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Information-Seeking Sensor Selection for
Ocean-of-Things
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Abstract—We propose a general sensor selection (SS) method-
ology for ocean-of-things (OoT) where a sensing network
performs multiobject tracking (MOT) under resource constraints.
SS methods address the combinatorial problem of determining the
best subset of sensors that maximizes a suitable reward function
for a fixed cardinality. The novelty of this article is twofold. First,
we propose a tractable information-theoretic reward function
for MOT-OoT with an unknown and time-varying number of
objects such as ocean vessels. A tractable reward function is essen-
tial in order to rapidly evaluate a sensor subset, which is crucial
in the high-dimensional problems encountered in OoT. Second,
we propose a general cross-entropy SS (CE-SS) methodology that
efficiently estimates the probabilities of sensor activations and
determines the optimal sensor subset according to the proposed
reward function and under the imposed cardinality constraint.
The CE-SS algorithm avoids exhaustive searching over the space
of all sensor subsets, which is intractable for most OoT applica-
tions. The CE-SS methodology, coupled with the proposed reward
function, is capable of selecting sensors that lead to more accurate
estimates than random selection for both the number of vessels
and their trajectories. We demonstrate the effectiveness of our
method via numerical simulation in serveral scenarios, includ-
ing multivessel tracking for OoT with an emulated network of
acoustic sensors deployed off the coast of Italy.

Index Terms—Bayesian inference, Cauchy–Schwarz diver-
gence, Internet-of-Things, multiobject tracking, multi-Bernoulli
filter, Ocean-of-Things, sensor selection.

I. INTRODUCTION

OCEAN-OF-THINGS (OoT) is an emerging vision for an
extensive network of small, low-cost floating devices

(floats) that aim to provide persistent maritime monitoring
and situational awareness for oceans [1]. OoT aims to inte-
grate thousands of heterogeneous floats equipped with diverse
sensing capabilities into a sensing network, while providing
access to a selected subset of the collected data in order to
perform monitoring tasks. Thus, OoT represents an extension
of the Internet-of-Things concept [2] to maritime applications.
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One such important application is multiobject tracking (MOT),
where the objective is to sequentially estimate the number and
the states of several objects of interest.

Point processes [3]–[11], and labeled random finite sets
(LRFSs) more specifically, have emerged as a unified frame-
work for Bayesian MOT that incorporate uncertainties in both
object states and their number [12]. The resulting MOT algo-
rithms are capable of detecting objects and estimating their
entire trajectories throughout a region of interest from noisy
observations. At each sensor, a nonideal detection process is
considered; that is, an object could be misdetected and addi-
tional false-alarm measurements (referred to as clutter) are
generated. Upon detection, a single measurement per object
is obtained. Sensor networks [13]–[23], and contextual or
other soft information [24], can be employed to improve
tracking. An additional challenge to misdetections and clutter
is measurement origin uncertainty (MOU), i.e., the associa-
tions between objects and measurements at each sensor are
unknown [25]. Various solutions for tracking with MOU have
been proposed in the past, from which the labeled multi-
Bernoulli (LMB) model [22], [26] has emerged as a highly
efficient algorithm.

A challenge specific to OoT is the selection of a subset
of M sensing devices out of a total of N devices in the
network, referred to as the sensor selection (SS) problem [27].
Resource constraints, such as the limited battery power of the
floats, and the constrained communication channel between
the floats and the centralized fusion node drive the need
for SS with M < N . Various SS solutions were proposed
in the past. The authors of [27] and [28] leveraged the lin-
ear and Gaussian state-space statistics of a single object of
interest to develop highly efficient algorithms based on con-
vex programming and tree pruning techniques. However, in
our MOT for OoT application, multiple objects need to be
tracked and the observation equations of the float sensors are
nonlinear. For example, range values are measured by floats
equipped with single hydrophones, while angles of arrival
are observed in the case of floats equipped with hydrophone
arrays. Based on minimizing the posterior covariance with an
added sparsity-promoting term for the set of active sensors, a
sensor-scheduling algorithm for tracking a single object was
proposed in [29]. A stochastic sensor-scheduling algorithm for
linear dynamic systems was proposed in [30] by finding the
optimal sensor activation probabilities via quasiconvex pro-
gramming. Of related interest are sensor control strategies
for target tracking. Control strategies for unmanned-aerial-
vehicles performing object tracking were reported in [31], by
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relying on a discretized action space and a covariance measure
for the cost function. In [32], a team of robots is maneuvered
to track a single object under a nonlinear observation model
via nonconvex programming.

Sensor selection or, more generally, resource allocation and
sensor control with LRFSs for MOT, has been successfully
employed in [33]–[38]. Related topics on selecting multi-
paths, antennas, measurements, and relays can be found in
[39]–[43]. In [33], the Rényi divergence was employed to
measure information gain for sensor control. The Cauchy–
Schwarz (CS) divergence between two Poisson point processes
was shown to have a tractable expression in [36]. In con-
trast, for generalized LMB models, the CS divergence is given
in [37] and is shown to involve a weighted sum over all sub-
sets of the label space, which is intractable and, in practice
requires truncations. In [38], the LMB model was employed
for the trajectory planning of an unmanned aerial vehicle
that performs MOT. In [44], a second-order uncertainty mea-
sure was constructed for multi-Bernoulli posterior densities
and is employed for sensor control and management. Most
previous works resort to a discretized control space and direct
maximization via exhaustive enumeration of all control actions
or subset selection combinations. This is intractable in OoT
applications where the exhaustive enumeration of all sensor
subsets is unattainable. Relay selection and power allocation
for underwater communication networks are studied in [45],
whereas relay placement and flow allocation are addressed
in [46]. Node clustering for energy management is addressed
for the Internet of Underwater Things in [47].

In this article, we propose an efficient SS method for MOT
in OoT. The novelty of this article is twofold. First, the
unknown and time-varying number of objects are modeled
as an LMB model and we derive a tractable expression for
the CS divergence between the predicted LMB and poste-
rior LMB models in order to quantify the information gain
for a specific sensor subset. An advantage of our derived
expression for the CS divergence is that it does not involve
summations over subsets of labels as in the case of [37], and it
only involves integration over the single target space. Second,
we propose a cross-entropy (CE) algorithm that searches for
the optimum sensor subset, i.e., the subset that maximizes
the CS divergence for a fixed resource budget M < N . As
opposed to solutions that explicitly model energy consump-
tion, e.g., [45]–[47], here the cardinality of the sensor subset
is directly imposed since the energy consumption in OoT
is dominated by the satellite-uplink procedure and is nearly
identical for all floats. The CE algorithm is an efficient stochas-
tic search method with provable convergence that avoids the
intractability of the brute-force methods used in the past.
This is especially relevant for OoT since the search space
for the SS combinatorial problem is extremely high, e.g., for
N = 50 and M = 10 there are more than 1010 possible
combinations. The resulting CE method for SS is general
and can be employed in conjunction with any MOT filter
that provides a list of predicted object tracks composed of
a probability density function and a probability of existence
for each track. This covers not only the LMB but also a
large spectrum of MOT filters, ranging from the probabil-
ity data association filter [25] and integrated probability data

TABLE I
MATHEMATICAL NOTATIONS OF INTEREST

association filter [48] to the graphical model-based approaches
of [22]. In this article, we exemplify our CE-SS algorithm in
conjunction with a multisensor LMB-MOT filter. In addition,
we provide the parallel multisensor LMB update equations,
since to the best of our knowledge only the sequentially
updated multisensor LMB was provided in [22, Sec. XIII.B].
We also provide a sequential Monte Carlo (SMC) implemen-
tation of the CS divergence expression in order to account
for the nonlinear and/or non-Gaussian state-space equations.
The advantages of our proposed method are showcased via
numerical experiments for SS in realistic OoT scenarios.

The remainder of this article is organized as follows. General
notation and background on LRFS are given in Section II,
while the system model is described in Section III. The multi-
sensor LMB filter is derived in Section IV. The CS divergence
for LMB models is derived in Section V along with an SMC
implementation of the CE-SS reward function. The CE algo-
rithm for SS is presented in Section VI. The results of our
numerical simulations are presented in Section VII.

II. BACKGROUND

The general notation used throughout this article is defined
in Table I. Several specific definitions are given next. The
Kronecker delta is extended to sets as δX (Y) = 1 if X = Y
and δX (Y) = 0 otherwise. A set indicator function is defined
as 1X (Y) = 1 if Y ⊆ X and 1X (Y) = 0 otherwise. For
compactness, 1X (x ) is employed in lieu of 1X ({x}). On
the vector space X, the inner product of real-valued functions
f and g is defined as 〈f , g〉 �

∫
X

f (x ) g(x ) dx . The space
L2(X) represents the space of real-valued functions f defined
on X such that 〈f , f 〉 is finite. The L2 norm for a function f is
defined as ‖f ‖2 =

√〈f , f 〉 while the L0 norm of a vector u is
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‖u‖0 = |{ui : ui �= 0}|. For discrete probability distributions
p and q defined on the same space X , the Kullback–Leibler
divergence is DKL(p, q) =

∑
x∈X p(x ) ln(p(x )/q(x )). The

notation N (x ;m ,M ) represents the standard normal prob-
ability density function of variable x , mean vector m , and
covariance matrix M .

A. LRFS Background

The label space L is a countable set whose elements rep-
resent object identifiers. An unordered collection of objects is
modeled by an LRFS X �

{
(x(1), l(1)), . . . , (x(n), l(n))

}
1 [49],

where the number of objects, i.e., the set cardinality |X| = n, is
a random variable on N. Furthermore, the object states {x(i)}
are random vectors on X and the object labels {l(i)} are ran-
dom variables that take values in L. In other words, an LRFS
is a random variable taking values in F(X × L). For a real-
ization X =

{
(x (1), l (1)), . . . , (x (n), l (n))

} ∈ F(X × L) of
the LRFS X, the projection LX = {l (1), . . . , l (n)} and the dis-
tinct label indicator ΔX are introduced, such that ΔX = 1 if
|X | = |LX | and ΔX = 0 otherwise. Given a real-valued func-
tion h and any set Y = {y1, . . . ,y |Y|}, the set exponential is
defined as [h(·)]Y =

∏
y∈Y h(y).

Several constructs exist that characterize the probability dis-
tribution of random finite sets (RFSs), e.g., belief-mass functions
and multiobject probability densities (for brevity, hereafter
referred to as belief functions and belief densities, respec-
tively) [50]–[52],voidprobabilities [3], andprobabilitymeasures
and probability densities [53]. Relevant to this article is the set
integral of a function f : F(X× L)→ R, defined as [51]
∫

f (X )δX =
∞∑

n=0

1
n!

∑

(l1,...,ln )∈Ln

∫

Xn
f
({(x1, l1), . . . , (xn , ln )}) d(x1, . . . ,xn) . (1)

Subsequently, for any closed set A ⊂ X×L the belief function
is introduced as β(A) � P{X ⊂ A} and the belief density is
defined as any set function π : F(X × L) → R+ such that
β(A) =

∫
π(X )1A(X )δX .

B. Labeled Bernoulli RFS

For a fixed label l ∈ L, a labeled Bernoulli RFS X is
parametrized by the probability of existence r(l) and state
probability density p(·, l). Furthermore, X is a singleton, i.e.,
X = {(x, l)}, where x has the probability density function
p(·, l), with probability r(l) and X = ∅ with probability
1− r(l). Thus, the belief density can be written as

πX(X ) =

⎧
⎨

⎩

1− r(l), if X = ∅
r(l) p(x , l), if X = {(x , l)}
0, otherwise .

(2)

The corresponding cardinality distribution p(n) = P{|X| = n}
follows directly from (2) and is given by the Bernoulli law
with parameter r(l). The Bernoulli LRFS of (2) can model up
to a single object of interest with uncertainties in both object
presence (or existence) and object position.

1The set {a(1), . . . , a(n)}, where a(i) ∈ A ∀i = 1, 2, . . . ,n and |A| =
n , represents an arbitrary enumeration of the elements in the set A.

C. Labeled Multi-Bernoulli RFS

An LMB is obtained as the union of independent labeled
Bernoulli RFSs and is parameterized by

{(
r(l), p(·, l))}

l∈L
.

The multitarget density of an LMB X is [49]

πX(X ) = ΔX w(LX )[p(·)]X (3)

where w(L) is the probability of observing the subset of tracks
L ⊆ L and is given by

w(L) =

[
∏

l ∈L\L

(
1− r(l)

)
][

∏

l∈L
1L(l)r(l)

]

. (4)

The cardinality distribution p(n) = P{|X| = n} of the LMB
is given by the multi-Bernoulli law [51, p. 369]. Furthermore,
if we denote L = {l1, . . . , lL} and for n ∈ {0 : L}, the LMB
cardinality distribution has the expression

p(n)=

[
L∏

i=1

(
1− r(li )

)
]

En

(
r(l1)

1− r(l1)
, . . . ,

r(lL)
1− r(lL)

)

(5)

and p(n) = 0 otherwise. The elementary symmetric function
En(·) of order n is defined as [51, p. 369]

En(y1, . . . , yL) �
∑

L⊂{1:L},|L|=n

[
∏

l∈L
yl

]

(6)

and has the property

L∑

n=0

En(y1, . . . , yL) = (1 + y1) · · · (1 + yL) . (7)

For compactness, En(y1:L) will also be employed in lieu of
En(y1, . . . , yL). Three remarks are in order regarding equa-
tion (3). First, the LMB of (3) models up to |L| objects
where the exact number of objects and their states are ran-
dom. Second, the LMB belief density expression of (3)
has a simpler expression than the corresponding belief den-
sity of the unlabeled multi-Bernoulli RFS of [51, p. 368,
eq. (11.134)]. This simplification is generated by the usage of
labels. More precisely, the correspondence between the ele-
ments of a realization X of X and the Bernoulli components
in L is immediate via the distinct labels LX . Finally, marking
Bernoulli components with distinct labels allows for object
tracking across different time steps and for the inference of
entire trajectories of objects in MOT filters as exemplified in
the filter of Section IV.

III. OOT SYSTEM OVERVIEW

MOT-OoT applications aim to sequentially estimate the
number and the states of multiple objects of interest across
time from measurements provided by an extensive heteroge-
neous network of sensing devices, such as sensor floats and
potentially other submerged sensing devices. In the rest of this
article, we will refer to a sensing device as a sensor. This is
without loss of generality since multiple sensors mounted on
the same device can be viewed as a single metasensor. In the
sequel, we present the MOT-OoT model assumptions for the
dynamical system of objects and sensors.
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A1) The number of objects is unknown and time varying
and the multiobject collection is modeled as an LMB
Xk at time step k and defined on the label space Lk .

A2) The objects evolve independently from time k to time
k + 1. Furthermore, an object with label l and state
x k at time k survives with probability PS

k+1(x k , l)
to time k + 1. Upon survival, the target state
vector evolves according to the Markovian kernel
fk+1|k (·|x k , l). Independently of surviving objects,
birthed objects at time k+1 are modeled via an LMB
with parameters

{(
rB,k+1(l), pB,k+1(·, l)

)}
l∈Bk+1

.
A3) The sensing network is composed of N sensors.

The network can be multimodal, i.e., the sensors
can have different sensing modalities, e.g., single
hydrophones as range-only sensors and hydrophone
arrays as range and bearing sensors.

A4) An object with label l and state vector x is detected
by sensor i with probability PD

i ,k (x , l). Upon detec-
tion, a measurement vector zi ,k ∈ Zi is generated
according to a device-specific measurement model
with probability density function gi ,k (·|x , l).

A5) Independent from the object-originated measure-
ments, false alarm measurements are generated
according to a Poisson point process model with an
intensity function f FA

i ,k : Zi → R+ for each sensor
i ∈ {1 : N }.

A6) The measurement set Zi ,k � {z 1
i ,k , . . . , z

mi,k

i ,k } of
sensor i with |Zi ,k | = mi ,k and z i ,k ∈ Zi contains
both object-originated and false alarm measurements
and is affected by MOU; that is, the associations
between the objects of Xk and the measurements of
Zi ,k are not known. A measurement is either clut-
ter or generated by an object, while an object can
generate at most one measurement per sensor.

A7) The sensor measurement sets are conditionally
independent given the object set, i.e., π(Z1,k , . . .,
ZN ,k |Xk = Xk ) = π(Z1,k |Xk ) · · · π(ZN ,k |Xk ).

A8) The sensors communicate with a centralized fusion
node that performs MOT. However, due to commu-
nication and other resource constraints, only a set of
M (< N ) sensors are allowed to uplink their mea-
surements to the data cloud and subsequently to the
centralized fusion node at any given time instant. The
set of all valid sensor subsets for SS is defined as
SM = {S ⊂ {1 : N } : |S| = M }.

In order to cope with MOU and similar to [54], [55], and
[22, Sec. IV-B], the association maps ai ,k are introduced
as

ai ,k (l) =

⎧
⎪⎪⎨

⎪⎪⎩

m ∈ {1 : |Zi ,k |
}
, if object l generated z

(m)
i ,k at

sensor i and time k
0, if object l was misdetected

by sensor i and time k .
(8)

In light of Assumption A6), let Ai ,k denote the set of all
valid association maps for sensor i , that is, ai ,k ∈ Ai ,k if
ai ,k (l) > 0 implies ai ,k (l) �= ai ,k (l ′) for l �= l ′. In other

words, a valid association map ai ,k ∈ Ai ,k can be viewed as a
function that either assigns a distinct measurement index from
the set {1 : |Zi ,k |} or a misdetection index 0 to each Bernoulli
label. Combining Assumptions A4)–A7) and the association
maps (8), the multiobject likelihood for sensor i can be written
as [49, Proposition 7]

gi ,k
(Zi ,k |X

)
= e−〈f FA

i,k ,1〉
[
f FA
i ,k (·)

]Zi,k

×
∑

ai,k∈Ai,k

δ
a−1
i,k ({0 : |Zi,k |})(LX )

×
[

∏

(x ,l)∈X
ψi ,k

(
x , l ;Zi ,k , ai ,k (l)

)
]

(9)

where a−1
i ,k (B) � {l ∈ Lk : ai ,k (l) ∈ B} is the preimage of

the set B under the map ai ,k and

ψi ,k

(
x , l ;Zi ,k ,m

)
=

⎧
⎨

⎩

PD
i,k (x ,l) gi,k

(
zm
i,k |x ,l

)

f FA
i,k

(
zm
i,k

) , if m > 0

1− PD
i ,k (x , l), if m = 0 .

(10)

Due to the MOU of A6), the likelihood function in (9) involves
a summation over all valid associations between the elements
of LX and the measurements from sensor i . Additionally for
any valid subset of sensors S ∈ SM and by employing A7),
the multisensor-likelihood function is defined as

gSk
(ZS

k

∣
∣X ) �

∏

s∈S
gs,k

(Zs,k

∣
∣X ) (11)

where the compact notation ZS
k � (Zs1,k , . . . ,ZsM ,k ) for

S � {s1, . . . , sM } was employed. As per Assumption A8),
the number of sensors employed in the multisensor-likelihood
function (11) is limited to M .

Consider at time k a sequence of sensor subsets S1:k =
(S1, . . . ,Sk ), where Si ∈ SM ∀i ∈ {1 : k}, the corresponding
random measurement sets ZS1:k

1:k �
(
ZS1

1 , . . . ,ZSk
k

)
and their

realizations ZS1:k
1:k �

(ZS1
1 , . . . ,ZSk

k

)
. According to the above

assumptions, an LMB is employed to model the collection of
objects at each time step k and we aim to sequentially esti-
mate the posterior belief density πS1:k

k |k (X ) � πXk

(X|ZS1:k
1:k =

ZS1:k
1:k

)
of the LMB Xk given all previous and current measure-

ment sets from the selected sensors. A block diagram of the
proposed MOT-OoT with SS is presented in Fig. 1. The LMB
filter propagates the LRFS posterior belief density through
predict and update steps as described in Section IV. The pre-
dicted belief density also serves to select the optimal sensor
subset Sk in the sense of maximizing the CS information gain,
as presented in Section V.

IV. MULTISENSOR LMB FILTER FOR OOT-MOT

In [26] and [22, Sec. XIII.A], the authors presented single-
sensor and sequential multisensor LMB filters, where the latter
is obtained by sequentially applying the single-sensor update
equation for each sensor. In this section, the filtering equations
for the joint multisensor LMB filter are presented. These equa-
tions predict and jointly update the LMB with the information
from a subset of sensors that is selected by the CE-SS method,
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Fig. 1. Block diagram showcasing the proposed LMB filter with sensor
selection. The CE-SS method serves as a decision block for selecting the
sensors to be activated at the current time step k (depicted in red). The filter
serves as a fusion block which employs the data from the selected sensors to
update the LMB parameters. Note that the belief density π0 is only used to
initialize the filter at time k = 0.

as shown in Fig. 1. The predict and update recursion starts
from an initial LMB density π0(X ). Furthermore, at each time
k , based on the predicted density π

S1:k−1

k |k−1
, the CE-SS method

(presented in Section V) selects the best subset of sensors Sk .
Subsequently, the selected sensors send their measurement sets
Zi ,k ∀i ∈ Sk to the data cloud and serve to perform the LMB
update.

A. Filter Prediction

The filtering recursion starts at time k − 1 from
an LMB with belief density π

S1:k−1

k−1|k−1
(X ) and parameters

{(
rS1:k−1

k−1|k−1
(l), pS1:k−1

k−1|k−1
(·, l))}

l∈Lk−1
. The prediction step

incorporates object disappearance, the object kinematic model,
and object births. Note that the prior LMB parameters also
depend on the sensor subsets S1:k−1. Following Assumption
A2), the surviving objects are modeled as an LMB with
parameters

{(
rS1:k−1

S,k (l), pS1:k−1

S,k (x , l)
)}

l∈Lk−1
[26] where

ηS(l) =
〈
PS

k (·, l), pS1:k−1

k−1|k−1
(·, l)〉 (12a)

rS1:k−1

S,k (l) = rS1:k−1

k−1|k−1
(l) ηS(l) (12b)

pS1:k−1

S,k (x , l) =

〈
PS

k (·, l) fk |k−1(x |·, l), pS1:k−1

k−1|k−1
(·, l)〉

ηS(l)
.

(12c)

As stated in Assumption A2), object births are modeled via a
birth LMB, with parameters

{(
rB,k (l), pB,k (·, l))}

l∈Bk
, that

is independent of the surviving objects. The predicted LRFS
is given by the union of the surviving LMB and birth LMB,
and the resulting LRFS is an LMB with the following
parameters

{(
rS1:k−1

k |k−1
(l), pS1:k−1

k |k−1
(·, l))}

l∈Lk
=
{(

rS1:k−1

S,k (l),

pS1:k−1

S,k (·, l))}
l∈Lk−1

⋃{(
rB,k (l), pB,k (·, l))}

l∈Bk
, where

Lk = Lk−1 ∪Bk and Lk−1 ∩Bk = ∅. Note that label l ∈ Bk
is typically constructed as the tuple (k , i), where k is the
time sample and i is an index used to distinguish between
the objects born at time k .

B. Filter Update

The update step is achieved via Bayes’ theorem
for RFSs [49]

πS1:k

k |k (X ) =
gSk
k

(ZSk
k

∣
∣X )πS1:k−1

k |k−1
(X )

∫
gSk
k

(ZSk
k

∣
∣Y)πS1:k−1

k |k−1
(Y) δY

. (13)

However, updating the predicted Bernoulli components
using (13) does not lead to an LMB density [22], [26], [55].
The augmented association map āi ,k : Lk → {−1 : |Zi ,k |}
extends ai ,k to the case āi ,k (l) = −1 of Bernoulli com-
ponent l not present (i.e., object disappearance). Let −1 =
(−1, . . . ,−1) be the M -tuple with all −1 entries. In addi-
tion, for a sensor subset S = {s1, . . . , sM } ∈ SM let āS

k �
(ās1,k , . . . , āsM ,k ) be the multisensor association map. The
set of extended multisensor measurement indices is denoted
by M

S
k � {−1} ⊎×s∈S{0 : |Zs,k |}, while the set of all

possible multisensor association maps (valid and nonvalid)
is denoted by MS

k � {āS
k : āS

k (l) ∈ M
S
k ∀l ∈ Lk}.2

The set of valid multisensor association maps ĀS
k contains

maps āS
k ∈ MS

k such that ās,k (l) = ās,k (l ′) > 0 implies
l = l ′ for any s ∈ S. Note that if object l is not present, a
valid augmented multisensor association map has to simulta-
neously map ās,k (l) = −1 ∀s ∈ S. Note that ĀS

k ⊆ MS
k ,

with equality holding only if |Lk | = 1. Subsequently, for
compactness the superscript S for āS

k is dropped since this
will be evident from the definition āk ∈ ĀS

k . Recalling
that ZS

k � (Zs1,k , . . . ,ZsM ,k ) with S = {s1, . . . , sM },
for āk (l) �= −1 the sensor subset pseudolikelihood is
defined as

ψ̄S
k

(
x , l ;ZS

k , āk (l)
)

=
∏

s∈S
ψs,k

(
x , l ;Zs,k , ās,k (l)

)
. (14)

For each multisensor assignment index m ∈M
S
k , the updated

Bernoulli parameters are

ηm
k |k (l ;S1:k ) =
{

rS1:k−1

k |k−1 (l)
〈
ψ̄
Sk
k (·, l ;ZSk

k ,m), pS1:k−1

k |k−1 (·, l)〉, if m �= −1

1− rS1:k−1

k |k−1 (l), if m = −1
(15)

and, for āk (l) �= −1, we define

pāk (l)
k |k (x , l ;S1:k ) = ψ̄Sk

k

(
x , l ;ZSk

k , āk (l)
)

×
rS1:k−1

k |k−1
(l) pS1:k−1

k |k−1
(x , l)

η
āk (l)
k |k (l ;S1:k )

. (16)

2The notation
⊎

represents the disjoint union operator.
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The resulting multisensor LRFS posterior belief density of (13)
is a mixture of LMB densities with belief density

πS1:k

k |k (X ) = ΔX
∑

āk∈MSk
k

φSk
āk

(LX )

× P(āk ;S1:k )

[
∏

(x ,l)∈X
pāk (l)
k |k (x , l ;S1:k )

]

(17)

where we introduced the indicator φSk
āk

(LX ) =∏
s∈Sk

δ
ā−1
s,k ({0:|Zs,k |})(LX ) and the multisensor association

map probability

P(āk ;S1:k ) ∝ 1ĀSk
k

(āk )
∏

l∈Lk

η
āk (l)
k |k (l ;S1:k ) . (18)

Note that (17) is indeed a mixture of LMB belief densi-
ties. Similar to [26] and [22, Sec. XIII.A], we employ the
approximation

P(āk ;S1:k ) ≈
∏

l∈Lk

P̂l (āk (l);S1:k ) (19)

where P̂l (āk (l);S1:k ) is the marginal probability of asso-
ciating āk (l) to label l [22, eq. (43)]. Computationally
efficient algorithms for evaluating marginal probabilities for
data association problems are proposed in [22] and rely on
graphical models coupled with message passing. By employ-
ing (19) in (17), the interlabel dependence-forcing term
1ĀSk

k

(āk ) disappears, leading to a separable sum over the

individual-label assignments āk (l), i.e.,
∑

i ,j f (i) g(j ) =[∑
i f (i)

][∑
j g(j )

]
. Finally, note the following alternative

expression for φSk
āk

as

φSk
āk

(LX ) =

[
∏

l∈Lk\LX

δ−1(āk (l))

][
∏

l∈LX

1
M

Sk
k \{−1}(āk (l))

]

that is, the labels not contained in LX have to be mapped to
−1 while the rest can be mapped to any sensor measurement
or misdetection. Thus, the following LMB approximation to
the full posterior (17) is obtained as

π̂S1:k

k |k (X ) = ΔX

[
∏

l∈Lk\LX

(
1− r̂S1:k

k |k (l)
)
]

×
∏

(x ,l)∈X

[
1Lk

(l) r̂S1:k

k |k (l) p̂S1:k

k |k (x , l)
]
. (20)

The parameters
{(

r̂S1:k

k |k (l), p̂S1:k

k |k (x , l)
)}

l∈Lk
of the approx-

imating Bernoulli components are identified as

r̂S1:k

k |k (l) =
∑

m∈M
Sk
k \{−1}

P̂l (m ;S1:k ) (21a)

p̂S1:k

k |k (x , l) =
∑

m∈M
Sk
k \{−1}

P̂l (m ;S1:k )

r̂S1:k

k |k (l)
pm
k |k (x , l ;S1:k ) .

(21b)

The approximating LMB is employed to perform object infer-
ence and as the prior belief density for the subsequent time
samples.

C. Multiobject Inference

Multiobject inference from the posterior LMB is achieved
in one of two ways.

1) Threshold Method: The first method involves comparing
the Bernoulli probabilities of existence with a specified thresh-
old ξth ∈ (0, 1) (typically ξth = 0.5) and if r̂S1:k

k |k (l) > ξth,
the object state (x̂ k |k , l) is inferred as

x̂ k |k =
∫

X

x p̂S1:k

k |k (x , l) dx . (22)

The estimated number of objects is given as

n̂k |k =
∣
∣
∣
{
l ∈ Lk : r̂S1:k

k |k (l) > ξth

}∣
∣
∣ . (23)

2) MAP Cardinality Estimate: The second method calls for
an initial evaluation of the multi-Bernoulli cardinality distribu-
tion p̂k |k (n) of (5) and then performing the MAP cardinality
estimate n̂k |k = argmaxn p̂k |k (n). Subsequently, the state
estimates (22) are inferred for the n̂k |k Bernoulli components
with highest probabilities of existence.

V. INFORMATION SEEKING OOT SENSOR SELECTION

In this section, the proposed information-theoretic sensor
selection methodology for LMB models is described. As seen
in the block diagram of Fig. 1, the predicted LMB den-
sity πk |k−1 is used to select the sensor subset that leads to
the highest CS information gain for the update procedure.
The CS divergence is derived for LMB LRFS models in
Section V-A and a reward function for SS in OoT is proposed
in Section V-B. In Section V-C, an SMC evaluation is given
for the single-object space integrals involved in the reward
function.

A. Cauchy–Schwarz Divergence for LMB Densities

The CS divergence between two LRFS models with belief
densities πa(·) and πb(·), defined on the set F(X × L), is
given by [36]

DCS{πa, πb} = − ln

⎛

⎝
∫
κ|X | πa(X )πb(X ) δX

√∫
κ|X | π2

a(X ) δX ∫ κ|X | π2
b(X ) δX

⎞

⎠

(24)

where for consistency with [36], the measurement unit κ on
the space X has been explicitly introduced. The unit κ can
be dropped in the case of a unitless space X ⊆ R

d . The CS
divergence is based on the inequality of the same name and
was introduced for probability density functions f , g ∈ L2(X)
as DCS{f , g} = − ln

(〈f , g〉/(‖f ‖2‖g‖2)
)

in [56]. The CS
divergence is a distance measure between f and g , that is,
DCS{f , g} = DCS{g , f }, DCS{f , g} � 0, and DCS{f , g} = 0
whenever f = g almost everywhere. From a geometrical per-
spective, the CS divergence can be seen as the “information
difference” between two stochastic models from the angle sub-
tended by their density functions [36]. Additionally, in [56],
the CS divergence is interpreted as an approximation to the
Kullback–Leibler divergence.
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Lemma 1: Considering two LMB-LRFS models πa(·) and
πb(·) with parameters {(ra(l), pa(·, l))}l∈L and {(rb(l),
pb(·, l))}l∈L, where the probability density functions
pa(·, l) ∈ L2(X) and pb(·, l) ∈ L2(X)∀l , the CS divergence
is given by

DCS{πa, πb} = −
∑

l∈L

ln

(
Kab(l)

√
Kaa(l)Kbb(l)

)

(25)

where for compactness we defined

Kab(l) = (1− ra(l))(1− rb(l))
+ ra(l) rb(l) κ

〈
pa(·, l), pb(·, l)〉 (26a)

Kaa(l) = (1− ra(l))2 + r2
a (l)κ

〈
pa(·, l), pa(·, l)

〉
(26b)

Kbb(l) = (1− rb(l))2 + r2
b(l)κ

〈
pb(·, l), pb(·, l)〉 . (26c)

The proof of Lemma 1 is given in Appendix A. Note that
the inner products of (26a) – (26c) can be obtained in a closed
form when the probability densities pa(·, l) and pb(·, l) are
Gaussian; whereas they can also be easily evaluated via Monte
Carlo methods when particle representations are employed for
pa(·, l) and pb(·, l).

In [35] and [57], the CS divergence between two LMB
models was employed for sensor control. However, no exact
form such as the one in Lemma 1 is reported. Instead,
the LMB densities are approximated with Poisson RFSs via
first-order moment preservation. Subsequently, the CS diver-
gence between the approximating Poisson RFSs is easily
evaluated due to [36]. The resulting divergence is used as
an approximation to the CS divergence for LMB RFSs. In
this article, we employ the exact form for the CS divergence
as given in Lemma 1 as a measure of SS information gain
for MOT in OoT, as described next.

B. Information Gain for OoT-SS

Information-theoretic SS involves defining a suitable reward
function over the set SM of all sensor subsets of cardinality M .
Since the updated LMB parameters (21b) depend on the sensor
subset Sk , a divergence measure between the predicted and the
posterior LMB densities quantifies the information gained by
a specific sensor subset Sk with respect to the initial density.
In this article, the CS divergence between the predicted and
the posterior LMB densities will be used as a reward function
to optimize over the set SM . More precisely, the sensor reward
function is defined as

R
(Sk ,ZSk

k

)
= DCS

{
π
S1:k−1

k |k−1
(·), π̂S1:k

k |k (·)
}

(27)

where the LMB posterior π̂S1:k

k |k (·) is given in (20). Note how-
ever that the reward in (27) depends on the measurement set
ZSk

k from the candidate subset Sk . Thus, the use of (27) as a
reward function in searching for the optimal subset would vio-
late Assumption A8) of Section III. Ideally, an optimal subset
can be selected by maximizing a new reward function

R(Sk ) =
∫

R(Sk ,Z)π
Z
Sk
k

(Z)δZ (28)

that marginalizes (27) over all realizations of the random
measurement set ZSk

k . The following two challenges prohibit

an analytical and a computationally tractable solution to the
aforementioned expectation R(Sk ).

1) The space of measurement sets ZSk
k is given by

F(Zs1) × · · · × F(ZsM ), i.e., the Cartesian product of
all finite subsets of the measurement spaces Zs of each
sensor s ∈ Sk .

2) For each ZSk
k , the marginal association probabilities

P̂l (āk (l);S1:k ) need to be evaluated for all l ∈ Lk .
In order to address these two challenges, we propose an

approximate LMB π̃S1:k

k |k (·) to the posterior LMB of (20). Two
simplifying assumptions are undertaken in the construction of
π̃S1:k

k |k (·).
(i) For a sensor s ∈ {1 : N } and for each label l ∈ Lk , the

object-expected measurement vector is defined as

z̃
(l)
s,k =

∫

Zs

z

∫

X

gs,k (z |x , l) pS1:k−1

k |k−1
(x , l)dxdz (29)

while for a sensor subset Sk = {s1, . . . , sM }, the object-
expected multisensor measurement is defined as Z̃ l ,Sk

k �
({z̃ (l)

s1,k
}, . . . , {z̃ (l)

sM ,k}
)
.

(ii) Each Bernoulli component is updated independently of
the others with its corresponding object-expected mul-
tisensor measurement, that is, component l ∈ Lk is
updated with Z̃ l ,Sk

k , in order to simplify the evaluation
of the marginal association probabilities (19).

These simplifying assumptions are similar to those
employed in [33] and lead to the LMB update expressions
of Lemma 2 presented next.

Lemma 2: The two aforementioned simplifications counter
the intractable complexity of (29) and lead to the
approximating LMB π̃S1:k

k |k (·) defined by the parameters
{(

r̃S1:k

k |k (l), p̃S1:k

k |k (x , l)
)}

l∈Lk
which are given by

g̃
Sk
k

(Z̃ l ,Sk
k |x , l

)
=

∏

s∈Sk

[

1 − PD
s,k (x , l)

+
PD

s,k (x , l)gs,k
(
z̃
(l)
s,k

∣
∣x , l

)

f FA
s,k

(
z̃

(l)
s,k

)

]

(30a)

η̃
S1:k
k (l) =

∫
g̃
Sk
k

(Z̃ l ,Sk
k

∣
∣x , l

)
p
S1:k−1

k |k−1
(x , l)dx (30b)

r̃
S1:k

k |k (l) =
r
S1:k−1

k |k−1
(l) η̃

S1:k
k (l)

1 − r
S1:k−1

k |k−1
(l) + r

S1:k−1

k |k−1
(l) η̃

S1:k
k (l)

(30c)

p̃
S1:k

k |k (x , l) =
g̃
Sk
k

(Z̃ l ,Sk
k

∣
∣x , l

)
p
S1:k−1

k |k−1
(x , l)

η̃
S1:k
k (l)

. (30d)

The proof of Lemma 2 is given in Appendix B. The approx-
imating LMB π̃S1:k

k |k (·) of (30c) and (30d) is employed to
evaluate the CS divergence

R̃(Sk ) = DCS

{
π
S1:k−1

k |k−1
(·), π̃S1:k

k |k (·)
}
. (31)

The reward function R̃(Sk ) no longer depends on the random
set ZSk

k and is employed in our proposed SS selection method
for MOT in OoT. In the following, an SMC evaluation of
R̃(Sk ) is presented.

Authorized licensed use limited to: MIT Libraries. Downloaded on December 06,2020 at 02:58:51 UTC from IEEE Xplore.  Restrictions apply. 



SAUCAN AND WIN: INFORMATION-SEEKING SENSOR SELECTION FOR OCEAN-OF-THINGS 10079

C. SMC Implementation for OoT-SS

In nonlinear and/or non-Gaussian state-space systems, the
object densities pS1:k−1

k |k−1
(x , l) are represented via weighted

particle sets
{(

w (l ,j )
k |k−1

,x
(l ,j )
k |k−1

)}J (l)
j=1

that are sequentially
propagated in time through the predict (Section IV-A) and
update (Section IV-B) steps. The particle sets are considered
normalized, i.e.,

∑J (l)
j=1 w (l ,j )

k |k−1
= 1 ∀l ∈ Lk . The explicit

dependence of the particle weights and positions on the sets
S1:k−1 was dropped for compactness. The reader is directed
to [26], [53], and [58]–[60] for an in-depth presentation of par-
ticle filters and SMC implementations of RFS filters (including
the LMB). In this section, the SMC evaluation of the reward
function of (31) is given.

The inner product
〈
p̃S1:k

k |k (·, l), pS1:k−1

k |k−1
(·, l)〉 required in

the CS divergence of Lemma 1 is evaluated as
〈
p̃S1:k

k |k (·, l), pS1:k−1

k |k−1
(·, l)〉

=
∫ g̃Sk

k

(Z̃ l ,Sk
k

∣
∣x , l

)
pS1:k−1

k |k−1
(x , l)

η̃S1:k
k (l)

pS1:k−1

k |k−1
(x , l)dx (32a)

≈
J (l)∑

j=1

w (l ,j )
k |k−1

g̃Sk
k

(Z̃ l ,Sk
k

∣
∣x (l ,j )

k |k−1
, l
)
p̂S1:k−1

k |k−1

(
x

(l ,j )
k |k−1

, l
)

η̃S1:k
k (l)

(32b)

where p̂S1:k−1

k |k−1
(x , l) = N (x ;µ(l)

k |k−1
,C

(l)
k |k−1

) is the
Gaussian density that provides a moment-matched approxi-
mation to the particle set of pS1:k−1

k |k−1
(x , l). This leads to the

parameters

µ(l)
k |k−1

=

J(l)∑

j=1

w
(l,j )
k |k−1

x
(l,j )
k |k−1

C
(l)
k |k−1

=

J(l)∑

j=1

w
(l,j )
k |k−1

[
x

(l,j )
k |k−1

− µ(l)
k |k−1

][
x

(l,j )
k |k−1

− µ(l)
k |k−1

]T
.

Note that the square of pS1:k−1

k |k−1
(·, l) appears in (32a),

which cannot be approximated directly via the substitu-
tion pS1:k−1

k |k−1
(x , l) ≈ ∑J (l)

j=1 w (l ,j )
k |k−1

δ
x

(l,j)
k|k−1

(x ). Instead, the

Monte Carlo evaluation in (32b) is obtained by first approx-
imating pS1:k−1

k |k−1
(·, l) via a smooth kernel density estimate

(e.g., a Gaussian function) p̂k |k−1(x , l), and subsequently

by evaluating the product g̃Sk
k

(Z̃ l ,Sk
k |x , l) p̂S1:k−1

k |k−1
(x , l) over

the particle set
{(

w (l ,j )
k |k−1

,x
(l ,j )
k |k−1

)}J (l)
j=1

. For improved accu-
racy, more complex models such as Gaussian mixtures
can be employed as a smooth-function approximation for
pS1:k−1

k |k−1
(·, l). Similarly

〈
p̃S1:k

k |k (·, l), p̃S1:k

k |k (·, l)〉

≈
J (l)∑

j=1

w (l ,j )
k |k−1

[
g̃Sk
k

(Z̃ l ,Sk
k

∣
∣x (l ,j )

k |k−1
, l
)]2

p̂S1:k−1

k |k−1

(
x

(l ,j )
k |k−1

, l
)

(
η̃S1:k
k (l)

)2 .

Employing these SMC approximations and ignoring the terms
that do not depend on Sk in (31), the following SMC-SS

reward function is obtained

R̂(Sk ) = −
∑

l∈Lk

ln

⎛

⎝
1 + q2(l)

∑J (l)
j=1 α

(l ,j )

√
1 + q2(l)

∑J (l)
j=1 β

(l ,j )

⎞

⎠ (33)

where

q(l) = rS1:k−1

k |k−1
(l)
[
1− rS1:k−1

k |k−1
(l)
]−1

α(l ,j ) = w (l ,j )
k |k−1

g̃Sk
k

(Z̃ l ,Sk
k

∣
∣x (l ,j )

k |k−1
, l
)
p̂S1:k−1

k |k−1

(
x

(l ,j )
k |k−1

, l
)

β(l ,j ) = w (l ,j )
k |k−1

[
g̃Sk
k

(Z̃ l ,Sk
k |x (l ,j )

k |k−1
, l
)]2

p̂S1:k−1

k |k−1

(
x

(l ,j )
k |k−1

, l
)
.

In what follows, we present an algorithm that searches for the
subset of sensors Sk with maximum reward R̂(Sk ) of (33)
for OoT-MOT applications.

VI. CROSS-ENTROPY FOR SENSOR SELECTION

The CE method was originally designed as an adaptive
importance sampling scheme for the estimation of rare-event
probabilities [61]. Subsequently in [62], CE was extended
for solving both continuous and combinatorial optimization
problems. The main challenge of SS problems is the evalua-
tion of all possible combinations of sensor subsets and their
associated rewards. For example, selecting M = 10 sensors
from N = 50 entails

(N
M

)
> 1010 valid sensor combina-

tions and it becomes impractical to evaluate all combinations
in most applications. In contrast, the CE method, as will be
shown further on, only requires the evaluation of the reward
function (33) for the sensor subsets that were sampled by
the CE search procedure. Since the number of distinct sub-
sets sampled by CE is in general much smaller than the total
number of possible sensor subsets [i.e.,

(N
M

)
], the CE method

can incur a much smaller computational overhead than brute-
force search while still maintaining theoretical convergence
guarantees [63], [64].

A. Cross-Entropy Algorithm

CE methods rely on the construction of a random sequence
of solutions, which converge to the optimal solution with prob-
ability arbitrarily close to one [63]. This procedure involves
iterating the following two steps. First, given a sampling
mechanism, samples are generated that represent potential
solutions to the optimization problem. Second, the drawn
samples are used to update the sampling mechanism (typ-
ically, parameters of the sampling distribution) in order to
obtain better solutions at the next iteration with respect to the
optimization functional or some suitably chosen reward func-
tion. The updated parameters are obtained by minimizing the
Kullback–Leibler distance (or equivalently the cross-entropy)
between the optimal importance distribution and the paramet-
ric family of distributions used for sampling. A comprehensive
review of CE methods is given in [64]. Based on [64, Ch. 2.4],
in [65], a CE method was proposed for the multidimensional
assignment problem, which was applied for multisensor mul-
tiobject tracking both in a centralized algorithm [66] and in a
decentralized algorithm in [67]. Furthermore, CE was applied
to other difficult combinatorial problems, such as the traveling
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salesman, the bipartition, and the maximum cut problems
in [62] and [68].

In order to achieve a simple mechanism for sampling sensor
subsets, marginal activation probabilities are constructed for
each sensor. Let u = [u1, . . . , uN ]T ∈ U � {0, 1}N be the
random activation vector for sensors, i.e., for the i th sensor
ui = 1 denotes “active” while ui = 0 denotes “inactive.”
Furthermore, let UM = {u : u ∈ U , ‖u‖0 = M } be the space
of valid activation vectors where only M (< N ) sensors are
active. The marginal activation probability for the i th sensor is
denoted with P{ui = 1} = vi , while the vector of activation
probabilities is denoted with v = [v1, . . . , vN ]T. Sampling
activations independently for each sensor according to v leads
to the probability of drawing a specific sample u ∈ U as

p(u ; v) � P
{
u= [u1, . . . , uN ]T

}
=

N∏

i=1

vui
i (1− vi )1−ui . (34)

The resulting activation vectors u ∈ U are not guaranteed to
be valid, i.e., ‖u‖0 = M is not guaranteed. Thus, in order
to obtain highly rewarding sensor subsets and valid activation
vectors, the modified reward function is introduced

RCE(u) =
{

R̂
({

i : i ∈ {1 : N }, ui = 1
})
, if u ∈ UM

−∞, otherwise .
(35)

In effect, RCE(u) assigns the reward (33) to valid activation
vectors u ∈ UM and a value of −∞ to nonvalid activation
vectors u /∈ UM .

The CE method for the deterministic problem of finding
the SS that maximizes (33) starts by constructing an associated
stochastic problem. More specifically, for a fixed threshold �,
the CE-associated stochastic problem [65] aims to estimate the
tail probability

P{RCE(u) � �} �
∑

u∈U
1{u :RCE(u)��}(u) p(u ; v) . (36)

For sufficiently large �, (36) is the probability of observing
sensor-activation vectors u that lead to high rewards RCE(u).
CE iteratively constructs a sequence of thresholds �(k) and
parameter vectors v (k), for k = 1, 2, . . . ,K , which corre-
spond to distributions (34) that assign a high-probability mass
to high-scoring sensor-activation vectors. Intuitively, a distri-
bution p(u ; v) which maximizes the tail probability (36), for
a given threshold �, is desirable since it leads to sampling sen-
sor subsets with high reward. The CE iteration starts with an
initial probability distribution v (0) and subsequently, at each
iteration k , performs the following steps.

1) Sample a number T of sensor activation vectors
u(1), . . . ,u(T ) according to p(u ; v (k)) given in (34).

2) Adaptively estimate the threshold �(k+1) as the (1− τ)
quantile of the set RCE(u(1)), . . . ,RCE(u(T )), that is

1
T

T∑

t=1

1[�̂(k+1),+∞)
(
RCE(u(t))

)
= τ . (37)

In practice, the sample activation vectors are sorted
RCE(u(σ1)) � RCE(u(σ2)) � · · · � RCE(u(σT )) (ties
can be broken arbitrarily), with σ a suitable permutation

of {1 : T}. Subsequently, only the H = �τT� highest
scoring vectors are retained.

3) Update marginal activation probabilities via the
Kullback–Leibler divergence (or equivalently cross-
entropy) minimization. For fixed �̂(k+1) and v (k), the
following program is constructed

min
v

DKL

{
1[�̂(k+1),+∞)(RCE(u))

p(u ; v (k))
C

, p(u ; v)
}

s.t. vi ∈ [0, 1] ∀i ∈ {1 : N }

where C �
∑

u∈U 1[�̂(k+1),+∞)(RCE(u)) p(u ; v (k)) is

a normalization constant.3 The optimization program is
approximated using the current sample set to yield

max
v

1
T

T∑

t=1

1[�̂(k+1),+∞)
(
RCE(u(t))

)
ln
(
p(u(t); v)

)

s.t. vi ∈ [0, 1] ∀i ∈ {1 : N } . (38)

Further employing the probability expression of (34) and
by denoting n1

i �
∣
∣{t : t ∈ {1 : H }, u(σt )

i = 1}∣∣,
from (38), the convex program is obtained

max
v

N∑

i=1

[
n1
i ln(vi ) + (H − n1

i ) ln(1− vi )
]

s.t. vi ∈ [0, 1] ∀i ∈ {1 : N } (39)

which leads to the solution v∗i = n1
i /H ∀i ∈ {1 : N }.

4) Smoothing of the updated probability density parameters
via

v (k+1) = γ(k+1) v∗ +
(
1− γ(k+1))v (k) (40)

where
{
γ(k) : k ∈ {1 : K}, γ(k) ∈ (0, 1]

}
is a sequence

of smoothing parameters.
As suggested in [65], the sampling weights are initial-

ized with the uniform distribution, i.e., v (0)
i = 1/N ∀i .

In Algorithm 1, the CE-SS algorithm for MOT in OoT is
presented. The algorithm iterates the main steps of sampling
and updating the vector of activation probabilities v until con-
vergence. Convergence implies a small change in the updated
marginals or reaching a maximal number of iterations K . For
a small ν ∈ R+, the stopping criterion

∥
∥v (k+1) − v (k)

∥
∥
2

� ν
is adopted for the CE iterations. Step 2 of Algorithm 1 involves
sampling of activation vectors {u(t)}Tt=1. Sampling directly
from (34) involves N independent Bernoulli trials with prob-
abilities vi . However, this is inefficient since many sampled
activation vectors may not be valid, i.e., u /∈ UM , and con-
sequently do not contribute to the update of the probability
vector v due to the reward function (35). To avoid generating
irrelevant samples, in Section VI-B, we propose an efficient
approach for sampling sensor activation vectors conditioned
on a fixed cardinality.

3Note that C > 0 since, by construction of �̂(k+1), there are at least H
outcomes u ∈ U with RCE(u) � �̂(k+1) and positive probability mass
p(u ; v(k)) > 0.
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Algorithm 1 CE-SS Algorithm for OoT

1: Initialize k ← 0 and set v (0)
i ← 1/N .

2: Draw T independent samples {u(t)}Tt=1 according to
p
(
u ; v (k)

)
(detailed in Sec. VI-B).

3: Compute RCE(u(t)) for t = 1, . . . ,T .
4: Let H ← �τT� and sort the sequence {RCE(u(t))}Tt=1

as RCE(u(σ1)) � RCE(u(σ2)) � · · · � RCE(u(σT )).
5: Update v∗i ←

∣
∣
{
t : t ∈ {1 : H }, u(σt )

i = 1
}∣
∣/H ∀i .

6: Smooth probability distribution parameters as in (40).
7: Increment k and iterate steps 2-6 until convergence or

k = K .
8: Return highest rewarding activation vector u(∗) from all

samples and all iterations.

B. Conditional Sampling of Sensor-Activation Vectors

A direct algorithm for sampling valid sensor-activation vec-
tors involves sampling from (34) via N independent Bernoulli
trials with probabilities vi and then accepting the sample if
‖u‖0 = M . The procedure is repeated until T valid sam-
ples are obtained. An equivalent algorithm samples from the
conditional densities

p
(
u
∣
∣‖u‖0 = M

)
= p

(
u1

∣
∣‖u‖0 = M

)

×
N∏

i=2

p
(
ui

∣
∣u1:i−1, ‖u‖0 = M

)
. (41)

Furthermore by denoting qi � [vi/(1− vi )] and constructing
the vector q = [q1, . . . , qN ]T, the conditional densities can be
expressed as

p
(
u1

∣
∣‖u‖0 = M

)
=

∑
u2:N

p(u , ‖u‖0 = M )
∑

u p(u , ‖u‖0 = M )

=
qu1
1

∑
u2:N

qu2
2 · · · quN

N δM (‖u‖0)∑
u qu1

1 qu2
2 · · · quN

N δM (‖u‖0)
(42)

where the Kronecker operator δM (‖u‖0) = 1 if ‖u‖0 =
M and 0 otherwise. Noting that EM (q) =

∑
u qu1

1
qu2
2 · · · quN

N δM (‖u‖0) is the elementary symmetric function
of (6), and for the two choices u1 ∈ {0, 1}, (42) becomes

p
(
u1

∣
∣‖u‖0 = M

)
=

⎧
⎨

⎩

q1
EM−1(q2:N )

EM (q)
, if u1 = 1

EM (q2:N )
EM (q)

, if u1 = 0 .
(43)

Conditionally on u1:i−1 and by denoting mi−1 =
∑i−1

j=1 uj ,
the i th conditional density becomes

p
(
ui

∣
∣u1:i−1, ‖u‖0 = M

)
= qui

i

EM−mi−1−ui

(
q i+1:N

)

EM−mi−1
(q i :N )

(44)

for i < N . While P
{
uN = 1

∣
∣u1:N−1, ‖u‖0 = M

}
= 1 if

mN−1 = M − 1 and 0 otherwise. The conditional sam-
pling algorithm initially samples u1 via (42) followed by ui

via (44) for i = 2, . . . ,N − 1 or until ‖u1:i‖0 = M . Note
that E0(q i :N ) = 1 ∀i , Ej (qN−j+1:N ) =

∏N
t=N−j+1 qt for

j ∈ {1 : M }, and by convention Ei (qN−j+1:N ) = 0 for

Fig. 2. Binary probability tree showcasing the conditional sampling pro-
cedure for the first four sensor activation indicators u1:4. At each level,
i ∈ {1:4}, a binary decision, i.e., ui = 1 (red edge) or ui = 0 (black
edge), is taken with probabilities proportional to the values inscribed under
the corresponding edges.

i > j and j ∈ {1 : M }. This ensures that a sample with
‖u‖0 = M is always obtained. This sampling process is cap-
tured by the binary tree depicted in Fig. 2. From (44), the
conditional activation ui = 1 of the i th sensor can be achieved
via Bernoulli sampling with success probability bi ,M−mi−1

,
where bi ,j ∈ [0, 1] is given by

bi ,j =
qiEj−1

(
q i+1:N

)

qiEj−1
(
q i+1:N

)
+ Ej

(
q i+1:N

) (45)

for i < N and bN ,1 = 1.
The algorithm for the conditional sampling of valid sensor

activation vectors u ∈ UM is presented in Algorithm 2. The
function call Ber(p) denotes a Bernoulli draw with success
probability p. From (6), the values of the elementary symmetric
function Ej (q i :N ) are easily obtained via the recursion at line 6
of Algorithm 2. Subsequently, a table containing the probabilities
of success bi ,j is formed at line 7. A valid activation ui for the
i th sensor is sampled at line 13 as a Bernoulli draw. The worst
case computational complexity of Algorithm 2 is O(TN ) for
sampling a number of T vectors. The computational complexity
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Algorithm 2 Conditional Sampling of Valid Sensor
Activations

1: Input vector of weights q ← [q1, . . . , qN ]T, T , N , and
M .

2: Set E0(q i :N ) ← 1, bi ,j ← 1 for i ∈ {1 : N }, j ∈
{1 : M }.

3: Set Ej (qN−j+1:N )←∏N
t=N−j+1 qt for j ∈ {1 : M }.

4: for i = (N − 1) down to 1 do
5: for j = 1 to min(M ,N − i ) do
6: Ej (q i :N )← qiEj−1(q i+1:N ) + Ej (q i+1:N )
7: Compute bi ,j via (45).
8: end for
9: end for

10: for t = 1 to T do
11: Set i ← 1, j ← M , and u(t) ← [0, . . . , 0]T.
12: while (i � N ) ∧ (j > 0) do
13: Sample u(t)

i ← Ber(bi ,j ).
14: Set j ← j − u(t)

i and i ← i + 1.
15: end while
16: end for
17: Return the set of valid activation vectors {u(t)}Tt=1.

of evaluating the reward functionRCE(u) for an activation vector
isO(

∑
l∈Lk

J (l)) since the terms in (33) involve computing the

parameters α(l ,j ) and β(l ,j ) for all labels and particles. Hence,
step 3 of Algorithm 1 has a complexity of O(T

∑
l∈Lk

J (l)).
For K iterations, the computational complexity of Algorithm 2
is O(KT (N +

∑
l∈Lk

J (l))). Note that the complexity of the
algorithm is linear with both the number of sensors N and the
number of objects |Lk |.

The convergence of CE algorithms was studied for generic
combinatorial optimization problems in [63], where both nec-
essary and sufficient conditions are given. More specifically,
Algorithm 1 eventually generates an optimal solution with
probability 1 if: 1) the initial probabilities verify v (0)

i ∈ (0, 1)
for i ∈ {1 : N } and 2) the smoothing sequence verifies
γ(k) ∈ (0, 1] ∀k and

∑∞
k=1 γ

(k) <∞. For the more common-
use case of a constant smoothing parameter γ(k) = γ ∈ (0, 1]
and initial probabilities v (0)

i ∈ (0, 1) for i ∈ {1 : N },
Algorithm 1 converges almost surely to a unit mass located
in UM , while the probability of generating an optimal acti-
vation vector can be made arbitrarily close to 1. Note that
in both cases, the convergence properties hold as the number
K of iterations tends to infinity. To the best of our knowl-
edge, a convergence-rate analysis of CE algorithms seems to
be lacking in the literature.

VII. NUMERICAL EXPERIMENTS

Three simulation scenarios are presented to assess the
performance of our proposed algorithm. First, a static scenario
is considered where the objects and sensors are stationary. The
objective of the static scenario is to assess the convergence and
computational speedup of the CE algorithm with respect to
a brute-force search algorithm. Furthermore, a Monte Carlo
comparison is conducted to assess the relative improvement

Fig. 3. Static SS scenario with five objects, N = 50 sensors and M = 5
selected sensors according to the highest CE reward function.

of our proposed method with respect to a uniform-SS method.
The second scenario emulates an MOT application where a
group of objects is being tracked in time over a grid of
sensors. Here, the tracking performance achieved by the multi-
sensor LMB filter of Section IV coupled with our proposed SS
algorithm is compared to the performance of the same filter but
coupled with a uniform SS algorithm. Finally, we showcase
the OoT tracking of three vessels in an emulated scenario off
the coast of Italy with the multisensor LMB filter in conjunc-
tion with our proposed cross-entropy SS (CE-SS) algorithm.
In all scenarios, the sensors provide range-only measurements
which correspond to single-hydrophone floats. For a sensor
s placed at coordinates (xs , ys), the range-only measurement
equation for an object with coordinates (x , y) is

zs =
√

(x − xs)2 + (y − ys)2 + bs (46)

where the additive noise bs is a zero-mean Gaussian ran-
dom variable with variance σ2s and is independent of the
measurement noise bi of other sensors i �= s (in order for
Assumption A7) of Section III to hold).

A. Static SS Scenario

An initial numerical simulation is carried out for a group
of five static objects with the goal of selecting M = 5 out of
a total of N = 50 sensors that lead to the highest information
gain according to the CS divergence of (33). The object set
is described as an LMB where the Bernoulli components
are parametrized via Gaussian densities with corresponding
means showcased in Fig. 3 and standard deviation of 10 m
in both X and Y directions. The Bernoulli probabilities of
existence are showcased adjacent to their mean positions. The
sensors provide range-only measurements according to (46)
and are placed uniformly within the Region of Interest (RoI),
and their parameters are also drawn uniformly as follows.
Their probabilities of detection are uniformly drawn within
[0.5, 1], clutter measurement rates (i.e., average number of
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Fig. 4. Logarithm of marginal sensor selection probabilities for the CE-SS
algorithm.

TABLE II
RELATIVE IMPROVEMENT ΥM ,N OF CE-SS OVER UNIFORM SAMPLING

clutter measurements per time step) are uniformly drawn
within [5, 15], and the measurement noise variance σ2

s is uni-
formly drawn within [5, 15] m2. The goal of this static scenario
is to showcase a high-dimensional SS problem typical of OoT
and where brute-force enumeration procedures are intractable
in practice. A subsequent goal is to evaluate the speedup and
convergence of the proposed CE-SS algorithm. For the SS
problem of Fig. 3, the total number of valid combinations is
2 118 760. CE-SS was run for ten iterations with T = 100
sensor subsets being sampled at each iteration, thus leading to
a total of 1000 samples. Furthermore, only 330 samples were
distinct in one simulation with the best scoring sensor subset
being highlighted in red in Fig. 3. Additional computational
savings are made by employing the memoization of function
calls for the CE evaluation (33) of sensor subsets. The total
runtime for the brute-force search procedure is 6.8 min while
for CE-SS it is 0.18 s, leading to a speedup of more than 220
times. Simulations were performed in MATLAB on a laptop
equipped with an Intel i7 processor and 12 GB of RAM. Both
the brute-force search and CE-SS algorithms reach the same
optimal sensor subset and the marginal sensor selection prob-
abilities for CE are showcased in Fig. 4 as a function of the
iteration number. Note the fast convergence of CE, i.e., less
than ten iterations are required to converge to the same solution
as the brute-force search.

A Monte Carlo analysis of the static simulation scenario is
conducted in the following. The proposed CE-SS algorithm is
compared with a reference algorithm that selects a subset of

Fig. 5. Sensor grid and an instance of tracks for three closely spaced objects.
The time evolution of the number of objects is also shown in the lower panel.

sensors uniformly at random. The parameters of the CE-SS
algorithm are: the number of samples per iteration T = 300,
the maximum number of iterations K = 20, the smoothing
parameter γ = 0.999, and the threshold τ = 0.3. In order to
ensure a fair comparison, the uniform-SS algorithm performs
T × K = 6000 samples where each sample consists of M
sensors uniformly selected from the available N sensors. For
each Monte Carlo run i , the uniform-SS algorithm returns the
sample with the highest reward R(i)

U out of the total T × K
samples; while the CE-SS algorithm returns the sample with
the highest reward R(i)

CE and the sample with the lowest reward
R(i)

CE. For each pair (M ,N ), a total of I = 100 independent
Monte Carlo runs are performed and a relative-improvement
score of CE-SS over the uniform SS algorithm is defined as

ΥM ,N =

∑I
i=1

[
R(i)

CE − R(i)
U

]

∑I
i=1

[
R(i)

CE − R(i)
CE

] 100 [%] . (47)

The relative-improvement score ΥM ,N provides a measure of
reward gain (in terms of the CS reward of Section V) for
the CE-SS over the uniform algorithm when the reward of the
optimal subset is unknown or hard to compute, e.g., for high
N . In Table II, the relative-improvement scores are provided
for various pairs (M ,N ). The exploration of the sensor-
subset space is significantly hindered at high N . However, the
increase of ΥM ,N with N highlights that the adaptive sam-
pling scheme of CE-SS is more efficient at exploring such
high-dimensional spaces than uniform sampling.
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Fig. 6. Mean OSPA for the proposed and reference SS algorithms when the
sensor characteristics are uniformly sampled.

B. Dynamic SS Scenario

In this section, filtering results are presented in a
dynamic MOT setting for the multisensor LMB filter of
Section IV with our proposed information theoretic CE-SS
algorithm and a reference method that uniformly selects a
subset of sensors at each time step. A 2-D scenario is sim-
ulated involving three objects with trajectories depicted in
Fig. 5 over a simulation length of 200 time samples with sam-
pling period TS = 1 s. Object state vectors are constructed as
x = [x , y , ẋ , ẏ ]T, where x and y represent the 2-D position
coordinates of the object and ẋ and ẏ are its velocities along
the two axes. The dynamic model for an object l is given by
the white-noise acceleration model [69, Ch. 6.3.2] and has the
transition kernel fk+1|k (x |y ; l) is N (x ;Fk+1y ,Qk ) with the
state transition matrix

Fk =

⎡

⎣
I 2 TSI 2

02 I 2

⎤

⎦ (48)

where 0n and I n are the zero and identity matrices of size n .
The process noise is Gaussian with the covariance matrix

Qk = σ2
o

⎡

⎢
⎢
⎣

T4
S
4 I 2

T3
S
2 I 2

T3
S
2 I 2 T 2

S I 2

⎤

⎥
⎥
⎦ (49)

where the acceleration noise is taken to be σ2
o = 0.01 m2/s4.

The optimum subpattern assignment (OSPA) error metric [70]
was introduced as a distance measure between two sets and is
commonly employed in MOT to quantify the estimation error
between an estimated set and the ground-truth set of objects.
The OSPA metric employs two parameters, the cutoff c and
order p. Note that OSPA incorporates both errors in cardinality
and state estimates. The cutoff controls the impact of cardinality
errors in the overall OSPA while a truncated Lp distance is
employed between the estimated and ground-truth state vectors.

A fixed grid of N = 81 range-only sensors, as depicted
in Fig. 5, is considered where the sensor characteristics are
chosen randomly at the beginning of each simulation. More
specifically, the measurement noise standard deviation σs is

Fig. 7. Mean OSPA for the proposed and reference SS algorithms when the
sensor characteristics are range dependent.

chosen uniformly in [50, 500] m and the probability of detection
is uniform over the RoI and is set to either 0.1 or 0.9 with equal
probabilities. The goal of the SS algorithms is to select the
M = 3 best sensors at each time step. A Monte Carlo simulation
is conducted where the object tracks, sensor characteristics,
and sensor measurements are sampled anew in each simulation
for a total of 100 independent runs. The mean OSPA error
metric with cutoff c = 500 m and order p = 1 is presented as a
function of time in Fig. 6. Note that only position coordinates
are considered in the evaluation of the OSPA error. Observe the
error spikes that correspond with the times of object births and
deaths. Furthermore, the proposed CE-SS algorithm achieves
a lower mean OSPA error than uniform SS. The time-averaged
mean OSPA for the CE-SS algorithm is 133 m while 262 m
is obtained for the reference method, leading to an average
performance improvement of 49%.

In a second simulation, a range-dependent measurement
noise is employed where the standard deviation σs(r) at dis-
tance r (both expressed in meters) from sensor s is given by
σs(r) = 50 exp (r/8000) while the probability of detection is
kept constant at 0.9 for all sensors. In this case, the sensors are
accurate at close ranges but exhibit a sharp decline in precision at
farther distances from the sensor’s position. The time-dependent
mean OSPA curves are presented in Fig. 7 and which show the
improved performance of the proposed CE-SS algorithm with
respect to the reference method. The time-averaged mean OSPA
is now 45 m for the proposed CE-SS while a value of 94 m is
obtained for the reference method, thus the proposed method
achieves a performance improvement of 52%.

C. SS for Vessel Tracking

In this section, an example is provided of multives-
sel tracking where our proposed CE-SS algorithm is
employed for selecting a subset from the available sensing
devices, i.e., floats, at any given time instant. The ground-
truth trajectories of the vessels are obtained from their
global-positioning-system coordinates, whereas the trajectories
of N = 590 floats, subject to ocean currents, are obtained via
numerical simulation. The vessels and floats are deployed off
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Fig. 8. Ground-truth tracks of three vessels off the cost of Italy over a 9 hour
period (background image courtesy of Google Maps).

the coast of Italy and their trajectories are depicted in Fig. 8
over a total of 90 time steps with a TS = 0.1 hour sam-
pling interval. Fig. 9 presents a detailed image of the vessel
trajectories and the float tracks that result from ocean drift.

The floats are equipped with sensors capable of provid-
ing range measurements with a maximum measurement range
of 10 km. Other sensor characteristics are: Gaussian measure-
ment noise with the standard deviation of 100 m, probability of
detection of 0.9, and uniformly distributed clutter with a rate
of 1 measurement per time step and per sensor. A discretized
nearly constant velocity model [69, Ch. 6.2.2] is assumed
for the vessel kinematics with a process noise intensity of
0.001 m2/s3. The SMC-LMB filter of Section IV is employed
for vessel tracking in conjunction with our proposed CE-SS
algorithm. A number of 5 × 104 particles are employed to
model each of the object posterior densities while the CE-SS
parameters are set to: T = 300, K = 20, γ = 0.999, and
τ = 0.3. A number of M = 30 floats are selected from the
available floats via our proposed CE-SS algorithm. In addi-
tion to the M = 30 CE-SS floats, floats which are at the
edge of the RoI are uniformly activated at random in order
to detect entering vessels, i.e., birthed vessels. In Fig. 10,
the resulting estimated vessel tracks can be observed over-
laid onto the ground-truth tracks and the CE-SS active floats
at every 1 hour interval. There is a good agreement between
the ground-truth and estimated tracks for all three vessels.
Furthermore, on average 12% of floats (cumulated CE-SS
and birth) are active at any time instant. This results in a
large reduction of the communication overhead, which is cru-
cial for efficient OoT systems subject to battery-life and/or
communication constraints.

VIII. CONCLUSION

In this article, we provided a general information-seeking
sensor selection methodology for Bayesian multiobject
tracking in OoT, where the objective is to sequentially estimate
the number and the states of a collection of objects observed

Fig. 9. Detail of Fig. 8 showcasing the vessel ground truth and the trajectories
of all 590 floats over the same 9 hour period (background image courtesy of
Google Maps).

Fig. 10. Estimated and ground-truth tracks of the three vessels and CE-SS-
selected floats. The positions of the selected floats are shown at each 1 hour
interval (background image courtesy of Google Maps).

by only a subset of sensors. We derive a tractable information
divergence measure between the predicted and posterior mul-
tiobject models in order to quantify the information gain of
a specific sensor subset. Subsequently, we propose a cross-
entropy stochastic search algorithm to find the optimum sensor
subset according to the proposed divergence measure and
under the specified resource constraint. The cross-entropy
algorithm alleviates the need for brute-force search algo-
rithms which would otherwise be intractable in most OoT
applications. We demonstrate the performance gain of our
proposed methodology via numerical experiments.

APPENDIX A
PROOF OF LEMMA 1

By employing the set-integral definition (1), together with
(3) and (4) for πa and πb, the logarithm numerator in (24)
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becomes
∫
κ|X |πa(X )πb(X )δX

=
∫

ΔX wa(LX )wb(LX )κ|X |[ pa(·) pb(·) ]X δX

=
∞∑

n=0

1
n!

∑

(l1,...,ln )∈Ln

δn
(∣
∣
{
l1, . . . , ln

}∣
∣
)
wa
({l1, . . . , ln}

)

× wb

({l1, . . . , ln}
)

×
∫

Xn

n∏

i=1
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〈
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]

(ii)
=

∏

l∈L

Kab(l) .

At line (i), all summation terms over tuples without n distinct
labels are dropped due to δn

(|{l1, . . . , ln}|
)

as well as terms
with more than |L| labels. Subsequently, at line (ii), the prop-
erty of the elementary symmetric function given in (7) was
employed. Similar derivations ensue for the two denominator
terms in (24) and the form (25) immediately follows.

APPENDIX B
PROOF OF LEMMA 2

Under the simplifying assumptions of Section V-B, for a
single Bernoulli l and the object-expected multisensor mea-
surement Z̃ l ,Sk

k , the set of extended multisensor measurement

indices becomes M
Sk
k = {−1}⊎{0, 1}M and the set of valid

multisensor maps becomes ĀSk
k = MSk

k since there is no
contention for measurements among multiple objects. Letting
Sk = {s1, . . . , sM }, note that

∑

m∈M
Sk
k \{−1}

ψ̄Sk
k

(
x , l ; Z̃ l ,Sk

k ,m
)

=
∑

m1∈{0,1}
· · ·
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(l)
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∣
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f FA
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(
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(l)
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]mi
}

=
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(x , l) +
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(
z̃

(l)
si ,k

∣
∣x , l

)

f FA
si ,k

(
z̃

(l)
si ,k

)

]

(50)

where a generalized form of the binomial theorem was
employed and which leads to (30a). Combining (50) with the

linearity of the inner product and since each Bernoulli com-
ponent l ∈ Lk is updated independently (i.e., as if |Lk | = 1),
the normalization constant of (18) now becomes

C (l) �
∑

m∈M
Sk
k

ηm
k|k (l ;S1:k )

= 1 − r
S1:k−1
k|k−1

(l) + r
S1:k−1
k|k−1

(l)
〈
g̃
Sk
k

(Z̃ l,Sk
k

∣
∣·, l), pS1:k−1

k|k−1
(·, l)〉 .

Subsequently, from the definitions of (18)–(21b), the result
of (50) and, since there is no contention, i.e., P(āk ;S1:k ) =
P̂l (āk (l);S1:k ), the probability of existence becomes

r̃
S1:k
k |k (l)

=
∑

m∈M
Sk
k

\{−1}

r
S1:k−1

k |k−1
(l)

〈
ψ̄
Sk
k

(·, l ; Z̃Sk
k
,m

)
, p

S1:k−1

k |k−1
(·, l)〉

C (l)

=
r
S1:k−1

k |k−1
(l)

〈
g̃
Sk
k

(Z̃l,Sk
k

∣
∣·, l), pS1:k−1

k |k−1
(·, l)〉

1 − r
S1:k−1

k |k−1
(l) + r

S1:k−1

k |k−1
(l)

〈
g̃
Sk
k

(Z̃l,Sk
k

∣
∣·, l), pS1:k−1

k |k−1
(·, l)〉

while from (30c) is obtained by using the notation in (30b).
Similarly, from definition (21b) and by using (30a), the
probability density of (30d) follows. Additionally, note that
the resulting equations (30c) and (30d) are similar to the
multisensor single-Bernoulli filter update equations of [71].
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