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Abstract—The availability of position information is of great im-
portance in many commercial, public safety, and military applica-
tions. The coming years will see the emergence of location-aware
networks with submeter accuracy, relying on accurate range mea-
surements provided by wide bandwidth transmissions. In this two-
part paper, we determine the fundamental limits of localization
accuracy of wideband wireless networks in harsh multipath envi-
ronments. We first develop a general framework to characterize
the localization accuracy of a given node here and then extend our
analysis to cooperative location-aware networks in Part II. In this
paper, we characterize localization accuracy in terms of a perfor-
mance measure called the squared position error bound (SPEB),
and introduce the notion of equivalent Fisher information (EFI) to
derive the SPEB in a succinct expression. This methodology pro-
vides insights into the essence of the localization problem by uni-
fying localization information from individual anchors and that
from a priori knowledge of the agent’s position in a canonical form.
Our analysis begins with the received waveforms themselves rather
than utilizing only the signal metrics extracted from these wave-
forms, such as time-of-arrival and received signal strength. Hence,
our framework exploits all the information inherent in the received
waveforms, and the resulting SPEB serves as a fundamental limit
of localization accuracy.

Index Terms—Cramér–Rao bound (CRB), equivalent Fisher in-
formation (EFI), information inequality, localization, ranging in-
formation (RI), squared position error bound (SPEB).

I. INTRODUCTION

L OCATION-AWARENESS plays a crucial role in
many wireless network applications, such as local-

ization services in next generation cellular networks [1],
search-and-rescue operations [2], [3], logistics [4], and blue
force tracking in battlefields [5]. The global positioning system
(GPS) is the most important technology to provide loca-
tion-awareness around the globe through a constellation of at
least 24 satellites [6], [7]. However, the effectiveness of GPS is
limited in harsh environments, such as in buildings, in urban
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Fig. 1. Location-aware networks: the anchors (A, B, C, and D) communicate
with the agents (1 and 2), and each edge denotes a connection link between
anchor and agent.

canyons, under tree canopies, and in caves [8], [9], due to the
inability of GPS signals to penetrate most obstacles. Hence,
new localization techniques are required to meet the increasing
need for accurate localization in such harsh environments [8],
[9].

Wideband wireless networks are capable of providing ac-
curate localization in GPS-denied environments [8]–[12].
Wide bandwidth or ultrawide bandwidth (UWB) signals are
particularly well suited for localization, since they can provide
accurate and reliable range (distance) measurements due to
their fine delay resolution and robustness in harsh environments
[13]–[20]. For more information about UWB, we refer the
reader to [21]–[26].

Location-aware networks generally consist of two kinds of
nodes: anchors and agents. Anchors have known positions (for
example, through GPS or system design), while agents have un-
known positions and attempt to determine their positions (see
Fig. 1). Each node is equipped with a wideband transceiver, and
localization is accomplished through the use of radio commu-
nications between agents and their neighboring anchors. Local-
izing an agent requires a number of signals transmitted from
the anchors, and the relative position of the agent can be in-
ferred from these received waveforms using a variety of signal
metrics. Commonly used signal metrics include time-of-arrival
(TOA) [8], [9], [17]–[20], [27]–[30], time-difference-of-arrival
(TDOA) [31], [32], angle-of-arrival (AOA) [9], [33], and re-
ceived signal strength (RSS) [9], [34], [35].

Time-based metrics, TOA and TDOA, are obtained by mea-
suring the signal propagation time between nodes. In ideal sce-
narios, the estimated distance equals the product of the known
propagation speed and the measured signal propagation time.
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The TOA metric gives possible positions of an agent on a circle
with the anchor at the center, and it can be obtained by either
the one-way time-of-flight of a signal in a synchronized net-
work [18], [19], [28], [29], or the round-trip time-of-flight in a
nonsynchronized network [26], [36]. Alternatively, the TDOA
metric provides possible positions of an agent on the hyperbola
determined by the difference in the TOAs from two anchors lo-
cated at the foci. Note that TDOA techniques require synchro-
nization among anchors but not necessarily with the agent.

Another signal metric is AOA, the angle at which a signal
arrives at the agent. The AOA metric can be obtained using an
array of antennas, based on the signals’ TOAs at different an-
tennas.1 The use of AOA for localization has been investigated,
and many hybrid systems have been proposed, including hy-
brid TOA/AOA systems [30], [41], and hybrid TDOA/AOA sys-
tems [42]. However, some of these studies employ narrowband
signal models, which are not applicable for wideband antenna
arrays. Others are restricted to far-field scenarios or use far-field
assumptions.

RSS is also a useful metric for estimating the propagation dis-
tance between nodes [9], [34], [36]. This metric can be measured
during the data communications using low-complexity circuits.
Although widely implemented, RSS has limited accuracy due
to the difficulty in precisely modeling the relationship between
the RSS and the propagation distance [4], [9].

Note that the signal metrics extracted from the received wave-
forms may discard relevant information for localization. More-
over, models for the signal metrics depend heavily on the spe-
cific measurement processes.2 Therefore, in deriving the funda-
mental limits of localization accuracy, it is necessary to utilize
the received waveforms rather than the signal metrics extracted
from the waveforms [28], [29], [46], [47].

Since the received waveforms are affected by random phe-
nomena such as noise, fading, shadowing, multipath, and
nonline-of-sight (NLOS) propagations [48], [49], the agents’
position estimates are subject to uncertainty. The Cramér–Rao
bound (CRB) sets a lower bound on the variance of esti-
mates for deterministic parameters [50], [51], and it has been
used as a performance measure for localization accuracy [52].
However, relatively few studies have investigated the effect of
multipath and NLOS propagations on localization accuracy.
Multipath refers to a propagation phenomenon in which a
transmitted signal reaches the receive antenna via multiple
paths. The superposition of these arriving paths results in
fading and interference. NLOS propagations, created by phys-
ical obstructions in the direct path, produce a positive bias in
the propagation time and decrease the strength of the received
signal, which can severely degrade the localization accuracy.
Several types of methods have been proposed to deal with
NLOS propagations: 1) treat NLOS biases as additive noise

1The AOA metric can be obtained in two ways, directly through measure-
ment by a directional antenna, or indirectly through TOA measurements using
an antenna array [37]–[40]. Wideband directional antennas that satisfy size and
cost requirements are difficult to implement, since they are required to perform
across a large bandwidth [36]. As such, antenna arrays are more commonly used
when angle measurement for wide bandwidth signals is necessary.

2For instance, the error of the TOA metric is commonly modeled as an addi-
tive Gaussian random variable [8], [30], [43]. This model contradicts the studies
in [18]–[20], [44], and [45], and the experimental results in [8] and [16].

injected in the true propagation distances [8], [53], [54]3; 2)
identify and weigh the importance of NLOS signals for local-
ization [55]–[60]; or 3) consider NLOS biases as parameters
to be estimated [27]–[30], [46], [47], [61], [62]. The authors
in [8], [9], [28], and [29] showed that NLOS signals do not
improve localization accuracy unless a priori knowledge of the
NLOS biases is available, but their results were restricted to
specific models or approximations. Moreover, detailed effects
of multipath propagations on localization accuracy remains
underexplored.

In this paper, we develop a general framework to determine
the localization accuracy of wideband wireless networks.4 Our
analysis begins with the received waveforms themselves rather
than utilizing only signal metrics extracted from the waveforms,
such as TOA, TDOA, AOA, and RSS. The main contributions
of this paper are as follows.

• We derive the fundamental limits of localization accuracy
for wideband wireless networks, in terms of a performance
measure called the squared position error bound (SPEB),
in the presence of multipath and NLOS propagation.

• We propose the notion of equivalent Fisher information
(EFI) to derive the agent’s localization information. This
approach unifies such information from different anchors
in a canonical form as a weighed sum of the direction ma-
trix associated with individual anchors with the weights
characterizing the information intensity.

• We quantify the contribution of the a priori knowledge of
the channel parameters and agent’s position to the agent’s
localization information, and show that NLOS compo-
nents can be beneficial when a priori channel knowledge
is available.

• We derive the performance limits for localization systems
employing wideband antenna arrays. The AOA metrics ob-
tained from antenna arrays are shown not to further im-
prove the localization accuracy beyond that provided by
TOA metric alone.

• We quantify the effect of clock asynchronism between
anchors and agents on localization accuracy for networks
where nodes employ a single antenna or an array of
antennas.

The rest of the paper is organized as follows. Section II
presents the system model, the notion of the SPEB, and the
Fisher information matrix (FIM) for the SPEB. In Section III,
we introduce the notion of EFI and show how it can help
the derivation of the SPEB. In Section IV, we investigate
the performance of localization systems employing wideband
antenna arrays. Section V investigates the effect of clock
asynchronism between anchors and agents. Discussions are
provided in Section VI. Finally, numerical illustrations are
given in Section VII, and conclusions are drawn in the last
section.

Notations: The notation is the expectation operator
with respect to the random vector ; denotes that the

3In practice, however, an NLOS induced range bias can be as much as
a few kilometers depending on the propagation environment [48], [55],
and small perturbation may not compensate for NLOS induced error.

4In Part II [63], we extend our analysis to cooperative location-aware
networks.
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matrix is positive semidefinite; is the trace of a
square matrix; denotes the upper left submatrix
of its argument; is the element at the th row and th
column of its argument; is the Euclidean norm of its ar-
gument; and the superscripts represents the transpose of its
argument. We denote by the probability density function
(pdf) of the random vector unless specified otherwise,
and we also use in the paper the following function for the FIM:

where can be either a vector or a symbol.5

II. SYSTEM MODEL

In this section, we describe the wideband channel model [14],
[21], [24], [26], [64], formulate the problem, and briefly review
the information inequality and Fisher information. We also in-
troduce the SPEB, which is a fundamental limit of localization
accuracy.

A. Signal Model

Consider a wireless network consisting of anchors and
multiple agents. Anchors have perfect knowledge of their posi-
tions, and each agent attempts to estimate its position based on
the received waveforms from neighboring anchors (see Fig. 1).6

Wideband signals traveling from anchors to agents are subject
to multipath propagation.

Let denote the position of the agent,7 which
is to be estimated. The set of anchors is denoted by

, where denotes
the set of anchors that provide line-of-sight (LOS) signals to
the agent and denotes the set of remaining anchors that
provide NLOS signals to the agent. The position of anchor is
known and denoted by . Let denote the
angle from anchor to the agent, i.e.,

where and .
The received waveform at the agent from anchor can be

written as

(1)

where is a known wideband waveform whose Fourier
transform is denoted by , and are the amplitude
and delay, respectively, of the th path, is the number of
multipath components (MPCs), represents the obser-
vation noise modeled as additive white Gaussian processes

5For example, � is replaced by symbol ����� in the case that ���� is a condi-
tional pdf of � given ���.

6Agents estimate their positions independently, and hence without loss of
generality, our analysis focuses on one agent.

7We first focus on 2-D cases and then extend the results to 3-D cases where
� � .

with two-side power spectral density , and is
the observation interval. The relationship between the agent’s
position and the delays of the propagation paths is

(2)

where is the propagation speed of the signal, and

is a range bias. The range bias for LOS propagation,

whereas for NLOS propagation.8

B. Error Bounds on Position Estimation

Our analysis is based on the received waveforms given by (1),
and hence the parameter vector includes the agent’s position
and the nuisance multipath parameters [9], [62], i.e.,

where is the vector of the multipath parameters associated
with , given by

Note that for and is excluded from .
We introduce as the vector representation of all the received

waveforms , given by

where is obtained from the Karhunen–Loeve expansion of
[50], [51]. Let denote an estimate of the parameter vector

based on observation . The mean squared error (MSE) matrix
of satisfies the information inequality [50], [51], [65]

(3)

where is the FIM for the parameter vector .9 Let be an
estimate of the agent’s position, and it follows from (3) that10

and hence

(4)

8LOS propagation does not introduce a range bias because there is an un-
blocked direct path. NLOS propagation introduces a positive range bias be-
cause such signals either reflect off objects or penetrate through obstacles. In
this paper, received signals whose first path undergoes LOS propagation are re-
ferred to as LOS signals, otherwise these signals are referred to as NLOS signals.

9When a subset of parameters is random, � is called the Bayesian infor-
mation matrix. Inequality (3) also holds under some regularity conditions and
provides lower bound on the MSE matrix of any unbiased estimates of the de-
terministic parameters and any estimates of the random parameters [50], [65].
With a slight abuse of notation, �� ��� will be used for deterministic, hybrid,
and Bayesian cases with the understanding that the expectation operation is not
performed over the deterministic components of ���.

10Note that for 3-D localization, we need to consider a ���matrix � .
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Therefore, we define the right-hand side of (4) as a measure to
characterize the limits of localization accuracy as follows.

Definition 1 (SPEB): The SPEB is defined to be

C. Fisher Information Matrix

In this section, we derive the FIM for both deterministic and
random parameter estimation to evaluate the SPEB.

1) FIM Without a Priori Knowledge: The FIM for the deter-
ministic parameter vector is given by [50]

(5)

where is the likelihood ratio of the random vector con-
ditioned on . Since the received waveforms from different an-
chors are independent, the likelihood ratio can be written as [51]

(6)

where

Substituting (6) in (5), we have the FIM as

(7)

where , , , and are given by (41) and (42). In the
above matrices, and are related to the LOS signals, and

and are related to the NLOS signals.
2) FIM With a Priori Knowledge: We now incorporate the a

priori knowledge of the agent’s position and channel parameters
for localization. Since the multipath parameters are indepen-
dent a priori, the pdf of can be expressed as11

(8)

where is the pdf of the agent’s position, and is the
joint pdf of the multipath parameter vector conditioned on
the agent’s position. Based on the models of wideband channels
[36], [40], [64] and UWB channels [14], [21], [24], [26], [36],
we derive in (52) in Appendix II and show that

(9)

where .
The joint pdf of observation and parameters can be written as

11When a subset of parameters are deterministic, they are eliminated from
������.

where is given by (6), and hence the FIM becomes

(10)

where and are the FIMs
from the observations and the a priori knowledge, respec-
tively.12 The FIM can be obtained by taking the expectation
of in (7) over the random parameter vector , and can be
obtained by substituting (8) in (10) as

...
. . .

(11)

where describes the FIM from the a priori knowledge of ,
given by

and , , and
characterize the joint a priori knowl-

edge of and .

D. Equivalent Fisher Information Matrix

Determining the SPEB requires inverting the FIM in (7)
and (10). However, is a matrix of high dimensions, while
only a small submatrix is of interest. To circumvent
direction matrix inversion and gain insights into the localization
problem, we first introduce the notions of EFI [46], [47].

Definition 2 (Equivalent Fisher Information Matrix): Given
a parameter and the FIM of the form

(12)

where , , , , and
with , the equivalent Fisher information

matrix (EFIM) for is given by13

(13)

Note that the EFIM retains all the necessary information to
derive the information inequality for the parameter vector ,
since ,14 and the MSE matrix of the esti-
mates for is bounded below by . For 2-D localization

, we aim to reduce the dimension of the original FIM to
the EFIM.

12Note that � in (10) requires averaging over the random parameters, and
hence does not depend on any particular value of ���. In contrast, � in (5) is a
function of a particular value of the deterministic parameter vector ���.

13Note that� ���� � does not depend on any particular value of ��� for a random
parameter vector ��� , whereas it is a function of ��� for a deterministic parameter
vector ��� .

14The right-hand side of (13) is known as the Schur complement of the matrix
� [66].
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III. EVALUATION OF EFIM

In this section, we apply the notion of EFI to derive the SPEB
for both the case with and without a priori knowledge. We also
introduce the notion of ranging information (RI), which turns
out to be the basic component of the SPEB.

A. EFIM Without a Priori Knowledge

First consider a case in which a priori knowledge is unavail-
able. We apply the notion of EFI to reduce the dimension of the
original FIM in (7), and the EFIM for the agent’s position is
presented in the following proposition.

Proposition 1: When a priori knowledge is unavailable, an
EFIM for the agent’s position is

(14)

where and are given by (41) and (42), respectively.
Proof: Let ,

, and in (7). Applying the notion of EFI in
(13) leads to the result.

Remark 1: When a priori knowledge is unavailable, NLOS
signals do not contribute to the EFIM for the agent’s position.
Hence, we can eliminate these NLOS signals when analyzing lo-
calization accuracy. This observation agrees with the results of
[29], but the amplitudes of the MPCs are assumed to be known
in their model.

Note that the dimension of the EFIM in (14) is much larger
than . We will apply the notion of EFI again to further re-
duce the dimension of the EFIM in the following theorem. Be-
fore the theorem, we introduce the notion of the first contiguous
cluster and RI.

Definition 3 (First Contiguous Cluster): The first contiguous
cluster is defined to be the set of paths , such that

for , and ,
where is the duration of .

Definition 4 (RI): The RI is a matrix of the form ,
where is a nonnegative number called the ranging information
intensity (RII), and a matrix called the ranging
direction matrix (RDM) with angle , given by

The first contiguous cluster is the first group of nondisjoint
paths (see Fig. 2).15 The RDM is 1-D along the direction

with unit intensity, i.e., has one (and only one)
nonzero eigenvalue equal to with corresponding eigenvector

Theorem 1: When a priori knowledge is unavailable, the
EFIM for the agent’s position is a matrix

(15)

15The first contiguous cluster, defined for general wideband received signals,
may contain many MPCs. Two paths that arrive at time � and � are called
nondisjointed if �� � � � � � .

Fig. 2. An illustration of the first contiguous cluster (containing � paths) in a
LOS signal.

where is the RII from anchor , given by

(16)

In (16), is given by (59)

(17)

and

(18)

Furthermore, only the first contiguous cluster of LOS signals
contains information for localization.

Proof: See Appendix III-A.

Remark 2: In Theorem 1, is known as the effective band-
width [50], [67], is called path-overlap coefficient (POC) that
characterizes the effect of multipath propagation for localiza-
tion, and is the SNR of the th path in . We draw
the following observations from Theorem 1.

• The original FIM in (7) can be transformed into a simple
EFIM in a canonical form, given by (15), as a

weighted sum of the RDM from individual anchors. Each
anchor (e.g., anchor ) can provide only 1-D RI along the
direction , from the anchor to the agent, with intensity

.16

• The RII depends on the effective bandwidth of , the
SNR of the first path, and the POC. Since ,
path overlap in the first contiguous cluster will reduce the
RII, thus leading to a higher SPEB, unless the signal via
the first path does not overlap with others .

• The POC in (59) is determined only by the waveform
and the NLOS biases of the MPCs in the first con-

tiguous cluster. The independence of on the path am-
plitudes seems counterintuitive. However, this is due to the
fact that, although large causes severe interpath inter-

ference for estimating the TOA , it increases the esti-

mation accuracy for , which in turn helps to mitigate
the interpath interference.

We can specialize the above theorem into a case in which the
first path in a LOS signal is completely resolvable, i.e., the first
contiguous cluster contains only a single component.

16For notational convenience, we suppress the dependence of � and � on
the agent’s position � throughout the paper.
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Corollary 1: When a priori knowledge is unavailable and the
first contiguous cluster of the received waveform from anchor
contains only the first path, the RII becomes

(19)

Proof: See Appendix III-B.

Remark 3: When the first path is resolvable, in (16)
and hence attains its maximum value. However, when the
signal via other paths overlap with the first one, these paths will
degrade the estimation accuracy of the first path’s arrival time
and hence the RII. Corollary 1 is intuitive and important: the RII
of a LOS signal depends only on the first path if the first path is
resolvable. In such a case, all other paths can be eliminated, and
the multipath signal is equivalent to a signal with only the first
path for localization.

From Theorem 1, the SPEB can be derived in (20), shown at
the bottom of the page. When the first paths are resolvable, by
Corollary 1, we have all in (20) and the corresponding

becomes the same as those based on single-path signal
models in [9], [29]. However, those results are not accurate when
the first path is not resolvable.

B. EFIM With a Priori Knowledge

We now consider the case where there is a priori knowledge
of the channel parameters, but not of the agent’s position. In
such cases, since is deterministic but unknown, is elim-
inated in (8). Similar to the analysis in the previous section, we
can derive the EFIM for the corresponding FIM in (10).

Theorem 2: When a priori knowledge of the channel pa-
rameters is available and the sets of channel parameters cor-
responding to different anchors are mutually independent, the
EFIM for the agent’s position is a matrix

(21)

where is given by (63a) for LOS signals and (63b) for NLOS
signals.

Proof: See Appendix III-C.

Remark 4: Theorem 2 generalizes the result of Theorem 1
from deterministic to hybrid parameter estimation.17 In this
case, the EFIM can still be expressed in a canonical form as
a weighed sum of the RDMs from individual anchors. Note
that due to the existence of a priori channel knowledge, the
RII of NLOS signals can be positive, and hence these signals
contribute to the EFIM as opposed to the case in Theorem 1.

Corollary 2: A priori channel knowledge increases the RII.
In the absence of such knowledge, the expressions of RII in
(63a)–(63b) reduce to (16) and zero, respectively.

17This is the case where the agent’s position� is deterministic and the channel
parameters are random.

Proof: See Appendix III-D.

Corollary 3: LOS signals can be treated as NLOS signals
with infinite a priori Fisher information of , i.e., is
known. Mathematically, (63a) is equivalent to (63b) with

.
Proof: See Appendix III-E.

Remark 5: Corollary 2 shows that Theorem 2 degenerates
to Theorem 1 when a priori channel knowledge is unavailable.
Moreover, Corollary 3 unifies the LOS and NLOS signals under
the Bayesian estimation framework: the LOS biases

can be regarded as random parameters with infinite a priori
Fisher information instead of being eliminated from as in
Section II-A. Hence, all of the signals can be modeled as NLOS,
and infinite a priori Fisher information of will be assigned
for LOS signals.

We next consider the case where a priori knowledge of the
agent’s position is available in addition to channel parameters.
Note that the topology of the anchors and the agent changes with
the position of the agent. The EFIM is given in (65),
which is more intricate than the previous two cases. To gain
some insights, we consider a special case where18

(22)

in which is the agent’s expected position, for
some function involved in the derivation of the EFIM (see
Appendix III-F).

Proposition 2: When the a priori position distribution of
the agent satisfies (22), and the sets of channel parameters cor-
responding to different anchors are mutually independent, the
EFIM for the agent’s position is a matrix

(23)

where is given by (66), and is the angle from anchor to
.

Proof: See Appendix III-F.

Remark 6: The a priori knowledge of the agent’s position
is exploited, in addition to that of the channel parameters, for
localization in Proposition 2. The expressions for the EFIM can
be involved in general. Fortunately, if (22) is satisfied, the EFIM
can be simply written as the sum of two parts as shown in (23):
a weighted sum of the RDMs from individual anchors as in the
previous two cases, and the EFIM from the a priori knowledge
of the agent’s position. This result unifies the contribution from
anchors and that from the a priori knowledge of the agent’s

18This occurs when the agent’s a priori position distribution is concentrated
in a small area relative to the distance between the agent and the anchors, so
that ���� is flat in that area. For example, this condition is satisfied in far-field
scenarios.

(20)
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Fig. 3. An antenna array is described by the reference point �, the orientation
�, and the relative positions of the antennas.

position into the EFIM. The concept of localization with a priori
knowledge of the agent’s position is useful for a wide range of
applications such as successive localization or tracking.

IV. WIDEBAND LOCALIZATION WITH ANTENNA ARRAYS

In this section, we consider localization systems using wide-
band antenna arrays, which can perform both TOA and AOA
measurements. Since the orientation of the array may be un-
known, we propose a model to jointly estimate the agent’s po-
sition and orientation, and derive the SPEB and the squared ori-
entation error bound (SOEB).

A. System Model and SOEB

Consider a network where each agent is equipped with an
-antenna array,19 which can extract both the TOA and AOA

information with respect to neighboring anchors. Let
denote the set of antennas, and let
denote the position of the agent’s th antenna,

which needs to be estimated. Let denote the angle from an-
chor to the agent’s th antenna, i.e.,

Since relative positions of the antennas in the array are usually
known, if we denote as a reference point and as
the orientation of the array,20 then the position of the th antenna
in the array can be represented as (Fig. 3)

where and denote the relative distance
in and direction from the reference point to the th antenna,
respectively.

19Each anchor has only one antenna here. We will discuss the case of multiple
antennas on anchors at the end of this section.

20Note from geometry that the orientation � is independent of the specific
reference point.

Since the array orientation may be unknown, we classify the
localization problem into orientation-aware and orientation-un-
aware cases, where can be thought of as a random parameter
with infinite (orientation-aware) and zero (orientation-unaware)
a priori Fisher information [46].

The received waveform at the agent’s th antenna from an-
chor can be written as

where and are the amplitude and delay, respectively,
of the th path, is the number of MPCs, and repre-
sents the observation noise modeled as additive white Gaussian
processes with two-side power spectral density . The rela-
tionship between the position of the th antenna and the delay
of the th path is

(24)

The parameters to be considered include the position of the ref-
erence point, the array orientation, and the nuisance multipath
parameter as

(25)

where consists of the multipath parameters associated with
the received waveforms from all anchors at the th antenna

and each consists of the multipath parameters associated
with

Similar to Section II-B, the overall received waveforms at the
antenna array can be represented, using the KL expansion, by

, where

in which is obtained by the KL expansion of .

Definition 5 (SOEB): The SOEB is defined to be

B. EFIM Without a Priori Knowledge

We first consider scenarios in which a priori knowledge is
unavailable. Following similar steps in Section III-B, we have
the following theorem.

Theorem 3: When a priori knowledge is unavailable, the
EFIMs for the position and the orientation, using an -antenna
array, are given respectively by

(26)
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and

(27)
where is given by (71), , and

(28)

and

(29)

Proof: See Appendix IV-A.

Corollary 4: The EFIM for the position is given by

(30)

for orientation-aware localization.
Proof: (Outline) In orientation-aware localization, the

angle is known and hence excluded from the parameter
vector in (25). Consequently, the proof of this corollary is
analogous to that of Theorem 3 except that the components
corresponding to are eliminated from the FIM in (67) and
(68). One can obtain (30) after some algebra.

Remark 7: The EFIM in (26) and (30) corre-
sponds to the localization information from the th antenna. We
draw the following observation from the above theorem.

• The EFIM in (26) consists of two parts: 1) the
sum of localization information obtained by individual an-
tennas, and 2) the information reduction due to the uncer-
tainty in the orientation estimate, which is subtracted from
the first part.21 Since in the second part is a posi-
tive-semidefinite matrix and
is always positive, we have the following inequality:

(31)

The inequality implies that the EFIM for the position, using
antenna arrays, is bounded above by the sum of all EFIMs
corresponding to individual antennas, since the uncertainty
in the orientation estimate degrades the localization accu-
racy, except for or orientation-aware localization
[i.e., (30)].

• The EFIM and depend only on the
individual RI between each pair of anchors and antennas
(through ’s and ’s), and the array geometry (through

’s). Hence, it is not necessary to jointly consider the re-
ceived waveforms at the antennas, implying that AOA

21For notational convenience, we suppress the dependence of � , � , and
� on the reference position �.

obtained by antenna arrays does not increase position ac-
curacy. Though counterintuitive at first, this finding should
not be too surprising since AOA is obtained indirectly by
the antenna array through TOA measurements, whereas the
TOA information has already been fully utilized for local-
ization by individual antennas.

• The gain of using antenna arrays for localization mainly
comes from the multiple copies of the waveform received
at the antennas [see (26)],22 and its performance is sim-
ilar to that of a single antenna with measurements. The
advantage of using antenna arrays lies in their ability of si-
multaneous measurements at the agent.

The equality in (31) is always achieved, independent of ref-
erence point, in orientation-aware localization. However, only a
unique reference point achieves this equality in orientation-un-
aware localization. We define this unique point as the orientation
center.

Definition 6 (Orientation Center): The orientation center is
a reference point such that

Proposition 3: Orientation center exists and is unique in
orientation-unaware localization, and hence for any

Proof: See Appendix IV-B.

Remark 8: The orientation center generally depends on
the topology of the anchors and the agent, the properties of the
received waveforms, the array geometry, and the array orienta-
tion. Since at the orientation center, the EFIMs for the
array center and the orientation do not depend on each other,
and hence the SPEB and SOEB can be calculated separately.
The proposition also implies that the SPEB of reference points
other than will be strictly larger than that of . The SPEB
for any reference point is given in the next theorem.

Corollary 5: The SOEB is independent of the reference
point , and the SPEB is

(32)

Proof: See Appendix IV-C.

Remark 9: The SOEB does not depend on the specific ref-
erence point, which was not apparent in (27). However, this is
intuitive since different reference points only introduce different
translations, but not rotations. On the other hand, different ref-
erence point results in different ’s and hence different ,
which in turn gives different EFIM for position [see (26)]. We
can interpret the relationship in (32) as follows: the SPEB of ref-
erence point is equal to that of the orientation center plus

22In near-field scenarios where the antenna separation is on the order of the
distances between the array and the anchors, additional gain that arises from the
spatial diversity of the multiple antennas may be possible.
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the orientation-induced position error, which is proportional to
both the squared distance from to and the SOEB.

C. EFIM With a Priori Knowledge

We now consider a scenario in which the channel param-
eter vector independent for different ’s and ’s. The in-
dependence assumption serve as a reasonable approximation of
many realistic scenarios, especially near-field cases. When the
different sets of channel parameters are correlated, our results
provide an upper bound for the EFIM.

Proposition 4: When a priori knowledge of channel parame-
ters is available and the set of channel parameters corresponding
to different anchors and antennas are mutually independent, the
RII becomes (70).

Proof: See Appendix IV-A.

We then consider the case where a priori knowledge of
the agent’s position and orientation is available in addition
to channel knowledge. Note that the topology of the agent’s
antennas and anchors changes with the agent’s positions and
orientations. The expression of the EFIM can be derived
analogous to (65), which is involved in general. Again to
gain insights about the contribution of a priori position and
orientation knowledge, we consider scenarios under condition

(33)

where , for some functions involved in the
derivation of the EFIM.

Corollary 6: When a priori position and orientation distribu-
tion of the agent satisfies (33), and the sets of channel parame-
ters corresponding to different anchors and antennas are mutu-
ally independent, the EFIMs for the position and the orientation,
using an -antenna array, are given, respectively, by

and

where , , , and are corresponding functions in The-
orem 3 of and , respectively, and .

Proof: (Outline) The proof of this corollary is analogous to
that of Theorem 3. Note that when condition (33) is satisfied, the
a priori knowledge of position and orientation for localization
can be characterized in the EFIM by using the approximation as
in the proof of Proposition 2.

D. Discussions

1) Far-Field Scenarios: The antennas in the array are closely
located in far-field scenarios, such that the received waveforms
from each anchor experience statistically the same propagation
channels. Hence, we have and for all

, leading to . We define an important
reference point as follows.

Definition 7 (Array Center): The array center is defined as
the position , satisfying

and

Proposition 5: The array center becomes the orientation
center in far-field scenarios.

Proof: See Appendix IV-D.

Remark 10: Since the orientation center has the minimum
SPEB, Proposition 5 implies that the array center always
achieves the minimum SPEB in far-field scenarios. Hence, the
array center is a well-suited choice for the reference point, since
its position can be determined from the array geometry alone,
without requiring the received waveforms and the knowledge
of the anchor’s topology.

In far-field scenarios, we choose the array center as the
reference point. The results of Theorem 3 become

and

where is a function of . Similarly, when the a priori po-
sition and orientation knowledge is available and condition (33)
is satisfied, the results of Corollary 6 become

and

where is a function of .
Note that the localization performance of an -antenna

array is equivalent to that of a single antenna with measure-
ments, regardless of the array geometry, in far-field scenarios.

2) Multiple Antennas at Anchors: When anchors are
equipped with multiple antennas, each antenna can be viewed
as an individual anchor. In this case, the agent’s SPEB goes
down with the number of the antennas at each anchor. Note that
all the antennas of a given anchor provide RI approximately in
the same direction with the same intensity, as they are closely
located.
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3) Other Related Issues: Other issues related to localization
using wideband antenna arrays include the AOA estimation, the
effect of multipath geometry, and the effect of array geometries.
A more comprehensive performance analysis can be found in
[11].

V. EFFECT OF CLOCK ASYNCHRONISM

In this section, we consider scenarios in which the clocks of
all anchors are perfectly synchronized but the agent operates
asynchronously with the anchors [68]. In such a scenario, the
one-way time-of-flight measurement contains a time offset be-
tween the agent’s clock and the anchors’ clock.23 Here, we in-
vestigate the effect of the time offset on localization accuracy.

A. Localization With a Single Antenna

Consider the scenario described in Section II, where each
agent is equipped with a single antenna. When the agent op-
erates asynchronously with the anchors, the relationship of (2)
becomes

where is a random parameter that characterizes the time offset
in terms of distance, and the corresponding parameter vector
becomes

Similar to Theorem 2, where is deterministic but unknown and
the remaining parameters are random, we have the following
result.

Theorem 4: When a priori knowledge of the channel param-
eters and the time offset is available, and the sets of channel
parameters corresponding to different anchors are mutually in-
dependent, the EFIMs for the position and the time offset are
given, respectively, by

(34)

and

(35)

where is given by (63b), , and

Proof: See Appendix V-A.

Remark 11: Since is a positive-semidefinite matrix and
is positive in (34), compare to Theorem 2, we always

have the inequality

(36)

23We consider scenarios in which localization time is short relative to clock
drifts, such that the time offset is the same for all measurements from the
anchors.

where the equality in (36) is achieved for time-offset-known
localization (i.e., ), or time-offset-independent lo-
calization (i.e., ). The former corresponds to the case
where accurate knowledge of the time offset is available, while
the latter depends on the RII from each anchor, as well as the
topology of the anchors and agent. The inequality of (36) re-
sults from the uncertainty in the additional parameter , which
degrades the localization accuracy. Hence, the SPEB in the pres-
ence of uncertain time offset is always larger than or equal to that
without a offset or with a known offset.

We next consider the case where a priori knowledge of the
agent’s position is available. When the a priori position distri-
bution of the agent satisfies (22), we have the following corol-
lary.

Corollary 7: When the a priori position distribution of the
agent satisfies (22), and the sets of channel parameters cor-
responding to different anchors are mutually independent, the
EFIMs for the position and the time offset are given, respec-
tively, by

and

where is the angle from anchor to , is given by (66),
and is a function of .

Proof: (Outline) Conditions in (22) hold in far-field sce-
narios, and we can approximate the expectation over random
parameter vector using the average position . By following
the steps of Theorem 4 and Proposition 2, we can derive the the-
orem after some algebra.

B. Localization With Antenna Arrays

Consider the scenario describing in Section IV where each
agent is equipped with an array of antennas. Incorporating
the time offset , (24) becomes

and the corresponding parameter vector becomes

Similar to Theorem 3, where and are deterministic but un-
known and the remaining parameters are random, we have the
following theorem.

Theorem 5: When a priori knowledge of the channel pa-
rameters is available, and the sets of channel parameters cor-
responding to different anchors and antennas are mutually inde-
pendent, the EFIM for the position, the orientation, and the time
offset, using an -antenna array, is given by (37) shown at the
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bottom of the page, where and correspond to
orientation-aware and orientation-unaware localization, respec-
tively, and , , and are given by (70), (28), and (29),
respectively.

Proof: See Appendix V-B.

Remark 12: Theorem 5 gives the overall EFIM for the
position, the orientation, and the time offset, where individual
EFIMs can be derived by applying the notion of EFI again.

We finally consider the case where a priori knowledge of
the agent’s position and orientation is available. The EFIM in
far-field scenarios is given in the following corollary.

Corollary 8: When a priori knowledge of the agent’s po-
sition, orientation, time offset, and the channel parameters is
available, and the sets of channel parameters corresponding to
different anchors and antennas are mutually independent, in far-
field scenarios, the EFIMs for the position, the orientation, and
the time offset, using an -antenna array, are given, respec-
tively, by

and

where is the expected position of the agent’s array center,
is the angle from anchor to , and , , and are

functions of .
Proof: See Appendix V-C.

VI. DISCUSSIONS

In this section, we will provide discussions on some related
issues in the paper. It includes 1) the relations of our results to
the bounds based on signal metrics, 2) the achievability of the
SPEB, and 3) the extension of the results to 3-D localization.

A. Relation to Bounds Based on Signal Metrics

Analysis of localization performance in the literature mainly
employs specific signal metrics, such as TOA, AOA, RSS, and
TDOA, rather than utilizing the entire received waveforms. Our
analysis is based on the received waveforms and exploits all the
localization information inherent in these signal metrics, implic-
itly or explicitly. In particular, TOA and joint TOA/AOA met-
rics were incorporated in our analysis in Sections III and IV,
respectively. Similarly, TDOA and joint TDOA/AOA metrics
were included in the analysis of Section V, and the RSS metric
has been implicitly exploited from a priori channel knowledge
in Section II-C1.

B. Achievability of the SPEB

Maximum a posteriori (MAP) and maximum-likelihood
(ML) estimates, respectively, achieve the CRB asymptotically
in the high SNR regimes for both the case with and without
a priori knowledge [50]. High SNR can be attained using se-
quences with good correlation properties [69]–[71], or simply
repeated transmissions. Therefore, the SPEB is achievable.

C. Generalization to 3-D Localization

All results obtained thus far can be easily extended to 3-D
case, i.e., and the RDM becomes

where and are the angles in the coordinates, and

Similarly, we can obtain a corresponding EFIM in the form
of (21).

VII. NUMERICAL RESULTS

In this section, we illustrate applications of our analytical re-
sults using numerical examples. We deliberately restrict our at-
tention to a simple network to gain insights, although our ana-
lytical results are valid for arbitrary topology with any number
of anchors and any number of MPCs in the received waveforms.

A. Effect of Path Overlap

We first investigate the effect of path overlap on the SPEB
when a priori knowledge is unavailable. In particular, we com-
pare the SPEB obtained by the full-parameter model proposed
in this paper and that obtained by the partial-parameter model
proposed in [28]. In the partial-parameter model, the amplitudes
of MPCs are assumed to be known and hence excluded from the
parameter vector.

(37)
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Fig. 4. Network topology: Four anchors are equally spaced on a circle with an
agent at the center. All signals from the anchors to the agent are LOS.

Fig. 5. SPEB as a function of path separation for the full-parameter, partial-
parameter, and nonoverlap models, without a priori knowledge.

Consider a simple network with four anchors
equally spaced on a circle and an agent at the center receiving all
LOS signals (see Fig. 4). Each waveform consists of two paths:
one LOS path ( 0 dB) and one NLOS path (

3 dB), and the separations of the two paths are iden-
tical for all . In addition, the transmitted waveform is a second
derivative of Gaussian pulse with width approximately equal to
4 ns. Fig. 5 shows the SPEB as a function of path separation

according to Theorem 1.
We can draw the following observations. First, path overlap

increases the SPEB in both models, since it reduces the ability
to estimate the first path and hence decreases the RII. Note that
the shape of the curves depends on the autocorrelation function
of the waveform [47]. Second, when the path separation
exceeds the pulse width (approximately 4 ns), the two models
give the same SPEB, which equals the nonoverlapping case. In

such cases, the first contiguous cluster contains only the first
path, and hence the RII is determined by this path. This agrees
with the analysis in Section III. Third, excluding the amplitudes
from the parameter vector incorrectly provides more RI when
the two paths overlap, and hence the partial-parameter model
results in a loose bound. This demonstrates the importance of
using the full-parameter model.

B. Improvement From a Priori Channel Knowledge

We then quantify the contribution of the a priori knowledge
of channel parameters to the SPEB. The network topology and
channel parameters are the same as those in Section VII-A, ex-
cept a priori knowledge of , and is now available.
For simplicity, we consider these parameters to be independent
a priori and denote the a priori Fisher information of parameter

by . In Fig. 6(a), the SPEBs are plotted
as functions of the path separation for different a priori knowl-
edge of and (no a priori knowledge of ); while in
Fig. 6(b), the SPEBs are plotted for different a priori knowledge
of (no a priori knowledge of and ).

We have the following observations. First, the SPEB de-
creases with the a priori knowledge of the amplitudes and the
NLOS biases. This should be expected since a priori channel
knowledge increases the RII and thus localization accuracy,
as indicated in Corollary 2. Moreover, the NLOS components
are shown to be beneficial for localization in the presence of a
priori biases knowledge, as proven in Section III-B. Second, as
the a priori knowledge of the amplitudes approaches infinity,
the SPEB in Fig. 6(a) obtained using the full-parameter model
converges to that in Fig. 5 obtained using the partial-parameter
model. This is because the partial-parameter model excludes
the amplitudes from the parameter vector, which is equivalent
to assuming known amplitudes and hence infinite a priori
Fisher information for the amplitudes .

Third, it is surprising to observe that, when the a priori knowl-
edge of the NLOS biases is available, path overlap can result
in a lower SPEB compared to nonoverlapping scenarios. This
occurs at certain regions of path separations, depending on the
autocorrelation function of . Intuitively, path overlap can
lead to a higher SNR compared to nonoverlapping cases, when
a priori knowledge of the NLOS biases is available.

C. Path-Overlap Coefficient

We now investigate the dependence of POC on path arrival
rate. We first generate channels with MPCs according to a
simple Poisson model with a fixed arrival rate , and then calcu-
late according to (59). Fig. 7 shows the average path-overlap
coefficient as a function of path interarrival rate for dif-
ferent number of MPCs, where the averaging is obtained by
Monte Carlo simulations.

We have the following observations. First, the POC is
monotonically decreasing from to with . This agrees
with our intuition that denser multipath propagation causes
more interference between the first path and other MPCs, and
hence the received waveform provides less RII. Second, for a
fixed , the POC increases with . This should be expected
as additional MPCs may interfere with earlier paths, which
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Fig. 6. SPEB with a priori knowledge of the amplitudes and the NLOS biases
as a function of path separation, respectively. (a) SPEB with a priori knowledge
of � and � , while � � �. (b) SPEB with a priori knowledge of � ,

while � � � � �.

degrades the estimation accuracy of the first path and thus
reduces the RII. Third, observe that beyond paths,
does not increase significantly. This indicates that the effects
of additional MPCs beyond the fifth path on the RII is negli-
gible, regardless of the power dispersion profile of the received
waveforms.

D. Outage in Ranging Ability

We have observed that the channel quality for ranging is char-
acterized by the POC. If the multipath propagation has a larger
POC (close to ), we may consider the channel in outage for
ranging. We define the ranging ability outage (RAO) probability
as

Fig. 7. POC as a function of the path interarrival time for different number of
MPCs.

Fig. 8. RAO probability as a function of the threshold � for different path
interarrival time ��� with � � ��. The five curves correspond to interarrival
time ��� � 3.5, 2.5, 2, 1.6, 1.4 ns, respectively.

where is the threshold for the POC. The RAO probability
tells us that with probability , the propagation channel
is unsatisfactory for ranging.

The RAO probability as a function of for different
Poisson arrival rate is plotted in Fig. 8 for a channel with

. The RAO probability decreases from to , as the
threshold increases or the path arrival rate decreases.
This should be expected because the probability of path overlap
decreases with the path arrival rate, and consequently decreases
the RAO probability. The RAO probability can be used as a
measure to quantify the channel quality for ranging and to guide
the design of the optimal transmitted waveform for ranging.

E. SPEB and SOEB for Wideband Antenna Array Systems

We consider the SPEB and SOEB for different reference
points of a uniform linear array (ULA). The numerical results



SHEN AND WIN: FUNDAMENTAL LIMITS OF WIDEBAND LOCALIZATION—PART I: A GENERAL FRAMEWORK 4969

Fig. 9. SPEB and SOEB with different a priori knowledge of agent’s position
and orientation, respectively. (a) SPEB as a function of the reference point-to-
array center distance. (b) SOEB as a function of the reference point-to-array
center distance.

are based on a network with six equally spaced anchor nodes
located on a circle with an agent in the center. The

agent is equipped with a four-antenna array whose
spacing is 0.5 m. In far-field scenarios, and

. Fig. 9(a) and (b) shows the SPEB and the SOEB,
respectively, as a function of different reference point along the
ULA for different a priori knowledge of the orientation and
reference point.

We have the following observations. First, a priori knowl-
edge of the orientation improves the localization accuracy as
the SPEB decreases with . The curves for and

correspond to the orientation-unaware and orienta-
tion-aware cases, respectively. As a counterpart, a priori knowl-
edge of the reference point improves the orientation accuracy
as the SOEB decreases with . This agrees with both intu-
ition and Theorem 3. Second, the array center has the best lo-
calization accuracy, and its SPEB does not depend on , which

agrees with Theorem 3. On the other hand, the array center ex-
hibits the worst orientation accuracy, and its SOEB does not de-
pend on . This should be expected since the knowledge for
the array center tells nothing about the array orientation. Third,
the SPEB increases with both the distance from the reference
point to the array center and the SOEB, as predicted by Corol-
lary 5. On the contrary, the SOEB decreases as a function of the
distance from the reference point to the array center if a priori
knowledge of the reference point is available. This observation
can be verified by Theorem 3. Last but not least, the SPEB is
independent of specific reference point if , as referred
to orientation-aware localization, and the SOEB is independent
of the specific reference point if , as shown in Corollary
5.

F. SPEB With Time Offset and Squared Timing Error Bound

We finally investigate the effect of time offset on the SPEB
and squared timing error bound (STEB) for the network illus-
trated in Fig. 4. The RII from each anchor ,

. Initially, four anchors are placed at ,
, , and , respectively. We then vary

the position of anchor counterclockwise along the circle.
Fig. 10(a) and (b) shows the SPEB and the STEB, respectively,
as functions of for different a priori knowledge of the time
offset.

We have the following observations. First, both the SPEB and
the STEB decrease with the a priori knowledge of the time offset.
The SPEB for the case in Fig. 10(a), i.e., known time
offset, is equal to that of a system without a time offset. On the
otherhand,when , theSTEBinFig.10(b) isequal tozero
regardless of since the offset is completely known. Second, all
the curves in Fig. 10(a) have the same value at . The time
offset has no effect on the SPEB at this point, since , re-
ferredtoas time-offset-independent localization.In thiscase,both
the SPEB and the STEB achieve their minimum, implying that
location and timing information of a network are closely related.
Third, as increases from to , all the curves in Fig. 10(a) first
increase and then decrease, whereas all the curves in Fig. 10(b)
increase monotonically. We give the following interpretations:
the estimation error of time offset in Fig. 10(b) becomes larger
when all the anchors tend to gather on one side of the agent (
increases from to ). In Fig. 10(a), the SPEB first increases
since both the localization information in (34)
and the information for the time offset becomes smaller. Then,
the SPEB decreases since the localization information increases
(when ) faster compared to the decrease of the infor-
mation for time offset. Note in Fig. 10(a) that although
and result in the same SPEB in the absence of time offset,

gives a better performance in the presence of time offset.

VIII. CONCLUSION

In this paper, we developed a framework to study wideband
wireless location-aware networks and determined their local-
ization accuracy. In particular, we characterized the localiza-
tion accuracy in terms of a performance measure called the
SPEB, and derived the SPEB by applying the notion of EFI. This
methodology provides insights into the essence of the local-
ization problem by unifying the localization information from
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Fig. 10. SPEB and STEB with different a priori knowledge of the time offset,
and � � �� ����� ��, respectively. (a) SPEB as a function of anchor � ’s
position. (b) STEB as a function of anchor � ’s position.

the a priori knowledge of the agent’s position and informa-
tion from individual anchors. We showed that the contributions
from anchors, incorporating both measurements and a priori
channel knowledge, can be expressed in a canonical form as a
weighted sum of the RDM. Our results are derived from the re-
ceived waveforms themselves rather than the signal metrics ex-
tracted from the waveforms. Therefore, our framework exploits
all the information inherent in the received waveforms, and con-
sequently the results in this paper serve as fundamental limits of
localization accuracy. These results can be used as guidelines
for localization system design, as well as benchmarks for loca-
tion-aware networks.

APPENDIX I
FISHER INFORMATION MATRIX DERIVATION

To facilitate the analysis, we consider a mapping from into
another parameter vector , where

with .

When the agent is localizable,24 this mapping is a bijection and
provides an alternative expression for the FIM as

(38)

where is the FIM for , and is the Jacobian matrix for the
transformation from to , given, respectively, by

(39)

and

(40)

with denoting a matrix of all zeros and denoting an identity
matrix. The block matrices , , , and are given as
follows:

. . .

(41)

and

(42)

where

with (43)

, and is given by

(44)

Note that elements in can be expressed as

24Note that an agent is said to be localizable if its position can be determined
by the signal metrics extracted from the waveforms received from neighboring
anchors, i.e., triangulation is possible. This is true when � � �, or in some
special cases when � � �.
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and

where . In particular

(45)

where and are given by (17) and (18), respectively.
Substituting (39) and (40) into (38), we have the FIM in (7).

APPENDIX II
WIDEBAND CHANNEL MODEL AND A PRIORI

CHANNEL KNOWLEDGE

Wideband channel measurements have shown that MPCs
follow random arrival and their amplitudes are subject to path
loss, large- and small-scale fading. While our discussion is
valid for any wideband channels described by (1), we con-
sider the model of IEEE 802.15.4a standard for exposition.
Specifically, this standard uses Poisson arrivals, log-normal
shadowing, Nakagami small-scale fading with exponential
power dispersion profile (PDP) [26].

A. Path Arrival Time

The arrival time of MPCs is commonly modeled by a Poisson
process [26], [64]. Given the path arrival rate , we have

for and . Using (2), we obtain

(46)

for and . Note that we let for
consistency.

B. Path Loss and Large-Scale Fading

The RSS in decibels at the distance can be written as [26]

where is the expected RSS at the reference distance , is
the propagation (path gain) exponent, and is a random vari-
able (r.v.) that accounts for large-scale fading, or shadowing.

Shadowing is usually modeled with a log-normal distribution,
such that is a Gaussian r.v. with zero-mean and variance ,
i.e., .25 The pdf of the RSS of can then be
written as

(47)
where , and is given by

with denoting the average over small-scale fading.

C. Power Dispersion Profile and Small-Scale Fading

As in [24] and [26], we consider an exponential PDP given
by26

(48)

where is the decay constant, and is a normalization coef-
ficient such that

(49)

In addition, is a Nakagami r.v. with second moment given
by (48). Specifically, we have

(50)

where is the gamma function and is the Nak-
agami -factor, which is a function of [26].

1) A Priori PDF for Multipath Parameters: The joint pdf
of the multipath parameters and the RSS, conditioned on the
distance from anchor to the agent, can be derived as

(51)

25The standard deviation is typically 1–2 dB (LOS) and 2–6 dB (NLOS) [21]
around the path gain.

26Note that the first component of LOS signals can exhibit a stronger strength
than (48) in some UWB measurement [72]. In such cases, (48) and (49) need to
be modified, accordingly.
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By integrating over , we obtain the pdf of the multipath pa-
rameters of as follows:

(52)

Equation (52) characterizes the a priori knowledge of channel
parameters, and can be obtained, for IEEE 802.15.4a standard,
by substituting (46),(47), and (50) into (51) and (52). Note that
since is known, is a function of and hence we have (9).

APPENDIX III
PROOFS OF THE RESULTS IN SECTION III

A. Proof of Theorem 1

Proof: We first prove that is given by (15). We par-
tition in (43) and in (44) as

and

where is obtained by (45), ,
, and

Using these notations, we can write the EFIM given by (14) in
Proposition 1, after some algebra, in the form of (12)

and

Applying the notion of EFI as in (13), we obtain the
as

(53)

where the POC

(54)

This completes the proof of (15).
Next, we show that only the first contiguous cluster contains

information for localization. Let us focus on . Define the

following notations for convenience:

and

If the length of the first contiguous cluster in the received wave-
form is where , then

for and
, and27

and

where and . Hence, (54)
becomes

(55)

which depends only on the first paths, implying that only the
first contiguous cluster of LOS signals contains information for
localization.

Finally, we show that is independent of . Note that
and can be written as

(56)

and

(57)

where and are given by
the matrix partition in (58), shown at the bottom of the next page.
Substituting (56) and (57) into (55), we obtain

(59)

which is independent of all the amplitudes.
Note that : is nonnegative since it is a quadratic

form and is a positive-semidefinite FIM (hence is ); and
since the contribution from each anchor to the EFIM in

(53) is nonnegative.

B. Proof of Corollary 1

Proof: This scenario can be thought of as a special case
of Theorem 1 with , i.e., the first contiguous cluster
contains only one path. In this case, (59) becomes

27 is a block matrix that is irrelevant to the rest of the derivation.
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Since waveform is continuous and time limited in realistic
cases, we have

implying that , which leads to (19).

C. Proof of Theorem 2

Proof: When a priori channel knowledge of the channel is
available, the FIM is

where and
. The FIM

can be partitioned as (12), where is given by (60), shown
at the bottom of the page, and

and

Applying the notion of EFI, we have the EFIM, after some
algebra, given by (61), shown at the bottom of the page. From
(9), we can rewrite and in (11) using chain rule as

and (62)

where and .
Substituting (62) into (61) leads to (21), where is given by
(63a)–(63b), shown at the bottom of the page, for LOS signals
and NLOS signals, respectively.

D. Proof of Corollary 2

Proof: We first show that the a priori channel knowledge
increases the RII. Consider in (63a). Let

and

...
...

(58)

...
. . .

(60)

(61)

(63a)

(63b)
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We have , since

where . Hence, we have
, where equals (16). This implies that the a

priori channel knowledge can increase the RII.
We next show that the RIIs in (63a)–(63b) reduce to (16) and

zero, respectively, in the absence of a priori channel knowledge.
When a priori channel knowledge is unavailable, ,

, and all equal zero, and the corresponding RII in
(63a)–(63b) becomes

for , and

for .

E. Proof of Corollary 3

Proof: The block matrices and in (11) for NLOS
signals can be written as

and

where , and . Note

that corresponds to the Fisher information of . When the

a priori knowledge of goes to , i.e., ,
we claim that

(64)
To show this, we partition as

and then the left-hand side of (64) becomes

where

and

When is known, i.e., , we have ,

, and . Notice

that . Hence, we proved our claim in (64).
Substituting (64) into (63b), we have

for , which agrees with the RII of LOS signals
in (63a).28 Hence, LOS signals are equivalent to NLOS with
infinite a priori knowledge of for localization.

F. Proof of Proposition 2

Proof: Note that , , , , and are func-
tions of when a priori knowledge of the agent’s position is
available. Hence, we need to take expectation of them over
in (10). After some algebra, we have the EFIM for the agent’s
position as (65), shown at the bottom of the next page.

When the condition in (22) is satisfied for the functions
’s: 1) , 2) , 3) ,

and 4) , we can approximate the expectation of each
function over in (65) by the function value at the expected
position . Hence, the EFIM in (65) can be expressed as

28Note that the size of��� and��� for LOS signals and NLOS signals are

different for the same � . Indeed, ���� and ���� are not associated with � ,
and hence they are in the same form as��� and��� for LOS signals in (63a).
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where is the angle from anchor to , and is given by
(66), shown at the bottom of the page. Note that all functions
are evaluated at .

APPENDIX IV
PROOFS OF THE RESULTS IN SECTION IV

A. Proof of Theorem 3

Note that this proof also incorporates the a priori channel
knowledge. In the absence of this knowledge, the corresponding
results can be obtained by removing that characterizes the a
priori channel knowledge.

Since and are deterministic but unknown, the joint like-
lihood function of the random vectors and can be written as

Note that , and the FIM from
can be expressed as (67), shown at the bottom of the page,

where , , and

, in which

Block matrices , , and correspond to the th an-
tenna in the array, and they can be further decomposed into
block matrices corresponding to each anchor

and

where and ,

and , in which
.

Similar to the proof of Theorem 2 in Appendix III-C, the FIM
from observation can be obtained as (68), shown at the bottom
of the page, where

and

correspond to the th antenna as defined in (44).

(65)

(66)

...
...

. . .

(67)

...
...

. . .

(68)
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The overall FIM is the sum of (67) and (68). By applying
the notion of EFI, we have the EFIM for the position and
the orientation as follows:

(69)

where is given by (70), shown at the bottom of the page.
Note that in the absence of a priori channel knowledge,

the above result is still valid, with the RII of (70) degen-
erating to (71), shown at the bottom of the page, where

.

B. Proof of Proposition 3

Since is always positive semidefinite, we need to simply
prove that there exists a unique such that .

Proof: Let be an arbitrary reference point, and

where , and and denote the
relative distance in and directions, respectively. Then,
corresponding to can be written as a sum of two parts

where corresponds to

and

Hence, corresponding to the reference position is given by

(72)

and can be written as

(73)

Since , we have if and only if

implying that there exists only one , and hence only one ,
such that . Therefore, the orientation center is unique.

C. Proof of Corollary 5

Proof: We first prove that the SOEB is independent of the
reference point . It is equivalent to show that the EFI for the
orientation given by (27) equals the EFI for the orientation based
on , given by

Let . From (72) and (73), we have
, and hence

On the other hand, we also have

Therefore, we can verify that the EFI for the orientation in (27)

(74)

(70)

LOS

NLOS

(71)
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This shows that the EFI for the orientation is independent of the
reference point, and thus is the SOEB.

We next derive the SPEB for any reference point given in (32).
The EFIM in (69) can be written, using (72) and (74), as

Using the equation of Shur’s complement [66], we have

(75)

Since the translation can be represented as

where is a constant angle, we have . Then,
by taking the trace of both sides of (75), we obtain

D. Proof of Proposition 5

Proof: Take the array center as the reference point, and
we have

Consequently

implying , i.e., the array center is the orientation center.

APPENDIX V
PROOFS OF THE RESULTS IN SECTION V

A. Proof of Theorem 4

In the presence of a time offset, the FIM can be written as
(76), shown at the bottom of the page, where

...
...

. . .

Applying the notion of EFI, we obtain the EFIM

where is given by (63b), and another step of EFI leads to (34)
and (35).

B. Proof of Theorem 5

We consider orientation-unaware case, whereas orientation-
aware case is a special case with a reduced parameter set. The
FIM using an antenna array can be written as (77), shown at the
bottom of the page, where , and

...
...

. . .

(76)

...
...

...
. . .

(77)
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...
...

...
. . .

(78)

(79)

(80)

is given by (78), shown at the top of the page. Applying the
notion of EFI to , we obtain the EFIM in (37).

C. Proof of Corollary 8

We incorporate the a priori knowledge of the array center and
orientation into (37), and obtain the EFIM in far-field scenarios
as (79), shown at the top of the page. Recall that in far-field sce-
narios, , implying that
and . Also, we have and

for all , and hence the EFIM can be written as (80),
shown at the top of the page, where and is a function of

.
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Abstract—The availability of position information is of great im-
portance in many commercial, governmental, and military appli-
cations. Localization is commonly accomplished through the use
of radio communication between mobile devices (agents) and fixed
infrastructure (anchors). However, precise determination of agent
positions is a challenging task, especially in harsh environments
due to radio blockage or limited anchor deployment. In these situ-
ations, cooperation among agents can significantly improve local-
ization accuracy and reduce localization outage probabilities. A
general framework of analyzing the fundamental limits of wide-
band localization has been developed in Part I of the paper. Here,
we build on this framework and establish the fundamental limits
of wideband cooperative location-aware networks. Our analysis is
based on the waveforms received at the nodes, in conjunction with
Fisher information inequality. We provide a geometrical interpre-
tation of equivalent Fisher information (EFI) for cooperative net-
works. This approach allows us to succinctly derive fundamental
performance limits and their scaling behaviors, and to treat an-
chors and agents in a unified way from the perspective of localiza-
tion accuracy. Our results yield important insights into how and
when cooperation is beneficial.

Index Terms—Cooperative localization, Cramér–Rao bound
(CRB), equivalent Fisher information (EFI), information in-
equality, ranging information (RI), squared position error bound
(SPEB).

I. INTRODUCTION

T HE availability of absolute or relative positional infor-
mation is of great importance in many applications, such

as localization services in cellular networks, search-and-rescue
operations, asset tracking, blue force tracking, vehicle routing,
and intruder detection [1]–[8]. Location-aware networks gen-
erally consist of two kinds of nodes: anchors and agents (see
Fig. 1), where anchors have known positions while agents have
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Fig. 1. Cooperative localization: the anchors (A, B, C, and D) communicate
with the agents (1 and 2). Agent 1 is not in the communication/ranging range
of anchor C and D, while agent 2 is not in the communication/ranging range
of anchors A and B. Neither agents can trilaterate its position based solely on
the information from its neighboring anchors. However, cooperation between
agents 1 and 2 enables both agents to be localized.

unknown positions. Conventionally, each agent localizes itself
based on range measurements from at least three distinct an-
chors (in 2-D localization). Two common examples include the
global positioning system (GPS) [9], [10] and beacon localiza-
tion [11], [12]. In GPS, an agent can determine its location based
on the signals received from a constellation of GPS satellites.
However, GPS does not operate well in harsh environments,
such as indoors or in urban canyons, since the signals cannot
propagate through obstacles [7]–[9]. Beacon localization, on the
other hand, relies on terrestrial anchors, such as WiFi access
points or GSM base stations [11], [12]. However, in areas where
network coverage is sparse, e.g., in emergency situations, local-
ization errors can be unacceptably large.

Conventionally, high-accuracy localization can only be
achieved using high-power anchors or a high-density anchor
deployment, both of which are cost prohibitive and impractical
in realistic settings. Hence, there is a need for localization
systems that can achieve high accuracy in harsh environments
with limited infrastructure requirements [6]–[8]. A practical
way to address this need is through a combination of wideband
transmission and cooperative localization. The fine delay
resolution and robustness of wide bandwidth or ultrawide band-
width (UWB) transmission enable accurate and reliable range
(distance) measurements in harsh environments [13]–[18].1

Hence, these transmission techniques are particularly well
suited for localization. Cooperative localization is an emerging
paradigm that circumvents the needs for high-power, high-den-
sity anchor deployment, and offers additional localization

1Other aspects of UWB technology can be found in [19]–[25].

0018-9448/$26.00 © 2010 IEEE
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accuracy by enabling the agents to help each other in estimating
their positions [5], [6], [26]–[28]. In Fig. 1, for example, since
each agent is in the communication/ranging range of only two
anchors, neither agents can trilaterate its position based solely
on the information from its neighboring anchors. However,
cooperation enables both agents to be localized.

Understanding the fundamental limits of localization is
crucial not only for providing a performance benchmark but
also for guiding the deployment and operation of location-aware
networks. Localization accuracy is fundamentally limited due
to random phenomena such as noise, fading, shadowing, and
multipath propagation. The impact of these phenomena has
been investigated for noncooperative localization [7], [8],
[29]–[31]. However, little is known regarding the bounds for
cooperative localization. In particular, bounds on the coop-
erative localization performance were previously derived in
[27] and [28] using only specific ranging models. In other
words, these works start from signal metrics, extracted from the
received waveforms.2 Such a process may discard information
relevant for localization. Furthermore, the statistical models
for those signal metrics depend heavily on the measurement
processes. For instance, the ranging error of the time-of-arrival
(TOA) metric is commonly modeled as additive Gaussian
[27], [28], [31]. However, other studies (both theoretical [15],
[38], [39] and experimental [8], [18]) indicate that the ranging
error is not Gaussian. Hence, when deriving the fundamental
limits of localization accuracy, it is important to start from the
received waveforms rather than from signal metrics extracted
from those waveforms.

In Part I [29], we have developed a general framework to
characterize the localization accuracy of a given agent. In this
paper, we build on the framework and determine fundamental
properties of cooperative location-aware networks employing
wideband transmission. The main contributions of this paper are
as follows.

• We derive the fundamental limits of localization accuracy
for wideband wireless cooperative networks in terms of
a performance measure called the squared position error
bound (SPEB).

• We employ the notion of equivalent Fisher information
(EFI) to derive the network localization information, and
show that this information can be decomposed into basic
building blocks associated with every pair of the nodes,
called the ranging information (RI).

• We quantify the contribution of the a priori knowledge
of the channel parameters and the agents’ positions to the
network localization information, and show that agents and
anchors can be treated in a unified way: anchors are special
agents with infinite a priori position knowledge.

• We put forth a geometric interpretation of the EFI matrix
(EFIM) using eigendecomposition, providing insights into
the network localization problem.

• We derive scaling laws for the SPEB for both dense and
extended location-aware networks, characterizing the
behavior of cooperative location-aware networks in an
asymptotic regime.

2Commonly used signal metrics include time-of-arrival (TOA) [7], [8], [15],
[17], [32], time-difference-of-arrival (TDOA) [33], [34], angle-of-arrival (AOA)
[7], [35], and received signal strength (RSS) [7], [36], [37].

The proposed framework generalizes the existing work on non-
cooperative localization [29] to cooperative networks, provides
insights into the network localization problem, and can guide
the design and deployment of location-aware networks.

The rest of the paper is organized as follows. Section II
presents the system model and the concept of SPEB. In
Section III, we apply the notion of EFI to derive the SPEB.
Then, in Section IV, we provide a geometric interpretation of
EFIM for localization and derive scaling laws for the SPEB. Fi-
nally, numerical results are given in Section V, and conclusions
are drawn in the last section.

Notation: The notation is the expectation operator
with respect to the random vectors and
denote that the matrix is positive definite and positive
semidefinite, respectively; denotes the trace of a square
matrix; denotes the transpose of its argument; de-
notes the th submatrix that starts from element

on the diagonal of its argument; denotes a
submatrix composed of the rows to and the columns
to of its argument; and denotes the Euclidean norm of
its argument. We also denote by the probability density
function (pdf) of the random vector unless specified
otherwise.

II. SYSTEM MODEL

In this section, we describe the wideband channel model and
formulate the localization problem. We briefly review the infor-
mation inequality and the performance measure called SPEB.

A. Signal Model

Consider a synchronous network consisting of anchors
(or beacons) and agents with fixed topology.3 Anchors have
perfect knowledge of their positions, while each agent attempts
to estimate its position based on the waveforms received from
neighboring nodes (see Fig. 1). Unlike conventional localiza-
tion techniques, we consider a cooperative setting, where agents
utilize waveforms received from neighboring agents in addi-
tion to those from anchors. The set of agents is denoted by

, while the set of anchors is
. The position of node is denoted by

.4 Let denote the angle from node to node
, i.e.,

and denote the corresponding unit
vector.

The received waveform at the th agent from the
th node can be written as [24], [41]

(1)

3We consider synchronous networks for notional convenience. Our approach
is also valid for asynchronous networks, where devices employ round-trip
time-of-flight measurements [25], [40].

4For convenience, we focus on 2-D localization where � � , and we will
later mention extensions to 3-D localization.
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where is a known wideband waveform with Fourier trans-
form and are the amplitude and delay, respec-
tively, of the th path,5 is the number of multipath compo-
nents, represents the observation noise, modeled as ad-
ditive white Gaussian processes with two-sided power spectral
density , and is the observation interval. The re-
lationship between the positions of nodes and the delays of the
propagation paths is

(2)

where is the propagation speed of the signal, and is
a range bias induced by nonline-of-sight (NLOS) propagation.
Line-of-sight (LOS) signals occur when the direct path between
nodes and is unobstructed, such that .

B. Error Bounds on Position Estimation

We first introduce as the vector of unknown parameters

where consists of all the agents’ positions

and is the vector of the multipath parameters associated with
the waveforms received at the th agent6

in which is the vector of the multipath parameters associated
with 7

Second, we introduce as the vector representation of all the
received waveforms, given by , where

in which is obtained from the Karhunen–Loève (KL) expan-
sion of [42], [43]. We tacitly assume that when nodes
and cannot communicate directly, the corresponding entry
is omitted in .

We can now introduce an estimator of the unknown pa-
rameter based on the observation . The mean squared error
(MSE) matrix of satisfies the information inequality [42]–[44]

(3)

5We consider the general case where the wideband channel is not necessarily
reciprocal. Our results can be easily specialized to the reciprocal case, where
we have � � � � � � � , and � � � hence � � � , for
� � �� �� � � � � � .

6In cases where the channel is reciprocal, only half of the multipath param-
eters are needed. Without loss of generality, we only use �� � � � �� � �
� � � 	 ��.

7The bias � � � for LOS signals. From the perspective of Bayesian esti-
mation, it can be thought of as a random parameter with infinite a priori Fisher
information [29].

where is the Fisher information matrix (FIM) for ,8 given
by

(4)

in which is the joint pdf of the observation and the pa-
rameter vector . For an estimate of the th agent’s position,
(3) implies that

One natural measure for position accuracy is the average
squared position error , which can be
bounded below by defined in the following.

Definition 1 (SPEB [29]): The SPEB of the th agent is de-
fined to be

Since the error of the position estimate is a vector, it
may also be of interest to know the position error in a particular
direction. The directional position error along a given unit vector

is the position error projected on it, i.e., , and its
average squared error can be bounded
below by defined in the following.9

Definition 2 (Directional Position Error Bound): The direc-
tional position error bound (DPEB) of the th agent with con-
straint is defined to be

where are unit vectors such that .

Proposition 1: The SPEB of the th agent is the sum of the
DPEBs in any two orthogonal directions, i.e.,

(5)

Proof: See Appendix I.

C. Joint PDF of Observations and Parameters

Evaluation of (4) requires knowledge of the joint distribution
. We can write , where is

the likelihood function, and is the a priori distribution of
the parameter .10 In this section, we describe the structure of
both functions in detail.

Since the received waveforms are independent condi-
tioned on the parameter can be expressed as [42], [43]

(6)

8With a slight abuse of notation, �� 


��� in (3) and (4) will be used for deter-
ministic, random, and hybrid cases, with the understanding that the expectation
operation is not performed over the deterministic components of 


 [43], [44].
Note also that for the deterministic components, the lower bound is valid for
their unbiased estimates.

9In higher dimensions, this notion can be extend to the position error in any
subspaces, such as a hyperplane.

10When a subset of the parameters are deterministic, they are eliminated from
�	



.
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where

(7)

When the multipath parameters are independent condi-
tioned on the nodes’ positions,11 can be expressed as

(8)

where is the joint pdf of all the agents’ positions, and
is the joint pdf of the multipath parameters con-

ditioned on the agents’ positions. Based on existing propagation
models for wideband and UWB channels [14], [25], the joint pdf
of the channel parameters can be further written as [29]

(9)

where for and .
Combining (8) and (6) leads to

(10)

where the first and second groups of summation account for the
information from anchors and that from agents’ cooperation, re-
spectively, and the last term accounts for the information from
the a priori knowledge of the agents’ positions. This implies
that the FIM for in (4) can be written as ,
where , and correspond to the localization informa-
tion from anchors, agents’ cooperation, and a priori knowledge
of the agents’ positions, respectively.

III. EVALUATION OF FIM

In this section, we briefly review the notion of EFI [29] and
apply it to derive the SPEB for each agent. We consider both
the cases with and without a priori knowledge of the agents’
positions. We also introduce the concept of RI, which turns out
to be the basic building block for the EFIM.

A. EFIM and RI

We saw in the previous section that the SPEB can be ob-
tained by inverting the FIM in (4). However, is a matrix
of very high dimensions, while only a much smaller submatrix

is of interest. To gain insights into localization

11This is a common model for analyzing wideband communication, unless
two nodes are close to each other so that the channels from a third node to
them are correlated. Our analysis can also account for the correlated channels, in
which case the SPEB will be higher than that corresponding to the independent
channels.

problem, we will employ the notions of EFIM and RI [29]. For
the completeness of the paper, we briefly review the notions in
the following.

Definition 3 (EFIM): Given a parameter vector
and the FIM of the form

where , and
with , the EFIM for is given by

(11)

Note that the EFIM retains all the necessary information to
derive the information inequality for the parameter , in a sense
that , so that the MSE matrix of the
estimates of is “bounded” below by . The right-
hand side of (11) is known as the Schur’s complement of matrix

[45], and it has been used for simplifying the Cramér–Rao
bounds (CRBs) [31], [32], [46].

Definition 4 (RI): The RI is a matrix of the form ,
where is a nonnegative number called the ranging information
intensity (RII) and the matrix is called the ranging direc-
tion matrix (RDM) with the following structure:

The RDM has exactly one nonzero eigenvalue equal
to with corresponding eigenvector , i.e.,

. Thus, the corresponding RI is “1-D” along the
direction .

B. EFIM Without a Priori Position Knowledge

In this section, we consider the case in which a priori knowl-
edge of the agents’ positions is unavailable, i.e., is elimi-
nated from (8). We first prove a general theorem, describing the
structure of the EFIM, followed by a special case, where there
is no a priori knowledge regarding the channel parameters.

Theorem 1: When a priori knowledge of the agents’ posi-
tions is unavailable, and the channel parameters corresponding
to different waveforms are mutually independent, the EFIM for
the agents’ positions is a matrix, structured as (12),
shown at the bottom of the next page, where and
can be expressed in terms of the RI

and

with given by (35) in Appendix II.
Proof: See Appendix II.

Remark 1: We make the following remarks.
• To obtain the SPEB of a specific agent, we can apply EFI

analysis again and further reduce into a EFIM.
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• The RI is the basic building block of the EFIM for local-
ization, and each RI corresponds to an individual received
waveform. The RII is determined by the power and
bandwidth of the received waveform, the multipath prop-
agation, as well as the a priori channel knowledge. Note
that each received waveform provides only 1-D informa-
tion for localization along the angle .

• The EFIM can be decomposed into localization in-
formation from anchors and that from agents’ cooperation.
The former part is represented as a block-diagonal matrix
whose nonzero elements are , for the th agent, and
each is a weighted sum of RDMs over anchors.
Hence, the localization information from anchors is not in-
terrelated among agents. The latter part is a highly struc-
tured matrix consisting of RIs . Hence, the localiza-
tion information from agents’ cooperation is highly inter-
related. This is intuitive since the effectiveness of the local-
ization information provided by a particular agent depends
on its position error.

Theorem 2: When a priori knowledge of the agents’ posi-
tions and the channel parameters is unavailable, the EFIM for
the agents’ positions is a matrix, structured as in
(12) with the RII given by

LOS signal
NLOS signal

where is the effective bandwidth of transmitted waveform

is the SNR of the first path in

(13)

and is called the path-overlap coefficient, which
depends on the first contiguous cluster12 in LOS signals.

Proof: See Appendix III.

Remark 2: We make the following remarks.
• The theorem shows that when a priori knowledge of

channel parameters is unavailable, the NLOS signals do
not contribute to localization accuracy, and hence these
signals can be discarded. This agrees with the previous

12The first contiguous cluster is the first group of nondisjoint paths. Two paths
that arrive at time � and � are called nondisjoint if �� � � � is less than the
duration of ���� [29].

observations in [8], [31], and [32] although the authors
considered different models.

• For LOS signals, the RII is determined by the first con-
tiguous cluster [29], implying that it is not necessary to
process the latter multipath components. In particular,
the RII is determined by the effective bandwidth , the
first path’s SNR, and the propagation effect characterized
by .

• Since , path overlap always deteriorates the ac-
curacy unless , in which the first signal compo-
nent does not overlap with later components

for .

C. EFIM With a Priori Position Knowledge

We now consider the case in which the a priori knowledge of
the agents’ positions, characterized by , is available. We
first derive the EFIM, based on which we prove that agents and
anchors can be treated in a unified way under this framework.
We then present a special scenario in which the a priori knowl-
edge of the agents’ positions satisfies certain conditions so that
we can gain insights into the EFIM.

Theorem 3: When a priori knowledge of the agents’ posi-
tions is available, and the channel parameters corresponding to
different waveforms are mutually independent, the EFIM for the
agents’ positions is a matrix, given by13

(14)

where

and

with given by (15), shown at the bottom of the
next page. Block matrix in (15) is defined as (27) in
Appendix II.

Proof: See Appendix IV.

13Note that � ��� in (14) does not depend on any particular value of the
random vector�, whereas� ��� in (12) is a function of the deterministic vector
�.

...
. . .

(12)
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Remark 3: The EFIM for agents’ positions is derived in (14)
for the case when a priori knowledge of the agents’ positions is
available. Compared to (12) in the Theorem 1, the EFIM in (14)
retains the same structure of the localization information from
both anchors and cooperation, except that all RIs in Theorem 3
are obtained by averaging the matrices over the possible
agents’ positions. In addition, the localization information from
the position knowledge is characterized in terms of an additive
component . This knowledge improves localization because

is positive semidefinite.

Based on the result of Theorem 3, we can now treat anchors
and agents in a unified way, as will be shown in the following
theorem.

Theorem 4: Anchors are equivalent to agents with infinite
a priori position knowledge in the following sense: when the

th agent has infinite a priori position knowledge, i.e.,
, then

where is the vector without rows to , and
is the matrix without rows to and

columns to .
Proof: See Appendix V.

Remark 4: The theorem shows mathematically that agents
are equivalent to anchors if they have infinite a priori position
knowledge, which agrees with our intuition. As such, it is not
necessary to distinguish between agents and anchors. This view
will facilitate the analysis of location-aware networks and the
design of localization algorithms: every agent can treat the in-
formation coming from anchors and other cooperating agents in
a unified way.

The general expression of the EFIM for the case with a priori
position knowledge is given in (14), which is much more in-
volved than that for the case without position knowledge in (12).
However, in the special case when

(16)

for the functions involved in the derivation of the EFIM
(see Appendix IV),14 we can gain insight into the structure of
the EFIM as shown by the following corollary.

14This occurs when every agent’s a priori position distribution is concentrated
in a small area relative to the distance between the agent and the other nodes, so
that ���� is flat in that area.

Corollary 1: When the a priori distribution of the agents’ po-
sitions satisfies (16), and the channel parameters corresponding
to different waveforms are mutually independent, the EFIM for
the agents’ positions is a matrix, structured as (17),
shown at the bottom of the page, where and can be
expressed in terms of the RI

and

where is the RII given in (35) evaluated at
, and is the angle from to .

Proof: See Appendix IV.

D. Discussions

We will now discuss the results derived in the previous sec-
tions. Our discussion includes 1) the EFIM for the agents in
noncooperative localization, 2) an application of the cooperative
localization to tracking, 3) a recursive method to construct an
EFIM for large networks, and 4) the extension to 3-D scenarios.

1) Noncooperative Localization: When the agents do not co-
operate, the matrices corresponding to the agents’ cooperation
in (12) in Theorem 1 and (17) in Corollary 1 are discarded. In
particular, the EFIM in Theorem 1 reverts to

and hence the EFIM for the th agent is equal to
. Similarly, the EFIM in Corollary 1 reverts to

Furthermore, when the agents’ positions are independent a
priori, and the EFIM
for the th agent can be written as .

2) Spatial Versus Temporal Cooperation for Localization:
Rather than multiple agents in cooperation, a single agent can
“cooperate” with itself over time. Such temporal cooperative
localization can easily be analyzed within our framework, as
follows.

Consider a single agent moving in sequence to different
positions according to piecewise linear walk and receiving
waveforms from neighboring anchors at each position. The

positions can be written as , and

(15)

...
. . .

(17)
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we can consider the scenario as agents in cooperation. The
likelihood of the observation is

where in which is the measurement
of the distance between and .15

By applying Theorem 1, we have the EFIM for as
where

and is given by (18), shown at the bottom of the page, in
which with denoting the angle
from to and

By further applying the notion of EFI, we can obtain the EFIM
for each position . Note that this analysis can be ex-

tended to cooperation among multiple mobile agents over time,
so that both cooperation over space and time are explored si-
multaneously.

3) Recursive Formula for EFIM: The structure of the EFIM
in (12) and (17) enables us to extend the EFIM when agents join
or leave the cooperative network. We will develop a recursive
formula to construct the EFIM in the following.

Consider a network with agents in cooperation without a
priori knowledge of their positions, and the EFIM for agents’
positions where can be ob-
tained by (12). If a new agent enters the cooperative network,
then the EFIM for the agents is given by

(19)

where is the EFIM for the th agent corresponding
to the localization information from anchors, is the lo-
calization information from the cooperation between the

th agent and the other agents, given by

15We assume that the agent has other navigation devices, such as inertial mea-
surement unit (IMU), odometer, or pedometer, to measure the distance between
positions.

and is given by

Note that when the a priori knowledge of the agents’ positions
is available, we need to consider the contribution of , and the
EFIM for the agents can be constructed in a similar way.

Similarly, when a certain agent, say , leaves the network,
we need to eliminate rows to and columns
to in , as well as subtract all corresponding for

from the diagonal of .
4) Extension to 3-D Localization: All the results obtained

thus far can be easily extended to the 3-D scenario, in which
. The SPEB of the th agent is defined as

. Following the steps leading to (12) and
(17), we can obtain a corresponding EFIM involving
the RDMs for and , where

with and denoting the angles in the spherical coordinates,
and .

IV. GEOMETRIC INTERPRETATION OF EFIM FOR LOCALIZATION

In this section, we present a geometric interpretation of the
EFIM for localization. This interpretation not only provides in-
sights into the essence of localization problems, but also facili-
tates the analysis of localization systems, design of localization
algorithms, and deployment of location-aware networks. We
begin with the noncooperative case, and then extend to the coop-
erative case. Based on these results, we derive scaling laws of the
SPEB for both noncooperative and cooperative location-aware
networks.

A. Interpretation for Noncooperative Localization

When an agent only communicates with neighboring anchors,
the EFIM can be written as16

(20)

where and are the eigenvalues of , with , and
is a rotation matrix with angle , given by

16To simplify the notation, we will suppress the agent’s index in the subscript.

. . .
. . .

. . .

(18)
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Fig. 2. Geometric interpretation of the EFIM as an information ellipse. In the
rotated coordinate system (rotated over an angle �), the major and minor axes
of the ellipse are given by

�
� and

�
�, respectively.

The first and second columns of are the eigenvectors corre-
sponding to eigenvalues and , respectively. By the properties
of eigenvalues, we have

Note in (20) that depends only on , and , and we
will denote by when needed.

Proposition 2: The SPEB is independent of the coordinate
system.

Proof: See Appendix VI.

Remark 5: The proposition implies that if we rotate the orig-
inal coordinate system by an angle prescribed by (20) and de-
note the agent’s position in the new coordinate by , then the
SPEB is

The EFIM in the new coordinate system is diagonal, and thus the
localization information in these new axes is decoupled. Con-
sequently, the SPEB is also decoupled in these two orthogonal
directions.

Definition 5 (Information Ellipse): Let be a positive-
definite matrix. The information ellipse of is defined as the
sets of points such that

Geometrically, the EFIM in (20) corresponds to an informa-
tion ellipse with major and minor axes equal to and ,
respectively, and a rotation from the reference coordinate, as
depicted in Fig. 2. Hence, the information ellipse is completely
characterized by , and . Note that the RI is expressed as

, and it corresponds to a degenerate el-
lipse. In the following proposition, we will show how an anchor
contributes to the information ellipse of an agent.

Proposition 3: Let and denote the
EFIM and the SPEB of an agent, respectively. When that agent

Fig. 3. Updating of the information ellipse for noncooperative localization. The
original information ellipse of the agent is characterized by ���� �� ��. The RI
from an additional anchor is given by ���� �� ��. The new information ellipse
of the agent then grows along the direction � , but not along the orthogonal
direction. The new information ellipse corresponds to ����� ��� ��).

obtains RI from a new anchor, the new EFIM for the
agent will be

where the parameters for the new information ellipse are

and

with . Correspondingly, the new SPEB becomes

(21)

Remark 6: The geometric interpretation for the proposition
is depicted in Fig. 3. For a fixed RII , we see from (21) that

can be minimized through (equivalently, through ) in
the denominator, leading to

and the minimum is achieved when . In such a
case, the anchor is along the direction of the eigenvector cor-
responding to the smallest eigenvalue . Observe also that the
denominator in (21) is equal to , which is proportional to
the squared area of the new information ellipse corresponding
to . Hence, for a fixed , the minimum SPEB is achieved
when the new anchor is along the minor axis of the information
ellipse corresponding to . Equivalently, this choice of an-
chor position maximizes the area of the new information ellipse.

On the other hand, the maximum SPEB occurs when the an-
chor is along the direction of the eigenvector corresponding to
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the largest eigenvalue , i.e., the major axis of the information
ellipse corresponding to . Equivalently, this minimizes the
area of the new information ellipse, and thus

and the maximum is achieved when . Note also that

where the left-hand side , and the
right-hand side .

B. Interpretation for Cooperative Localization

The EFIM for all the agents in cooperative location-aware
network is given, respectively, by (17) and (12) for the cases
with and without a priori position knowledge. Further applying
the notion of EFI, one can obtain the EFIM for individual agents.
In general, the exact EFIM expression for the individual agents
is complicated. However, we can find lower and upper bounds
on the individual EFIM to gain some insights into the localiza-
tion problem.

Proposition 4: Let denote the
EFIM for agent that corresponds to the localization informa-
tion from anchors, and let denote the
RI for that agent obtained from cooperation with agent . The
EFIM for agent can be bounded as follows:

where

(22)

(23)

with coefficients given by (44) and (46).
Proof: See Appendix VI.

Remark 7: The bounds for the EFIM can be written as
weighted sums of RIs from the neighboring nodes, and such
linear forms can facilitate analysis and design of location-aware
networks. Moreover, it turns out that when there
are only two agents in cooperation, leading to the following
corollary.

Corollary 2: Let and
denote the EFIMs for agents 1 and 2 from an-

chors, respectively, and let denote the
RI from their cooperation. The EFIMs for the two agents are
given, respectively, by (see also Fig. 4)

and

Fig. 4. Updating of the information ellipse for cooperative localization. Based
on the anchors, the �th agent has information � �� �. The cooperative infor-
mation between the two agents is given by � � ���� �� � �. The total
EFIM for agent 1 is then � �� � � � �� �� � � . The new information
ellipse grows along the line connecting the two agents.

where

and

with

for .

Remark 8: The results follow directly from Proposition 4. We
make the following remarks.

• Cooperation provides agent 1 with RI
with . Hence, agent 1 obtains an RII
from cooperation instead of the full RII . This degrada-
tion in RII is due to the inherent uncertainty of the second
agent’s position. We introduce the effective RII

.
• The effective RII has the following geometric interpreta-

tion. The value is the DPEB of agent 2 (based
solely on the anchors) along the angle between the
two agents. This implies that the larger the uncertainty of
agent 2 along the angle , the less effective cooperation
is. For a given , the effective RII increases
monotonically with , and has the following asymptotic
limits:
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Hence, the maximum effective RII that agent 2 can provide
to agent 1 equals the inverse of the DPEB of agent 2 (based
solely on the anchors) along the angle between the two
agents.

• When i) the two agents happen to be oriented such that
, and ii) agent 2 is certain about its position

along that angle , then and
, i.e., agent 2 can be thought of

as an anchor from the standpoint of providing RI to agent
1. From this perspective, anchors and agents are equivalent
for localization, where anchors are special agents with zero
SPEB, or equivalently, infinite in all directions.

C. Scaling Laws for Location-Aware Networks

In this section, we derive scaling laws of the SPEB for
both noncooperative and cooperative location-aware networks.
Scaling laws give us insight into the benefit of cooperation
for localization in large networks. As we will see, agents and
anchors contribute equally to the scaling laws for cooperative
location-aware networks.

We focus on two types of random networks: dense networks
and extended networks [47], [48]. In both types of networks,
we consider the anchors and agents randomly located
(uniformly distributed) in the plane. In dense networks, adding
nodes increases the node density, while the area remains con-
stant. In extended networks, the area increases proportional to
the number of nodes, while both the anchor and the agent densi-
ties remain constant. Without loss of generality, we consider one
round of transmission from each node to another. All transmis-
sion powers are the same, while large- and small-scale fading
can be arbitrary. Medium access control is assumed so that these
signals do not interfere with one another.

Definition 6 (Scaling of SPEB): Consider a network with
nodes randomly located in a given area. We say that the SPEB of
individual agents scales as for some function , de-
noted by , if there are deterministic constants

such that

(24)

where .

Theorem 5: In dense networks, the SPEB of each agent scales
as for noncooperative localization, and as

for cooperative localization.
Proof: See Appendix VII.

Theorem 6: In extended networks with an amplitude loss ex-
ponent ,17 the SPEB of each agent scales as

17Note that the amplitude loss exponent is �, while the corresponding power
loss exponent is ��. The amplitude loss exponent � is environment dependent
and can range from approximately 0.8 (e.g., hallways inside buildings) to 4 (e.g.,
dense urban environments) [49].

for noncooperative localization, and

for cooperative localization.
Proof: See Appendix VII.

Remark 9: We make the following remarks.
• In dense networks, the SPEB scales inversely proportional

to the number of anchors for noncooperative localization,
and inversely proportional to the number of nodes for coop-
erative localization. The gain from cooperation is given by

, and hence the benefit is most pronounced
when the number of anchors is limited. Moreover, it is
proven in Appendix VII that decreases exponentially
with the number of nodes.

• In extended networks with an amplitude loss exponent
equal to , the SPEB scales inversely proportional to the
logarithm of the number of anchors for noncooperative
localization, and inversely proportional to the logarithm of
the number of nodes for cooperative localization. This im-
plies that the SPEB in extended networks decreases much
more slowly than that in dense networks, and the gain from
cooperation is now reduced to .
Moreover, it is shown in Appendix VII that decreases
as .

• In extended networks with an amplitude loss exponent
greater than , the SPEB converges to a strict positive
value as the network grows. This agrees with our intuition
that as more nodes are added, the benefit of the additional
nodes diminishes due to the rapidly decaying RII provided
by those nodes. It can be shown that the SPEB converges
to a smaller value in the cooperative case than that in the
noncooperative case, i.e., a constant gain can be obtained
by cooperation.

V. NUMERICAL RESULTS

In this section, we examine several numerical examples per-
taining to cooperative localization and illustrate practical appli-
cations of our analytical results.

A. Effective RI

We first investigate the behavior of the effective RII from
Corollary 2 when two agents cooperate. The effective RII
is plotted in Fig. 5 as a function of the RII for

and various values of .
The corresponding asymptotic limits are also plotted for large
values of . We observe that effective RII increases from to

as the RII increases. For a fixed RII, the second
agent will provide the maximum effective RII at ,
along which angle the second agent has the minimum DPEB (i.e.,

). On the other hand, the second agent will provide
the minimum effective RII at , along which
angle the second agent has the maximum DPEB (i.e., ).

B. Benefit of Cooperation

We now consider the SPEB performance as a function of
the number of agents for cooperative localization. The network
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Fig. 5. Effective RII � � as a function of the RII � , for � �
��� � �� � � �� � � ��, and different angle of arrival � .

Fig. 6. Typical network deployment of two sets of anchors (set I: squares, set
II: diamonds) and � � �� agents. The agents are distributed uniformly over
the �������	��������	map, while the locations of the anchors are controlled
by 	.

configuration is shown in Fig. 6. The agents randomly (uni-
formly distributed) reside in a 20 m by 20 m area. There are
two sets of anchors [shown as squares (set I) and diamonds
(set II) in Fig. 6], with a configuration determined by the pa-
rameter . Since fading does not affect the scaling behavior as
shown Section IV-C, we consider a network with signals that
obey the free-space path-loss model for simplicity, so that the
RII .

Fig. 7 shows the average SPEB over all the agents as a func-
tion of the number of agents, obtained by Monte Carlo simula-
tion, for . We see that as the number of agents increases,
the average SPEB decreases significantly, roughly proportional
to the number of agents. Note that the anchor configuration set
II yields a lower SPEB. Intuitively, this is due to the fact that

Fig. 7. The average SPEB as a function of the number of agents in the network
for various anchor configurations �	 � ���.

Fig. 8. Ratio of upper and lower approximations of the SPEB, � ��� and
� ���, as a function of the number of agents for anchor set I, set II, and both.

the anchors in set II (distance from the center) cover the area
better than the anchors in set I (distance from the center).

Define the upper and lower approximations of agent ’s
SPEB as

and

where and are given by (22) and (23), re-
spectively, in Theorem 4. Fig. 8 shows the average ratio of
the lower and upper approximations of the SPEB, obtained by
Monte Carlo simulation, for anchor set I, set II, and both sets.
When there are only two agents in cooperation, the bounds
coincide, as we expect from Corollary 2. As the number of
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Fig. 9. The mean SPEB with respective to anchor deployment. There are� �

�� agents.

agents increases, the ratio deviates from , or equivalently,
the approximations become looser, due to the fact that upper
approximation ignores more cooperative information, and the
lower approximation considers more agents to be equivalent
to anchors. Nevertheless, the ratio converges to a positive
constant, implying that the upper and lower approximations
decrease at the same rate in an asymptotical regime, as shown
in the proof of Theorem 5.

C. Anchor Deployment

Finally, we investigate the effect of anchor deployment in
more detail. We consider a scenario with agents. The
anchor placement is controlled through (see Fig. 6). Fig. 9
shows the average SPEB as a function of for different anchor
configurations (set I, set II, and both sets). We see that the SPEB
first decreases, and then increases, as a function of . When
is close to , all the anchors are located closely in the middle
of the area, and hence the RIs from those anchors to a partic-
ular agent are nearly in the same direction. This will greatly in-
crease the error of each agent’s position since every is
close to singular, resulting in poor overall SPEB performance.
As the anchors begin to move away from the center, they pro-
vide RIs along different directions to each agent, which lowers
the average SPEB. Then, as the distances of the anchors to the
center increase further, the anchors become far away from more
and more agents. Hence, the RII decreases due to the path-loss
phenomena, and this leads to the increase in the average SPEB.
Observe also that anchor set I is better than anchor set II for
7 m. This is because, for a fixed 7 m, anchor set I can cover
a larger area. For 7 m, anchor set I suffers more from path
loss than anchor set II.

For the sake of comparison, we have also included the average
SPEB when eight anchors are deployed 1) according to set I
and II simultaneously, and 2) randomly in a [ 10 m, 10 m]
[ 10 m, 10 m] area. The figure shows that intelligent anchor
deployment can be beneficial compared to random deployment,
indicating the need for anchor deployment strategies.

VI. CONCLUSION

In this paper, we have investigated the fundamental limits
on the localization accuracy for wideband cooperative loca-
tion-aware networks. We have derived the SPEB by applying the
notion of EFI to characterize the localization accuracy. Since
our analysis exploits the received waveforms rather than specific
signal metrics, the SPEB incorporates all the localization infor-
mation inherent in the received waveforms. Our methodology
unifies the localization information from anchors and that from
cooperation among agents in a canonical form, viz. RI, and the
total localization information is a sum of these individual RIs.
We have put forth a geometrical interpretation of the EFIM based
on eigendecomposition, and this interpretation has facilitated the
theoretical analysis of the localization information for coopera-
tive networks. We have also derived scaling laws for the SPEB
in both dense and extended networks, showing the benefit of
cooperation in an asymptotic regime. Our results provide funda-
mental new insights into the essence of the localization problem,
and can be used as guidelines for localization system design as
well as benchmarks for cooperative location-aware networks.

APPENDIX I
PROOF OF PROPOSITION 1

Proof: The right-hand side of (5) can be written as

where we have used the fact .

APPENDIX II
PROOF OF THEOREM 1

We proceed in two steps: we first show that the EFIM is struc-
tured as in (12), and then derive the details of the RI.

A. Derivation of the EFIM Structure

When a priori knowledge of the agents’ positions is unavail-
able, the log-likelihood function in (10) becomes

(25)

where denotes the vector of the channel parameters containing
all with and . For notational
convenience, we now introduce

(26)

(27)
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as well as

Since for , the EFIM for can be derived
as

(28)

Structure of : Due to the structure in (25), we can
express as

where is a block-diagonal matrix, consisting
of block matrices, given by

On the other hand, is also a block matrix,
consisting of block matrices, given by (29), shown at the
bottom of the page.

Structure of : Since for ,
we find that

where is a block-diagonal matrix, consisting
of block matrices, given by

On the other hand, is also a block matrix,
consisting of block matrices, given by (30), shown at the
bottom of the page.

Structure of : Combining these results, we find that the
EFIM in (28) can be written as

(31)

from which we obtain (12). In (12),
and in which we have
introduced the RI

(32)

Note that in the derivation, we used

and

Since in (12) can be expressed in terms of the RIs
, for and , we will examine

next the details of the RIs.

B. Details of the RI

We now consider the detailed expression of the RI
in (32). We first introduce

and

(33)

where with

.
From (2) and (9), we note that and that

and only depend on
through . Using the chain rule, we have

and

and hence can be expressed as

(34)

(29)

(30)
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where ,
and is given by (35), shown at the bottom of the page, where

.

APPENDIX III
PROOF OF THEOREM 2

Proof: When a priori channel knowledge is unavail-
able, we have , and .
For NLOS signals, the RII in (35) becomes since

. For LOS signals, however, after some
algebra, the RII becomes

(36)
where since the Fisher
information for known is infinity. To simplify (36), we
partition as

where obtained from (33) through some
algebra. As in (36), we have

where

(37)

is called path-overlap coefficient [29].
We next show that only the first contiguous cluster contains

information for localization. Let us focus on . If the length
of the first contiguous cluster in the received waveform is ,
where , we have [29]

and

where , and is a
block matrix that is irrelevant to the rest of the derivation. Hence,
(37) becomes

which depends only on the first paths, implying that only
the first contiguous cluster of LOS signals contains information
for localization.

APPENDIX IV
PROOF OF THEOREM 3 AND COROLLARY 1

Proof: When the a priori knowledge of the agents’ position
is available, the derivation of EFIM (25) becomes

Following the notations and derivations in Appendix II-A, we
obtain the EFIM given by (14). This completes the proof of The-
orem 3. Note that the structure of (14) is similar to that of (31)
except the additional term .

The EFIM in (14) is applicable to general case. Note that
in this case cannot be further simplified as that in (34)

since we need to take expectation over the random parameter
in (32). However, when condition (16) holds for functions

, and ,
the expectations of those functions with respect to can be re-
placed by the values of the functions at . In such a case, the RI
in (15) can be written as

where is the RII given in (35) evaluated at , and is the
angle from to .

APPENDIX V
PROOF OF THEOREM 4

Proof: Consider a cooperative network with agents,
whose overall EFIM is given by (14). If agent has infinite a
priori position knowledge, i.e., ,
then we apply the notion of EFI to eliminate the parameter
vector in (14) and have

(38)

where we have used

(39)

Note that if we let , and
for in (38), the

(35)
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structure of (38) becomes the same as that of (14), with a dimen-
sion decrease by . Therefore, the new RI is fully
utilizable, i.e., agent with infinite a priori position knowl-
edge is effectively an anchor.

APPENDIX VI
PROOFS FOR SECTION IV

A. Proof of Proposition 2

Proof: If the current coordinate system is rotated by angle
and translated by , then the position of the agent

in the new coordinate system is . Consequently,
the EFIM for is

(40)

Due to the cyclic property of the trace operator [45], we imme-
diately find that

(41)

B. Proof of Proposition 4

Proof: Without loss of generality, we focus on the first
agent.

Lower Bound: Consider the EFIM shown in (42),
shown at the bottom of the page. It can be obtained from
by setting all for . This EFIM cor-
responds to the situation where cooperation among agents 2 to

is completely ignored. One can show using elementary al-
gebra that , which agrees with intuition since
the cooperation information among agents 2 to is not ex-
ploited. Applying the notion of EFI, we have the EFIM for the
first agent as

Since where
, we can express as

(43)

where . The coef-
ficient can be simplified as

(44)

where

Upper Bound: Consider the EFIM shown in (45), at
the bottom of the page. It can be obtained from by dou-
bling the diagonal elements and setting the off-diagonal
elements for . One can show using
elementary algebra that , which agrees with
intuition since more cooperation information among agents 2
to is assumed in (45). Applying the notion of EFI and fol-
lowing the similar analysis leading to (43) and (44), we obtain
the EFIM for agent 1 as

where

(46)

in which

with , and satisfying

...
. . .

(42)

...
. . .

(45)
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APPENDIX VII
PROOF OF THE SCALING LAWS

Lemma 1: Let ’s be independent identically distributed
(i.i.d.) random variables with uniform distribution over .
Then, for any , there exist an , such that

(47)

Proof: First, we note that replacing with pre-
serves the value of . Hence, we can consider ’s
to be i.i.d. and uniformly distributed in .

We order the ’s, such that
. Using order statistics [50], we find that the joint pdf

of the ’s is

(48)
where is the indicator function. From (48), the marginal pdf
of can be derived as [50]

Now consider a large for some integer , and let
. The function has a maximum at ,

and is monotonically decreasing in . Therefore,
we have

(49)

Since , there exists such that
. Note also that

and hence, for the same
. Similar arguments show that there exists

such that and
.

Combining the above results, we have with a probability

when . Therefore

(50)

where denotes an inequality with probability approaching one
as . Substituting , and noting that the summa-
tion in (50) considers only half the terms (with ), we arrive
at (47).

Moreover, the probability in (49) decreases exponentially
with , because if letting

(51)

and hence one can see that in (47) decreases exponentially with
.

Lemma 2: Let ’s be i.i.d. random variables with arbitrary
distribution on the support . If
for some , then

(52)

where is the order statistics of such that
, and .

Proof: Denote the probability density and distribution of
by and , respectively. Consider for some

integer and such that . Using the
order statistics, we have

where the first inequality follows from , the second

inequality is due to the extension of finite summation, and the
last inequality follows from . Replacing with
gives (52).

A. Proof of Theorem 5

Proof: We consider first the noncooperative case, followed
by the cooperative case. In either case, without loss of generality,
we focus on the first agent at position .

Noncooperative Case: We will show that
and ,18 which implies that

.

18Similar to the definition of notation �������, the notation ���� �

������� and ���� � ������� denote, respectively, that ���� is bounded
below by � ���� and above by � ���� with probability approaching one as
� � �, for some constant � and � .



SHEN et al.: FUNDAMENTAL LIMITS OF WIDEBAND LOCALIZATION—PART II: COOPERATIVE NETWORKS 4997

For an amplitude loss exponent , signal powers decay with
the distance following . We can express the RII
from a node at distance as

where is the minimum distance between nodes determined
by the node’s physical size, is the maximum distance be-
tween nodes determined by the fixed area associated with dense
network setting, and random variable accounts for the large-
and small-scale fading. Since for some ,
there exists such that for a given

. Thus, the RII from the th anchor is bounded as
with probability

where and .
On the one hand, we have

(53)

By the Cauchy–Schwarz inequality, we have

Since the inequality (53) together with the fact that
imply that , we

have that

Therefore, .
On the other hand, for the lower bound, we first order the

RII ’s, and then the probability of is
exponentially small by Lemma 2, i.e.,

(54)

for some constant . Let denote the set of anchors
with RII such that , and we have that

(55)

where the outage probability decreases exponentially with
. Moreover, since

(56)
applying Lemma 1 gives

(57)

for sufficiently large . The inequality in (55) implies that

and hence with probability ap-
proaching one as . Therefore,
with probability 1.

Note that since both the outage probability in (55) and
in (57) decrease exponentially with , the outage probability

of the scaling law in (24) decreases exponentially with
.

Cooperative Case: For the cooperative case, we will use the
lower and upper approximations of the EFIM from (22) and
(23). The upper approximation gives

where the inequality is obtained by treating all other agents to
be anchors, i.e., . In this case, there are equiv-
alently anchors, and similar analysis as in the
noncooperative case shows that .

On the other hand, from the lower approximation, we have,
with probability approaching one, that

(58)

where is a given lower bound on both the RII
and the effective RII . From Lemma 2, we

can find such for the dense network setting, because there exist
constants such that , and

with probability approaching one; defining
implies and since

. Applying Lemmas 1 and 2, and following
a similar line of reasoning as in the noncooperative case, we
find with probability approaching
one as . Thus, we conclude that the SPEB in
cooperative networks scales as .

B. Proof of Theorem 6

Proof: Let denote the density of anchor nodes uniformly
distributed in an extended network. Consider an area within dis-
tance to agent 1, then the expected number of anchors within
that area is . Following a similar analysis leading
to (54), we can show that the effect of large- and small-scale
fading together with path loss on the RII can be bounded as

for some constants
, with an outage probability exponentially decreasing with

and . This implies that, with probability approaching one,
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the large- and small-scale fading will not affect the scaling law,19

and hence we can consider the RII from a node at distance as

for the analysis of the scaling laws. Since each anchor is uni-
formly distributed in the given area, the pdf of the RII can be
written as

with mean

(59)

and second moment

(60)

Note that , we can show that the mean scales as

(61)

and the variance always scales as

(62)

When , it follows that, for fixed densities of anchors
and agents, with probability approaching
one as , which implies that .

We will show that when , the scales as
and for the noncooperative

case and cooperative case, respectively. Using a similar argu-
ment, we can easily show that for the SPEB scales as

and for the noncooperative
case and cooperative case, respectively.

Noncooperative Case : We introduce a random vari-
able . From (61) and (62), we
have

19It will be shown that the overall outage is dominated by the spatial topology
for a large number of nodes, and thus we can ignore the outage due to fading.

for some constant , and

This implies that scales as with prob-
ability approaching one, and hence .
Using a similar analysis as in Appendix VII-A, we can show
that .

For the upper bound, using the same argument as in Lemma
1, we can show that with probability approaching one, there are

anchors with angle and anchors with
angle to the agent. We denote these two disjoint
sets of anchors by and , and define

and

Then, we have

(63)

where the first inequality comes from , and the
second inequality is due to the fact that the SPEB increases if
we set for and for .20

Since both and scale as
with probability approaching one. There-

fore, the SPEB in noncooperative extended networks scales as
.

We finally check the probability of outage, i.e.,
is not in . For a fixed large , the distribution of

can be approximated as the normal distribu-
tion , and hence21

(64)

where is the tail probability function of standard normal
distribution. Approximations and bounds for the tail probability

20This can be seen from (56) that every element in the sum of the denominator
decreases if letting � � ��� for � � � and � � ��� for � � � .

21The notation �� denotes “on the order of.”
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function can be found in [51]–[53]. Moreover, when ,
a similar argument leads to

(65)

Cooperative Case : The cooperative case can be
proved similar to the above noncooperative case in conjunction
with the cooperative case of Theorem 5. It turns out that the
SPEB can be shown to scale as when all
other agents are considered to be anchors. We can also show
that, with probability approaching one, the SPEB scales as

, using the lower approximation of the
EFIM, and an argument similar to (63).
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