithm.

Note that if Alg. 1 exits with Case 1, we have that
, and

, , which lead to (6). Hence to prove the “if” side, we
only need to prove the following proposition:

Proposition G.1 (Exit State of Alg. 1): When (6) is true,
Alg. 1 always exits with Case 1.
We prove Prop G.1 by contradiction. Equation (6) is equiva-

lent to the following inequalities:

(38)
where

, (or )
denotes that there exists (or ) such that

. If Alg. 1 exits with Case 2, from the exit condition, there
must exist a non-empty pressure transfer tree such that:
• Root node has negative pressure.
• All other nodes are non-positive. This is because positive
nodes are either “neutralized” by the root in Step C or sep-
arated from the tree in Step D.

• No other nodes can be added to the tree, which implies
and for any , in the tree and

, not in the tree.
Hence, set in (38) to be : both and are
in the tree that are in the remaining pressure transfer tree, we
have:

(39)
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which contradicts with (38).
Construct to Prove Corollary 3.4: Without

loss of generality, assume , . Modify Alg. 1 in
Appendix G to construct .

Algorithm 2 (Variation of Algorithm 1): Adopt Alg. 1 with
the following modifications:
• In the Initialization Step: set ,

.
• In Step C: All pressure transfer operations must be sym-
metric w.r.t to index , i.e., the operations on ( ),
, ( ) must be the same.

Suppose Prop G.1 still holds for Alg. 2 . Then the output of
Alg. 2 satisfies (24)–(27). Therefore, we focus on
proving Prop.G.1.
From (37), after initialization, we have that

(40)

Since all , , , and are symmetric w.r.t. to
index , after we perform Steps A, B of the constraint updating
process, the pressure transfer trees are also symmetric w.r.t. to
index . Further note that , in Step C, the symmetric oper-
ation is always feasible. As a result, we can follow the analysis
used in Appendix G, and prove Prop G.1.
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