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Generalized Interference Alignment—Part I:
Theoretical Framework

Liangzhong Ruan, Member, IEEE, Vincent K. N. Lau, Fellow, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Interference alignment (IA) has attracted enormous
research interest as it achieves optimal capacity scaling with re-
spect to signal to noise ratio on interference networks. IA has also
recently emerged as an effective tool in engineering interference for
secrecy protection on wireless wiretap networks. However, despite
the numerous works dedicated to IA, two of its fundamental is-
sues, i.e., feasibility conditions and transceiver design, are not com-
pletely addressed in the literature. In this two part paper, a gener-
alized interference alignment (GIA) technique is proposed to en-
hance the IA’s capability in secrecy protection. A theoretical frame-
work is established to analyze the two fundamental issues of GIA in
Part I and then the performance of GIA in large-scale stochastic
networks is characterized to illustrate how GIA benefits secrecy
protection in Part II. The theoretical framework for GIA adopts
methodologies from algebraic geometry, determines the necessary
and sufficient feasibility conditions of GIA, and generates a set of
algorithms for solving the GIA problem. This framework sets up a
foundation for the development and implementation of GIA.

Index Terms—MIMO, interference alignment, algebraic geom-
etry.

I. INTRODUCTION

A. Background and Survey

I NTERFERENCE is a major factor that limits the perfor-
mance of wireless communication networks. Conventional

interference control schemes, most of which adopt the prin-
ciple of channel orthogonalization are in general non-capacity
achieving [1], [2]. IA reduces the effect of aggregated interfer-
ence by aligning interference from multiple sources into lower-
dimensional subspaces at receivers [3]. It achieves the optimal
capacity scaling with respect to the signal to noise ratio (SNR)
in interference networks [4]. On the other hand, in a wireless
network that requires the secure exchange of confidential mes-
sages, interference, which enables legitimate partners to im-
pede the eavesdropping receivers (ERs), emerges as a poten-
tially valuable resource for wireless network secrecy [5], [6].
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In order to impede the ERs without interfering with legitimate
receivers (LRs), a few studies have adopted the IA scheme pro-
posed in [4] to promote wireless secrecy [7], [8]. However, the
scheme in [4] is based on infinite-dimensional symbol exten-
sion, making it difficult to implement in practice.
To avoid the infinite-dimension issue, researchers have devel-

oped spatial-domain IA schemes, in which interference is coor-
dinated and canceled via the finite signal dimension provided by
multiple antennas. For this scheme, there are two fundamental
issues: (1) When is IA (without symbol extension) feasible; and
(2) Given that IA is feasible, how to design an algorithm to find
transceivers (precoders and decoders) that cancel all interfer-
ence? For the feasibility issue, the pioneering works charac-
terize the IA feasibility conditions under some special config-
urations [9]–[12]. In [13], a numerical test that checks IA fea-
sibility is proposed. In the authors' prior work [14], a sufficient
IA feasibility condition is proved for MIMO interference net-
works with a general configuration. This results unifies and ex-
tends those in [9]–[11]. For the transceiver design issue, there
are two categories of algorithms: constructive and iterative. The
constructive algorithms apply to networks with special config-
urations [15]–[17]. The iterative algorithms [18]–[20] apply to
networks with general configurations, but they converge to local
optimums. Table I and II in Section II summarize the contribu-
tions and limitations of the existing works on IA.
Furthermore, as will be discussed in detail in Part II, to pro-

mote the capability of IA in secrecy protection, it is desirable to
introduce legitimate jammers (LJs) into the network and jointly
coordinate the transmission policy of all legitimate partners to
create stronger interference at the ERs without affecting the
LRs. In this paper, this technique is referred to as GIA. To de-
velop such a technique, the following challenges need to be ad-
dressed:
• Determine the feasibility conditions of GIA: Feasibility
analysis of IA is challenging because IA constraints are
sets of nonlinear equations, for which no systematic tool
exists to analyze the feasible region. In the authors' prior
work [14], by exploiting the connection between the fea-
sibility of IA and the linear independence of the first order
terms of IA constraints, an algebraic framework was estab-
lished which gives a sufficient condition of IA feasibility.
However, this framework is incomplete as it does not char-
acterize necessary feasibility conditions.

• Design GIA transceivers under general configuration:
For networks with a general configuration, existing IA
transceiver design algorithms may not be able to find a so-
lution even when IA is feasible. The IA transceiver design
problem is usually formulated into optimization problems
[18]–[21]. However, these problems are non-convex,
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TABLE I
APPLICABLE CONFIGURATIONS OF EXISTING NECESSARY AND

SUFFICIENT IA FEASIBILITY CONDITIONS

TABLE II
APPLICABLE CONFIGURATIONS OF EXISTING IA ALGORITHMS

making it challenging to find solutions. Moreover, in a net-
work with many nodes, the dimension of the transceiver
matrices is large. Solving a non-convex, high-dimensional
problem is difficult.

B. Contribution of This Work
In this work, we consider MIMOwireless-tap networks1 with

LJs. To address the challenge in GIA feasibility analysis, we
have established a theoretical framework by employing tools
from algebraic geometry [22]. This framework shows the (al-
most sure) equivalence of the feasibility of the GIA transceiver
design problem, the algebraic independence of GIA constraints,
and the linear independence of the first order terms of GIA con-
straints, and hence enables us to propose and prove a neces-
sary and sufficient GIA feasibility condition for networks with
general configurations. By combining this condition with graph
theory, we characterize the relationship between network con-
figuration and GIA feasibility.
To address the challenge in GIA transceiver design, we ex-

ploit the equivalence between algebraic independence of GIA
constraints and full rankness of their Jacobian matrix, and prove
that when GIA is feasible, in a set of corresponding interference
minimization problems, there is no performance gap between
local and global optimums. This fact enables us to find solutions
for the GIA transceiver design problem by adopting existing
local search algorithms. The feasibility analysis and transceiver
design for GIA covers those for IA as a special case.

C. Notations
1) General: , , , and represent scalar, vector, matrix,

and set/space, respectively. , , and denote the set of

1“wireless wiretap” is referred to as “wireless-tap” in this paper to emphasize
the wireless nature of the propagation medium.

natural numbers, integers, real numbers, and complex numbers,
respectively.
2) Functions: denotes that divides , and

denotes modulo , . is the indicator function.
is the Binomial coefficient with parameters .

represents the absolute value of scalar , and represents the
cardinality of set . denotes a function of all the elements
in set .
3) Linear Algebra: The operators , , , ,

, , , , and denote transpose, Her-
mitian transpose, determinant, rank, Frobenius norm, trace,
Moore--Penrose pseudo inverse, null space, and vectorization
of a matrix. and denote the linear space
spanned by the column vectors of and the vectors in set

, respectively. denotes the dimension of a space.
represents a block diagonal matrix with

submatrices on its -th diagonal. For instance,

, and
.

4) Algebraic Geometry: For a field , rep-
resents the field of rational functions in variables
with coefficients drawn from . Notation
denotes the ideal generated by polynomials ;
notation denotes vanishing set of an ideal; and notation

represents the Jacobian matrix of polyno-
mials evaluated at point

.
II. PROBLEM FORMULATION

In this section, the system model of wireless-tap networks is
described, which is a generalization of interference networks,
and then the GIA transceiver design problem is formulated.

A. System Model
Consider a network consisting of legitimate transmitter

(LT)-LR pairs, LJs and ERs,2 as illustrated in Fig. 1. (Note
that LTs and LJs are indexed from 1 to and from to
, respectively.) Suppose LT (or LJ , if ), LR , and ER
are equipped with , , and antennas, respectively.

At each time slot, LT (or LJ) sends independent symbols.
LT attempts to send confidential messages to LR , while ER
attempts to intercept these messages. LJ transmits dummy

data to generate interference.
The received signals at LR and ER are

given by

(1)

where , , are the
channel matrices from LT (or LJ) to LR or ER , whose en-

2In fact, as the proposed GIA technique does not require the channel state of
the eavesdropping network, the ERs are not involved in GIA feasibility analysis.
However, they remain in the system model to make the notation consistent with
Part II.
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Fig. 1. Network configuration of wireless-tap networks with LJs.

Fig. 2. An illustration of the correspondence of Algebra, Geometry and Alge-
braic geometry, where denotes the vanishing set of the ideal gen-
erated by [23, Def. 1, Section 1.4].

tries are independent random variables drawn from continuous
distributions; is the encoded information symbol at
LT (or LJ) ; is the precoder at LT (or LJ) ;

, is the decoder at LR or ER ;
and , is the white Gaussian noise with
zero mean and unit variance. The transmission power of LT (or
LJ) is given by

(2)

Define the configuration of the legitimate network as
.

Remark 2.1 (Applicability to Interference Networks): The
wireless-tap network proposed above is a generalization of in-
terference networks. Specifically, when there is no LJ, i.e.,
, and the channel state of the eavesdropping links are zero ma-

trices, i.e., , , the channel model (1) is reduced
to that of conventional MIMO interference networks. Hence, as
further illustrated in Remark 2.2, the theoretical results obtained
in this work apply to MIMO interference networks.

B. GIA Transceiver Design With Flexible Alignment Set

Classical IA requires the canceling of interference on all cross
links. However, in large-scale networks this requirement may
be infeasible and unnecessary. On one hand, the limited policy
space in transceiver design may be insufficient to cancel inter-
ference on all cross links; on the other hand, some links may
have very deep fading and hence there is no need to cancel inter-
ference on these links. Hence, to develop GIA strategies that fit
large-scale networks, a more flexible approach must be adopted,
in which the legitimate partners selectively cancel interference

on a subset of cross links. This problem is formulated as fol-
lows:
Problem 2.1 (GIA Transceiver Design): Design transceivers

, , which sat-
isfy the following constraints:

(3)

(4)
and

(5)

where

is the alignment set. It characterizes the set of cross links on
which interference is to be canceled.
Remark 2.2 (Connection Between IA and GIA Problems):

When there are no LJs and the alignment set includes all cross
links, i.e., , , Problem 2.1 is converted to
the classical IA problem on MIMO interference networks [9]
(without symbol extension).
Table I and Table II outline the contribution of existing works

on IA (i.e., with , ) feasibility analysis and
transceiver design. From these tables, it can be seen that IA fea-
sibility conditions are determined for special configurations, and
constructive IA transceiver design algorithms are also only ap-
plicable to special cases. Although existing iterative IA trans-
ceiver design algorithms apply to general configurations, they
may not converge to a global optimum. In other words, the
outputs of iterative algorithms may not be solutions of the IA
problem. In this paper, we will determine the GIA feasibility
conditions and develop algorithms that solve GIA problems for
networks with general configuration and alignment sets.

III. PRELIMINARIES
In this section, the mathematical approaches adopted in the

existing theoretical works is outlined. Then the notion of alge-
braic independence is introduced, which is the most important
mathematical concept adopted in this work.

A. Challenge in IA Feasibility Analysis
There is an inherent connection between the feasibility of a

set of polynomial equations and algebraic geometry [24], as il-
lustrated in Fig. 2. As a result, several prior works on IA feasi-
bility analysis convert the IA problem into a polynomial form
and then adopt tools from algebraic geometry. In fact, Problem
2.1 can be converted to the following form:3
Problem 3.1 (Polynomial Form of GIA Transceiver Design):

Design , such that

(6)

3This statement will be proved formally in Theorem 4.1.
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where , , , ,
and represent the -th column of and , respec-
tively. is the element in the -th row and -th column
of , and represents the submatrix inter-
sected by to -th rows and to -th columns of .

Challenge of Nonlinearity
In the polynomials defined above, there are second order
terms, i.e., .
The presence of these second order terms makes it difficult to
analyze the feasible region of Problem 3.1. This is because there
are very few systematic tools that address the solvability issue
of a set of nonlinear polynomial equations.

B. Challenge in IA Transceiver Design

Existing IA transceiver design algorithms can be classified
into two categories: constructive algorithms and iterative al-
gorithms. The constructive algorithms design transceivers ac-
cording to some closed-form functions of the channel states.
However, as illustrated in Table II, these algorithms only apply
to limited configurations.
Iterative algorithms are applicable to networks with a gen-

eral configuration. The most influential iterative algorithm was
proposed in [18] and [19].4 This algorithm searches for the IA
solution by exploiting the uplink and downlink reciprocity and
alternatively updates precoders and decoders in the following
problem.
Problem 3.2 (Interference Minimization):

(7)

(8)

Although widely adopted in the literature, the alternative
minimization algorithm converges to a local optimum. In other
words, it may not be able to cancel all interference even in IA
feasible regions.5 The convergence issue is challenging because
of the non-convexity challenge elaborated below.

Challenge of Non-convexity
(1) The objective function (7) is not a convex function of the
optimization variables ;

(2) The policy space defined by (8) is non-convex.

C. Introduction to Algebraic Independence

To overcome the nonlinearity and non-convexity challenges
in the IA problem, a theoretical framework will be developed
based on one of the key notions in algebraic geometry, i.e., al-
gebraic independence. In this section, the definition of algebraic
independence will be introduced and intuitions associated with
the notion will be highlighted.

4There are some differences between the algorithms proposed in [18] and
[19]. However, the structure and the idea of these two algorithms are similar.
5That having been said, from the extensive numerical tests in Section V, we

tend to believe that the algorithm proposed in [18] converges to a global op-
timum when IA is feasible. However, this conjecture is not proved in the liter-
ature.

First recall linear independence. Let be a field, then the
standard definition of linear independence is given by:
Definition 1 (Linear Independence—Form I): A set of vec-

tors are linearly independent iff
, .

In fact, Definition 1 can be transformed to the following
equivalent form, which involves linear functions:
Definition 2 (Linear Independence—Form II): Define

, ,
where is the -th element of . Coefficient vectors
are linearly independent iff , non-zero

.
With Definition 2, we are ready to introduce algebraic inde-

pendence. In fact, one just need to replace “linear function” by
“polynomial” in Definition 2 to arrive at the definition for alge-
braic independence:
Definition 3 (Algebraic Independence):

, , are algebraically
independent iff , non-zero

.
Remark 3.1 (Linear and Algebraic Independence): The un-

derlined parts in Definition 2 and 3 highlight that algebraic in-
dependence is an extension of linear independence. In the light
of this information, it is reasonable to guess the properties of
algebraic independence based on those of linear independence.
For instance, if a statement holds conditional on linear indepen-
dence, it is possible that a similar statement also holds condi-
tional on algebraic independence. As will be illustrated in Re-
mark 4.1, this intuition does help to construct a unified alge-
braic framework for both GIA feasibility analysis and algorithm
design.

IV. FEASIBILITY CONDITIONS AND TRANSCEIVER DESIGN

In this section, the main theoretical results on the GIA feasi-
bility analysis and transceiver design are proposed and proved.
First, an algebraic framework is established, which shows the
(almost sure) equivalence of 1) feasibility of Problem 2.1, 2)
algebraic independence of defined in (6), 3) linear in-
dependence of the coefficient vectors of the first order terms in

, and 4) full rankness of the Jacobian matrix of .
Based on this framework, a necessary and sufficient feasibility
condition of the GIA problem and design algorithms will be
given to solve the GIA problem.

A. Mathematical Framework

We will first define the coefficient matrix of the first order
terms of GIA constraints, then list the three theorems that con-
struct the algebraic framework outlined in Fig. 3, and finally
elaborate the intuition of these theorems by showing their coun-
terparts in linear algebra.
Define as the matrix aggregated by the coefficient

vectors of the first order terms in . The struc-
ture of is described in Fig. 4, where the submatrices

and
are defined by (9)–(10) at the bottom of the next page, where

denotes the element in the -th row and -th column
of , . Note
that the coefficient vectors of the first order terms in
are linearly independent iff is full row-rank.
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Fig. 3. Outline of the algebraic framework for the GIA problem.

The following three theorems construct the algebraic frame-
work for GIA feasibility analysis and algorithm design.
Theorem 4.1 (Equivalence of Feasibility and Algebraic In-

dependence): Under a network configuration , Problem 2.1
has solutions almost surely6 iff the polynomials defined
in (6) are algebraically independent. The solution of Problem
2.1 can be obtained by first solving Problem 3.1 and then con-
structing transceivers via (11),

(11)

Proof: Please refer to Appendix A for the proof.
Theorem 4.2 (Equivalence of Algebraic Independence and

Linear Independence): Under a network configuration , ma-
trix (defined in Fig. 4) is either almost surely full row-rank
or always row-rank deficient. In the first case, the polynomials

defined in (6) are almost surely algebraically indepen-
dent. Otherwise, are algebraically dependent.

Proof: Please refer to Appendix B for the proof.
Theorem 4.3 (Equivalence of Algebraic Independence and

Nonsingularity of Jacobian Matrix): The polynomials
defined in (6) are algebraically independent iff the Jacobian ma-
trix is full row-rank on a dense and open subset of
, where .
Proof: Please refer to Appendix C for the proof.

6In this paper, “almost surely” means “with probability 1.”

Remark 4.1 (Intuition from Linear Independence): To inter-
pret the algebraic framework outlined in Fig. 3, consider a set
of linear functions

(12)

where coefficient vector
and variable vector . Define

...

From linear algebra, the following proposition holds:
Proposition 4.1 (Equivalence of Linear Independence and

Feasibility): Consider a vector whose ele-
ments are independent random variables drawn from continuous
distribution. Then linear equation set , ,
i.e., has solutions iff vectors are linearly
independent.
Furthermore, for any vector , the Jacobian matrix is

...
. . .

... (13)

Hence, the following proposition is also true:
Proposition 4.2 (Equivalence of Linear Independence and

Nonsingularity of Jacobian Matrix): The coefficient vectors of
are linearly independent iff the Jacobian matrix

is full row-rank for any .
By comparing Proposition 4.1 and 4.2 with Theorem 4.1 and

4.3, it can be seen that linear independence and algebraic inde-
pendence play a similar role in these statements. This fact fits
the insight illustrated in Remark 3.1. Actually, in the authors'
previous work [14, Lem. 3.1], it was shown that if the coeffi-
cient vectors of the first order terms of a set of polynomials are
linearly independent, then these polynomials are algebraically
independent. The inverse proposition of [14, Lem. 3.1] is not
true for general polynomials. Yet, in this paper, by exploiting
the special structure of the polynomials defined in (6), the in-
verse proposition for GIA problems has been proved and hence
Theorem 4.2 is obtained.

...
...

. . .
...

(9)

(10)
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Fig. 4. The matrix scattered by the coefficient vectors of the linear terms in the polynomial form of the GIA constraints. For clear representation, is equal to
in the figure. When , part of the rows will not appear. The zero matrices which appear on the same block row with and have rows.

The zero matrices which appear on the same block column with or have and columns, respectively.

B. Feasibility Conditions

Overcoming the Challenge of Nonlinearity
Based on the algebraic framework established in Section IV-A,
we have the following theorem which determines the feasibility
condition of GIA.

Theorem 4.4 (Necessary and Sufficient Feasibility Condition):
Problem 2 has solutions almost surely iff matrix in Fig. 4 is
full row-rank.

Proof: This theorem is an immediate consequence of
Theorems 4.1 and 4.2.

With Theorem 4.4, there are three propositions illustrating the
general trends on GIA feasibility.
Corollary 4.1 (Configuration and Alignment Set Dominate

GIA Feasibility): Under given network configuration and
alignment set , Problem 2.1 is either always infeasible or fea-
sible almost surely.

Proof: This corollary is an immediate consequence of The-
orem 4.4 and Lemma A.3.
Corollary 4.2 (Scalability of GIA Feasibility):

Under given alignment set , scaling the legiti-
mate network configuration does not affect the GIA
feasibility state, i.e., networks with configuration

, are either all GIA feasible or
all GIA infeasible.

Proof: The proof is similar to that of [14, Cor. 3.2].
Remark 4.2 (Contributions of Corollary 4.1, 4.2): Theorem

4.4 gives a complete characterization of the feasibility condition
of GIA problems. However, the feasibility condition in The-
orem 4.4 is complicated as it relates to network configuration

, alignment set , as well as the instantaneous channel state
. Corollary 4.1 simplifies this condition by showing that

with probability 1, the feasible state is determined by config-
uration and alignment set . Corollary 4.2 further simplifies
this condition by showing that networks with configurations dif-
ferent by a factor share the same feasible state.
One application of the propositions is an ef-

ficient method to check GIA feasibility. To de-
termine if a set of networks with configuration

, is GIA feasible or not: set ,
randomly generate one channel state, and check if is full
row-rank or not.
Corollary 4.3 (Necessary GIA Feasibility Condition): A net-

work with configuration and alignment set is GIA feasible
only if

(14)

Proof: Denote as the submatrix of that cor-
responds to . has rows and

non-zero columns. Hence, when (14) does not hold for a certain
, the corresponding is row-rank deficient and so

is . From Theorem 4.4, the network is infeasible. This
completes the proof.
Remark 4.3 (Properness and Feasibility): In the pioneering

work on IA feasibility analysis [9], the authors conjecture that
a MIMO interference network is IA feasible only if the net-
work is proper; i.e., the number of variables in transceiver de-
sign is no more than the number of IA constraints. This conjec-
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ture was later confirmed by [10] and [11]. Corollary 4.3 shows
that properness is still a necessary feasibility condition for GIA
problems.
In the following, two corollaries are given which reveal

simple insights into how legitimate network configuration
and alignment set determine the GIA feasibility.
Corollary 4.4 (Symmetric Configuration): Consider net-

works in which
1) configuration is symmetric, i.e., , , and

, , with ;
2) alignment set between the LRs and LTs is -regular, i.e.,

; and
3) each LJ chooses the proper number of LRs to coordinate with,
i.e.,

. In these networks, Problem 2.1
has solutions almost surely iff inequality (15) is true, where

(15)

Proof: Please refer to Appendix D for the proof.
Corollary 4.5 (“Divisible” Configuration): When the net-

work configuration satisfies
1) , and
2) , or , ,
Problem 2.1 has solutions almost surely iff inequality (16) is
satisfied, where

(16)
Proof: Please refer to Appendix E for the proof.

Remark 4.4 (Backward Compatibility to Existing Works): If
one specify the GIA problem to the classical IA problem, i.e.,
sets and , then Corollary 4.4 and 4.5 are
reduced to [14, Cor. 3.3] and [14, Cor. 3.4], respectively. Hence,
these results are consistent with prior theoretical results on IA
feasibility.

C. GIA Transceiver Design

As illustrated in Section III-B, IA transceiver design is chal-
lenging because neither the policy space nor the objective func-
tion of the interference minimization problem is convex. This
challenge will be overcome in two steps. In the first step, trans-
form the problem to an equivalent onewith convex policy space.
In the second step, prove that there is no performance gap be-
tween the local and global optimums. Hence, despite the fact
that the objective function is non-convex, the problem can be
solved by various local search algorithms.

Overcoming the Challenge of Non-convexity (Step 1)
In Problem 3.1, the policy space is given by

, which is a convex
set. Hence, the first step is achieved by Theorem 4.1.

Then, transform Problem 3.1 to the following optimiza-
tion problem (Problem 4.1). Note that Problem 3.1 is solved
iff there exists a solution to Problem 4.1 that satisfies

.
Problem 4.1 (Optimization Form of GIA Problem):

(17)

where , is defined in (6),
, , , and is a

nonnegative, convex and continuously differentiable function.
iff , .

Overcoming the Challenge of Non-convexity (Step 2)
Theorem 4.5 (No Gap between Local and Global Optimums):
When the polynomial form of the GIA problem, i.e., Problem
3.1 is feasible, in Problem 4.1, every local optimum is globally
optimal.

Proof: Please refer to Appendix F for the proof.

Remark 4.5 (The Role of Nonsingular Jacobian Matrix):
The full row-rankness of the Jacobian matrix
plays a key role in the proof of Theorem 4.5. To see how it
works, consider a polynomial map . At point

,
(18)

Consider a neighborhood of with and suppose
the Jacobian matrix is full row rank. In this case, the
third term on the right-hand-side of (18) can be ignored com-
pared to the second term, and

can be any vector in the neighborhood of .
Cascade with a convex function , and sup-

pose is a local optimum of . Then from the defi-
nition of local optimum and the property of just obtained,

for any vector in the neigh-
borhood of . This implies is a local optimum of
. Since is convex, must also be a global optimum of
and therefore is a global optimum of .
For Theorem 4.5, there is a weaker condition on the nonsin-

gularity of the Jacobian matrix, i.e., full row-rank on a dense
open subset. Yet, by imposing a stronger condition on the form
of , i.e., being continuously differentiable, the proof can be
completed.
Remark 4.6 (Theoretical Basis for GIA Transceiver Design):

As illustrated in Fig. 5, based on Theorem 4.5, one can gen-
erate a set of algorithms that solve the GIA transceiver design
problem. Moreover, the freedom in designing the specific form
of and choosing local search algorithms can be exploited to
improve algorithm performances, such as message overhead,
convergence speed and throughput. Hence, Theorem 4.5 sets up
a theoretical basis to design and improve GIA transceiver design
algorithms.
Remark 4.7 (Consistency with Existing Theoretical Result):

In [25], the authors have noted that IA transceiver design is
highly challenging, but “there might still exist a polynomial
time algorithm that can solve the problem with high prob-
ability (e.g., for almost all channel coefficients).” Noting that
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the polynomial form of the GIA transceiver design problem,
i.e., Problem 3.1 is equivalent to the original GIA transceiver
design problem, i.e., Problem 2.1 for almost all channel coeffi-
cients, the algorithms outlined in Fig. 5 solve the original GIA
transceiver design problem almost surely. In this sense, this re-
sult confirms the prediction made in [25].
As an illustration, one specific GIA transceiver design algo-

rithm will be presented. Let ; then Problem
4.1 can be rewritten as the follows:
Problem 4.2 (Reformed Interference Minimization):

(19)

The following algorithm solves Problem 4.2:

Algorithm 1 (GIA Transceiver Design)
• Step 1 Initialization: Randomly generate ,

.
• Step 2 Minimize interference leakage at the receiver
side: At LR , update :

(20)

where ,
, ,

• Step 3Minimize interference leakage at the transmitter
side: At LT (LJ) , update :

(21)

where ...
,

,

• Repeat Step 2 and 3 until and converge. Substitute
in (11) and obtain .

Corollary 4.6 (Convergence of Algorithm 1): Algorithm 1 al-
ways converges. When IA is feasible, is a solution
of Problem 2.1 almost surely.

Proof: Please refer to Appendix G for the proof.
Remark 4.8 (Execute Algorithm 1 Distributively): Similar

to the classical iterative IA algorithm [18], [20], Algorithm 1
can be executed distributively. To achieve this, after Step 2,
LR needs to send the updated to LTs (or LJs) with index

, and after Step 3, LT (or LJ) needs to send the
updated to LRs with index .

Fig. 5. Outline of GIA transceiver design algorithms based on Theorem 4.5.

V. NUMERICAL RESULTS
In this section, wewill numerically test the convergence prop-

erties of the proposed algorithms, i.e., Algorithm 1 and the clas-
sical iterative IA algorithm proposed in [18]. Consider classical
interference networks, i.e., networks with , .
To verify if the IA algorithms can always find a solution in IA
feasible scenarios, the following test is adopted.
Test 1 (Convergence Test on Random Interference Networks):

Randomly select configuration within the set7

then randomly generate channel state following in-
dependent complex Gaussian distribution. First check if the
network is IA feasible by testing full row-rankness of matrix

(defined in Fig. 4). If the network is IA feasible, perform
the algorithm to be tested on this network. Denote the output
transceivers after rounds of iteration by .

are the initial guesses of the transceivers.
Define the normalized power of interference (dB) after rounds
of iteration as

(22)
If the normalized power of interference can be reduced below

dB after some , the algorithm passes the test. Otherwise,
if the algorithm converges to a point with , it fails
the test.
Test 1 was performed for times on both Algorithm 1 and

the classical iterative IA algorithm. In all the IA feasible sce-
narios (about cases), both algorithms pass the test.
This result verifies the claim of Corollary 4.6.
To demonstrate how network configuration affects the con-

vergence properties of the proposed algorithm and classical IA
algorithm, consider three similar networks
• Configuration 1 (Feasible Symmetric Network):

7The sizes of the networks are restricted so as to maintain manageable com-
putation load.
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Fig. 6. Normalized power of interference as a function of rounds of iter-
ation in different network configuration. For fair comparison, the output
transceivers of both algorithms are scaled so that and

remain constant.

• Configuration 2 (Feasible Asymmetric Network):

• Configuration 3 (Infeasible Network):

Fig. 6 illustrates the normalized power of interference
as a function of rounds of iteration under the proposed and
classical IA algorithms in the three network configurations. In
the two IA feasible networks, both algorithms converge sub-
linearly, with the proposed algorithm converging 2 dB and 4 dB
faster in the symmetric and asymmetric cases respectively. In
the IA infeasible network, under the classical IA algorithm,
converges to 21 dB, whereas the proposed algorithm reduces

to 28 dB after 100 rounds of iteration (and converges to
30 dB after 400 rounds).

VI. SUMMARY
In Part I, we proposed a GIA approach to further improve

the IA's capability in secrecy enhancement. As illustrated in
Fig. 3, we established an algebraic framework that reveals the
(almost sure) equivalence of 1) feasibility of GIA, 2) algebraic
independence of GIA constraints, 3) linear independence of the
coefficient vectors of the first order terms in GIA constraints,
and 4) full rankness of the Jacobian matrix of GIA constraints.
This framework allows us to address the two fundamental is-
sues of GIA, i.e., feasibility conditions and transceiver design
and hence sets up a theoretical foundation for GIA (and IA, as
a special case) techniques.

APPENDIX A
PROOF OF THEOREM 4.1

To prove the “if” side, first prove the following lemma.
Lemma A.1 (Algebraic Independence Leads to Solutions):

are independent random variables
drawn from continuous distribution. Then if polynomials

, are algebraically

independent, equation set , has solu-
tions almost surely. Otherwise, the equation set has no solution
almost surely.

Proof: The first half of the lemma is proved in [14, Lem.
3.2]. Hence, the focus is on the second half of the lemma.
Denote as the polynomial map defined

by . Since are algebraically dependent, there exists a
non-zero polynomial such that . Then
for any point , .
On the other hand, since is a non-zero polynomial, and

are independent random variables
drawn from continuous distribution,
almost surely. Hence, almost surely.

Now turn to the main flow of the proof of the “if” side. From
Lemma A.1, when are algebraically independent,
Problem 3.1 has solutions almost surely. Then from (6), the
solution constructed by (11) satisfies (5). Further
noting that
• are functions of the channel state of the cross
links , and are hence independent of the
channel state of the direct links , and

• ,
we have that constructed by (11) satisfy (3) and (4)
almost surely. Hence, in this case, Problem 2.1 has solutions
almost surely.
The “only if” side will be proved by verifying its converse-

negative proposition:
Proposition A.1: When are algebraically dependent,

Problem 2.1 has no solution almost surely.
To prove this proposition, first prove following lemmas.
Lemma A.2 (Algebraic Independence of Random

Polynomials): The coefficients of polynomials
, are random variables

drawn from continuous distribution. Then polynomials
are either always algebraically dependent or algebraically
independent almost surely.

Proof: are algebraically dependent iff there exists a
non-zero polynomial such that

(23)

Without loss of generality, suppose has terms, whose coef-
ficients are given by ; then (23) can be rewritten
as a set of linear equations:

(24)

where , , is the number
of terms in after combining like terms. For
instance, suppose , and

; then

(25)

Hence, (24) is given by

(26)
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Note that (24) has non-zero solutions iff , i.e.,
is column-rank deficient. From Lemma A.3, (24) either al-

ways has no non-zero solutions or has non-zero solutions almost
surely. This completes the proof.
Lemma A.3 (Rank of a Random Matrix): Suppose the entries

of a matrix are either 0 or random variables drawn
from continuous distribution. Then is either always column-
rank deficient or full column-rank almost surely.

Proof: If , is always column-rank defi-
cient. Otherwise, denote all the submatrices in by

, where ; then is full column-rank
iff the determinant of at least one , is not
zero.
From the Leibniz formula [26, 6.1.1], the determinant is

given by a polynomial of the entries in . If this polynomial is a
zero polynomial, the determinant of is always 0. Otherwise,
noting that the entries of are drawn from continuous distri-
bution, the value of this polynomial is non-zero almost surely.
This completes the proof.
Now turn to the main flow of the proof of Proposition A.1.

Consider a solution of Problem 2.1. From (3), we
have that and , . Hence,
every (or ) has at least (or ) linearly independent
row vectors. Denote the submatrices aggregated by these lin-
early independent rows by (or ). Transform
as follows:

(27)

and let and be the nonconstant parts in and ,
respectively. Then, satisfies a set of polynomial
equations in the same form as (6), in which the position of

in only affects the indices of the coef-
ficients. For example, suppose , are given by the last

and submatrices in and respectively;
then (5) can be rewritten as

(28)
which is the same as (6), except for the indices of the coeffi-
cients.
Since all entries the of channel state matrices are in-

dependent random variables drawn from continuous distribu-
tion, we have that if Problem 3.1 has no solution almost surely,
for every possible position of , the corresponding
equation set also has no solution almost surely. Hence, Problem
2.1 has no solution almost surely.

APPENDIX B
PROOF OF THEOREM 4.2

The proof of the first statement in Theorem 4.2 is given by
Lemma A.3.
If matrix is full row-rank almost surely, from [14, Lem.

3.1], polynomials are algebraically independent almost
surely. Hence, the focus is on the other case.

The size of matrix is , where

and

If matrix is always row-rank deficient, there are two
possibilities:
• When : Denote as the set of all entries in
and , , . From [27,
Cor. 5.7], the dimension of the field is . On the other
hand, the number of the polynomials in , i.e., , is
greater than . Hence, from [27, Def. 5.3], must
be algebraically dependent.

• When : Denote all the submatrices in
by , where . Since is always
row-rank deficient,

(29)

for all and all possible channel states
. From the Leibniz formula, is given by a

polynomial of the entries in . Denote this polynomial by
. Then from (29), are zero

polynomials for all .
Next, consider the Jacobian matrix of , i.e.,

. From (6), has the
same structure as , with the following differences:

In (9) , is replaced by
, where

In (10) , is replaced by
where

(30)

Denote all the submatrices in
by . Define linear functions
as

if and

if and

(31)

Then from (30), there is a one to one correspondence
between and . Therefore,

can be written as the cascade of and ,
i.e.,

(32)

Since are zero polynomials, ,
, which means that is al-

ways row-rank deficient. From [28, Thm. 2.3], are
algebraically dependent.
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Fig. 7. Row-switching and separation of . For clear illustration, we have set when plotting the figure.

APPENDIX C
PROOF OF THEOREM 4.3

From [28, Thm. 2.2], when , is not always row-
rank deficient, are algebraically independent. Hence,
the “if” side is proved.
The “only if” side is true if the following lemma holds:
Lemma C.1: If are algebraically independent,

is row-rank deficient on a proper closed subset of
.
From (32) and (31), the set in which is row-rank

deficient is given by , where

(33)

If is a zero polynomial of ,
; otherwise, is a proper closed set of .

When are algebraically independent, at least one
is a non-zero polynomial. Noting that the

intersection of closed sets is closed, Lemma C.1 is proved.

APPENDIX D
PROOF OF COROLLARY 4.4

From Theorem 4.4, one needs to show that is full
row rank iff (15) is true. As illustrated in Fig. 7, perform row
switching and then separate into four submatrices, i.e.,

and one zero matrix. The following lemma shows
the full rankness of .
Lemma D.1 (Full rankness of ): Under condition 3) in

Corollary 4.4, is full row rank almost surely.
Proof: Note that

(34)

where , is aggregated by submatrices
, . From the structure of in (10), by

doing row switching operations, can be transformed into a
block diagonal matrix with diagonal blocks. Note that
(a) the size of these diagonal blocks is

Fig. 8. Specify .

(b) within each diagonal block, all entries are independent
random variables.

Hence, when condition 3) in Corollary 4.4 holds, the diagonal
blocks in are full row-rank almost surely. Therefore, is
full row-rank almost surely. Substituting this result to (34),
is full row-rank almost surely. This completes the proof.
With Lemma D.1, and further noting that is a

block-upper-triangular matrix, the corollary holds if the fol-
lowing proposition is true:
Proposition D.1: Under condition 1) and 2) in Corollary 4.4,
is full row rank iff (15) is true.

When (15) is not satisfied, is row-rank deficient as it
has more rows than columns. Hence, the “only if” statement in
Proposition D.1 is proved. The “if” side can be proved via the
following steps:
A. Construct one special category of channel state .
B. Show that is full rank almost surely under the special

category of channel state.
C. From the first statement in Theorem 4.2, if Procedure B is

completed, is full rank almost surely, and this proves
the corollary.

Construct a special by using tools from graph theory.
Consider a graph whose vertexes are the nodes of the network
and there is an edge between LT and LR , if . Then
from [29, Thm. 8.15], when the alignment set is -regular, there
is a proper -edge-coloring [29, Page 138] for the graph. Denote
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the coloring of an edge between LT and LR by
and specify as in Fig. 8, in which

(35)
if
if
otherwise.

(36)

The rest of the proof is similar to that of Cor. 3.3 in [14].

APPENDIX E
PROOF OF COROLLARY 4.5

The proof is similar to that of [14, Cor. 3.4]. To accommodate
the alignment set , one need to change (24) and (25) in [14] to

if:
otherwise

(37)

(38)

respectively. Then the rest of the proof follows.

APPENDIX F
PROOF OF THEOREM 4.5

The theorem will be proved by contradiction.
Suppose there exists a local optimum such that

(39)

Note that . Hence,
from Theorem 4.1 and 4.3, when IA is feasible, the set

is dense.
Therefore, for any , there exists a satisfying:

(40)

(41)

Since both and all continuously differentiable,
is finite on any bounded close set. Therefore,

from (40), there exists some finite constant such that

(42)

When a matrix is full row rank, the linear equation set
has solution for any vector . Therefore, from (41),

there exists that satisfies linear equation set

...

...

...

...

(43)
From (43), one can obtain (44), where . De-

note by .

...

...

...

... (44)

Further note that is convex, continuously differentiable and
. From (44), there exists some constant

such that

(45)

From (42) and (45),

(46)

If (39) is true, when is sufficiently small, (46) is positive,
which contradicts the assumption that is a local op-
timum. This completes this proof.

APPENDIX G
PROOF OF COROLLARY 4.6

Function is convex and continuously
differentiable, with . Hence, from Theorem 4.5,
one only needs to show that the output of Algorithm 1, i.e.,

, is a local optimum. In Step 2 and 3 of Algorithm 1,
the updated , and , given by (20) and (21) are respectively
the optimal solutions of the following two sets of unconstraint
quadratic optimization problems:
1) Problem G.1 (Interference Optimization at LR ):

(47)

2) Problem G.2 (Interference Optimization at LT ):

(48)

Therefore, is non-in-
creasing in every round of update. Further noting that

, Algorithm 1 must
converge to a local optimum. This completes the proof.
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