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Abstract— In this paper, we analyze the capacity of multiple-
input multiple-output (MIMO) Rayleigh-fading channels in the
presence of spatial fading correlation at both the transmitter
and the receiver, assuming the channel is unknown at the
transmitter and perfectly known at the receiver. We first de-
rive the determinant representation for the exact characteristic
function of the capacity, which is then used to determine the
trace representations for the mean, variance, skewness, kurtosis,
and other higher-order statistics (HOS). These results allow us
to exactly evaluate two relevant information-theoretic capacity
measures—ergodic capacity and outage capacity—and the HOS
of the capacity for such a MIMO channel. The analytical
framework presented in the paper is valid for arbitrary numbers
of antennas, and generalizes the previously known results for
independent and identically distributed or one-sided correlated
MIMO channels to the case when fading correlation exists on
both sides. We verify our analytical results by comparing them
with Monte Carlo simulations for a correlation model based on
realistic channel measurements as well as a classical exponential
correlation model.

Index Terms— Channel capacity, higher-order statistics (HOS),
multiple-input multiple-output (MIMO) system, Rayleigh fading,
spatial fading correlation.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) communi-
cation systems using multiple transmit and receive

antennas promise high spectral efficiency and link reliability
for wireless communications [1]–[3]. Although the linear
growth of capacity with the number of antennas indicates the
potential of MIMO systems, the true benefits of using multiple
antennas may be limited by spatial fading correlation due
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to closely-spaced antenna configurations and poor scattering
environments in realistic wireless channels [4], [5].

Since the pioneering work of [1] and [2] in the area of
multiple-antenna communications predicted remarkable spec-
tral efficiency of MIMO wireless systems in independent and
identically distributed (i.i.d.) Rayleigh fading, much subse-
quent work has concentrated on characterizing MIMO ca-
pacity under correlated fading [4]–[14]. However, the exact
analytical results for the capacity, such as ergodic (or mean)
capacity, capacity variance, and outage capacity (i.e., capacity
versus outage probability),1 have been known for only a few
special cases, largely due to mathematical intractability (see,
e.g., [3], [6], [16] for i.i.d. flat Rayleigh fading and [7]–
[9] for a one-sided correlated MIMO channel). For a more
general case of correlated fading at both the transmitter and the
receiver, which we will refer to as doubly correlated MIMO
channels, some limited results are available: the capacity dis-
tribution for a small number of antennas (i.e., min {nT, nR} ≤
3 where nT and nR are the numbers of transmit and receive
antennas, respectively) [10], upper and lower bounds on the
ergodic capacity [6], [12], capacity statistics for the case with
a large number of antennas [13], and the asymptotic mean
and variance of the capacity in the limit as the number of
antennas tends to infinity [5], [14]. The temporal behavior of
the capacity was analyzed in [11] in terms of level crossing
rates and average fade durations.

In this paper, we focus on deriving the exact analytical
expressions for capacity statistics of doubly correlated MIMO
Rayleigh-fading channels using the methodology developed
in [6] and [7], assuming perfect channel knowledge at the
receiver and no knowledge at the transmitter with the average
input-power constraint. The principal contributions of this
paper are as follows.

• We derive a determinant representation for the character-
istic function (CF) of MIMO capacity, which generalizes
the previous results for i.i.d. and one-sided correlated
channels [7]–[9] to the doubly correlated case.

• We derive trace representations for the mean, variance,
and higher-order statistics (HOS) (e.g., cumulants, skew-
ness, and kurtosis) of the capacity using the determinant
representation of the CF and the relationship between
polymatrices and dimatrices.2

1In general, the capacity distribution is required to determine the outage
capacity [2], [3], [15].

2The definitions of the polymatrix and the dimatrix will be introduced in
Section III.
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• We characterize the effect of fading correlation on the
capacity statistics at high signal-to-noise ratio (SNR). We
show that at high SNR, the variance, skewness, kurtosis,
and other HOS of the capacity depend only on correlation
at the side with the larger number of antennas. Moreover,
when nT = nR, these statistics are not affected by fading
correlation at any side.

To verify our analytical results, we also compare them with
Monte Carlo simulations for doubly correlated MIMO chan-
nels using a correlation model based on physical measure-
ments [17], [18], as well as a classical exponential correlation
model. It should be noted that alternative derivation of the
moment generating function (MGF) of the capacity for doubly
correlated MIMO channels can also be found in [19]. In
this study, the MGF was obtained indirectly from the case
of a square channel matrix (nT = nR) using the limiting
approach of [20] and then, the first moment (ergodic capacity)
was deduced from it in terms of a sum of min {nT, nR}
determinants.

The remainder of the paper is organized as follows. A brief
overview of the distributions of complex random matrices
required for our analysis, channel model, and associated
channel capacity are presented in Section II. The CF of the
capacity is derived and the capacity statistics are analyzed for
doubly correlated MIMO channels in Section III. The effect
of fading correlation on the capacity statistics is investigated
at high SNR in Section IV. In Section V, some numerical
and simulation results are provided to illustrate our analytical
results. Finally, Section VI concludes the paper.

We shall use the following notation throughout the paper.
N and C denote the natural numbers and the field of complex
numbers, respectively. The superscript † denotes the transpose
conjugate. In and tr (A) represent the n × n identity matrix
and the trace operator of a square matrix A, respectively. By
A > 0, we denote that A is positive definite. For a matrix
A (t) = [ai,j (t)] where ai,j (t) are differentiable functions of
t, the nth derivative of A (t) with respect to t is denoted by

A(n) (t) � dnA (t)
dtn

=
[
dnai,j (t)
dtn

]
.

II. PRELIMINARIES: DEFINITIONS AND MODELS

In this section, we give a brief overview of the distribution
theory of complex random matrices (which serves as a cen-
tral mathematical tool for analyzing MIMO communication
systems), channel model, and associated channel capacity.

A. Distributions of Complex Random Matrices

Let us denote a complex Gaussian matrix X ∈ Cm×n with
the probability density function (PDF) [6, eq. (1)]

pX (X) =
exp
[
− tr

{
Σ−1 (X − M)Ψ−1 (X − M)†

}]
πmn det (Σ)n det (Ψ)m

(1)

by X ∼ Ñm,n (M,Σ,Ψ) where Σ ∈ Cm×m > 0 and Ψ ∈
Cn×n > 0 are Hermitian. If X ∼ Ñm,n (0,Σ, In), m ≤
n, and Y = XX†, then Y has a complex (central) Wishart
density W̃m (n,Σ) given by [6, eq. (3)].

Definition 1 (Matrix Quadratic Form [6]): Let

X ∼ Ñm,n (0,Σ,Ψ) , m ≤ n.

A positive-definite quadratic form Y in X associated with
a Hermitian matrix A ∈ Cn×n > 0, denoted by Y ∼
Q̃m,n (A,Σ,Ψ), is then defined as Y = XAX†.

The PDF of Y ∼ Q̃m,n (A,Σ,Ψ) is given by [21, eq. (57)]
and can be expressed in an equivalent form

pY (Y) =
1

Γ̃m (n)
det (Σ)−n det (AΨ)−m det (Y)n−m

× 0F̃
(n)
0

(−Σ−1Y,Ψ−1A−1
)
, Y > 0 (2)

where

Γ̃m (α) = πm(m−1)/2
m−1∏
i=0

Γ (α− i) , � (α) > m− 1

is the complex multivariate gamma function, Γ (·) is Euler’s
gamma function, and pF̃

(n)
q (·) is the hypergeometric function

of two Hermitian matrices, defined by [21, eq. (51)]. Note
that the density (2) is a counterpart of the real case in [22,
eq. (7.2.5)] and if AΨ = In, it reduces to the complex Wishart
density W̃m (n,Σ).

B. Channel Model and Capacity Random Variable

We consider a point-to-point frequency-flat fading MIMO
link with nT transmit and nR receive antennas. Let x ∈ CnT

be a transmitted signal vector with input covariance Q =
E
{
xx†} satisfying the power constraint tr (Q) ≤ P , then

the received signal is given by

y = Hx + n (3)

where H ∈ CnR×nT is the random channel matrix whose
(i, j)th entries Hij , i = 1, 2, . . . , nR, j = 1, 2, . . . , nT, are
complex propagation coefficients between the jth transmit
antenna and the ith receive antenna with E

{|Hij |2
}

= 1, and
n is the complex nR-dimensional zero-mean additive white
Gaussian noise (AWGN) vector with covariance σ2

nInR . For
doubly correlated MIMO channels, the channel matrix H can
be written as [4], [5]

H = Ψ1/2
R H0Ψ

1/2
T (4)

where H0 ∼ ÑnR,nT (0, InR , InT), and ΨT ∈ CnT×nT >
0 and ΨR ∈ C

nR×nR > 0 are the transmit and re-
ceive correlation matrices, respectively. Note that H ∼
ÑnR,nT (0,ΨR,ΨT) and this has been used in various at-
tempts to study correlated MIMO channels [4]–[14]. Recently,
this model has also been validated through physical measure-
ments [17].

In what follows, we refer to

nS = min {nT, nR} , nL = max {nT, nR}
and define the random matrix Θ ∈ CnS×nS > 0 as

Θ �
{

HH†, if nR ≤ nT

H†H, otherwise.



SHIN et al.: ON THE CAPACITY OF DOUBLY CORRELATED MIMO CHANNELS 2255

Also, let us denote, for convenience,

(ΨS,ΨL) =

{
(ΨR,ΨT) , if nR ≤ nT

(ΨT,ΨR) , otherwise

and let 0 < λS,1 < λS,2 < · · · < λS,nS and 0 < λL,1 <
λL,2 < · · · < λL,nL be distinct ordered eigenvalues of ΨS

and ΨL, respectively. Then, Θ ∼ Q̃nS,nL (InL ,ΨS,ΨL) for
the doubly correlated MIMO channel.

In general, when the receiver has perfect channel knowl-
edge, the input distribution that maximizes the mutual in-
formation between x and y is circularly symmetric com-
plex Gaussian for any given input covariance Q. When the
transmitter has no channel knowledge, power among transmit
antennas cannot be allocated in accordance with the realization
of H to maximize the mutual information, and hence equal
power allocation to each transmit antenna is the most reason-
able strategy, i.e., choosing Q = (P/nT) InT .3 This yields
the capacity in nats/s/Hz as [2], [3]

C = ln det
(
InS +

η

nT
Θ
)

(5)

where η = P/σ2
n is the average SNR at each receive antenna.

Since the channel matrix H is random, the associated channel
capacity C is also a random variable whose statistics are
determined by the statistical properties of the eigenvalues of
Θ ∼ Q̃nS,nL (InL ,ΨS,ΨL).

III. CAPACITY STATISTICS

In this section, we will investigate the statistical properties
of the capacity random variable C in (5) for doubly corre-
lated MIMO channels. We begin by deriving the CF of C,
from which all other functions—such as the PDF, cumulative
distribution function (CDF), and cumulant generating function
(CGF)—and statistical moments of C can be obtained.

A. Characteristic Function

Theorem 1: Let H ∼ ÑnR,nT (0,ΨR,ΨT), i.e., Θ ∼
Q̃nS,nL (InL ,ΨS,ΨL). Then, the CF of the capacity C in
nats/s/Hz is

ΦC (jω) � E
{
ejωC

}
=

ΥnS (jω)
Kcor

detΛ (jω) (6)

where j =
√−1,

ΥnS (jω) =
nS−1∏
�=1

(jω + 	)−� , (7)

Kcor =
(
η

nT

)nS(nS−1)/2 nS∏
i<j

(λS,j − λS,i)
nL∏
i<j

(λL,j − λL,i)

(8)

and Λ (jω) is the nL×nL matrix whose (i, j)th entry is given
in Table I.

3It has been shown in [3] that if the channel has i.i.d. Rayleigh fading
between antenna pairs, the optimum input covariance matrix is Q =
(P/nT) InT .

Proof: See Appendix B.

Note that Theorem 1 requires correlation matrices ΨT

and ΨR to have distinct eigenvalues. For the case when the
correlation matrices have non-distinct eigenvalues (some of
λS,i’s or λL,i’s are equal), we can obtain the CF as a limiting
case of (6) [7], [23]. In particular, when ΨT = InT and
ΨR = InR (i.i.d. case), ΦC (jω) is given by [7, eq. (25)]

ΦC (jω) = K−1
iid detΩ (jω) (9)

where Kiid =
∏nS
�=1 (nL − 	)! (	− 1)! and Ω (jω) is the nS×

nS Hankel matrix whose (i, j)th entry is given in Table I.
Theorem 1 generalizes the previous results for i.i.d. and one-
sided correlated channels (which are special cases of non-
distinct eigenvalues) [7]–[9] to the doubly correlated MIMO
channel given by (4). Using the analytical formulas for the CF
in (6) and (9), the PDF and CDF of C can be expressed in
forms of the inverse Fourier transform of ΦC (jω), which can
be efficiently calculated by using the fast Fourier transform
(FFT) method [7], [24].

B. Mean, Variance, and Higher-Order Statistics

From the CF of C in (6) and (9) involving the determinants,
we derive the exact closed-form expressions for the mean,
variance, and other HOS such as cumulants, skewness, and
(excess) kurtosis of the capacity. To do this, we first introduce
the logarithmic derivative of a determinant.

1) Logarithmic Derivatives of a Determinant: Let R (t) be
a matrix depending on a parameter t. If each entry of R (t) is
differentiable with respect to t, then so is detR (t) because
the determinant is a polynomial in the entries of R (t). If R (t)
is invertible, the first-order logarithmic derivative of detR (t)
is given by [25]

d ln detR (t)
dt

= tr
{
R−1 (t)R(1) (t)

}
. (10)

We now generalize (10) to the arbitrary order of differentia-
tion.

Definition 2 (Polymatrix and Dimatrix): Let R (t) be an
invertible matrix whose elements are differentiable with re-
spect to t. Then, the nth polymatrix of R (t) with respect to
t is defined as

R[n] (t) � R−1 (t)R(n) (t) . (11)

In particular, we call R[1] (t) the dimatrix of R (t).

Lemma 1: The polymatrices and the derivatives of the
dimatrix of R (t) have the following relationship

R[n] (t) =
n∑
�=1

(
n− 1
	− 1

)
R[n−�] (t)R

(�−1)
[1] (t) (12)

and the 	th logarithmic derivative of detR (t) is the trace of
the (	− 1)th derivative of the dimatrix R[1] (t), i.e.,

d� ln detR (t)
dt�

= tr
{
R(�−1)

[1] (t)
}
. (13)
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TABLE I

SOME MATRICES INVOLVED IN THE ANALYTICAL EXPRESSIONS FOR THE CAPACITY STATISTICS (SEE APPENDIX A FOR DETAILS ON THE EVALUATION

OF INTEGRALS). DENOTE η̄ = η/nT .

Notation Dimension (i, j)th entry (where ı = i − nL + nS and n ∈ N)

Λ (ν) nL × nL

{Λ (ν)}i=1,2,...,nL−nS,j=1,2,...,nL
= λi−1

L,j

{Λ (ν)}i=nL−nS+1,nL−nS+2,...,nL,j=1,2,...,nL

= λ
nL−nS−1
L,j

� ∞

0

�
1 + η̄λS,ız

�ν+nS−1
e−z/λL,j dz

= λ
nL−nS
L,j 2F0

�
1,−ν − nS + 1;−η̄λS,ıλL,j

�

Λ(n) (ν) nL × nL

�
Λ(n) (ν)

�
i=1,2,...,nL−nS,j=1,2,...,nL

= 0

�
Λ(n) (ν)

�
i=nL−nS+1,nL−nS+2,...,nL,j=1,2,...,nL

= λ
nL−nS−1
L,j

� ∞

0

�
1 + η̄λS,ız

�ν+nS−1
lnn

�
1 + η̄λS,ız

�
e−z/λL,j dz

= n!
�
η̄λS,ı

�ν+nS−1
λν+nL−1
L,j exp

�
1

η̄λS,ıλL,j

�

×Gn+2,0
n+1,n+2

�
1

η̄λS,ıλL,j

��� 1,1,...,1
0,0,...,0,ν+nS

�

Ω (ν) nS × nS

{Ω (ν)}i,j=1,2,...,nS

=

� ∞

0
(1 + η̄z)ν znL−nS+i+j−2e−zdz

= (nL − nS + i + j − 2)! 2F0 (nL − nS + i + j − 1,−ν;−η̄)

Ω(n) (ν) nS × nS

�
Ω(n) (ν)

�
i,j=1,2,...,nS

=

� ∞

0
(1 + η̄z)ν lnn (1 + η̄z) znL−nS+i+j−2e−zdz

=
n!e1/η̄

η̄nL−nS+i+j−1

nL−nS+i+j−2	
k=0



(−1)nL−nS+i+j−k−2

×�nL−nS+i+j−2
k

�
η̄ν+k+1Gn+2,0

n+1,n+2

�
1
η̄

��� 1,1,...,1
0,0,...,0,ν+k+1

��

Proof: By definition, we have

R[n] (t) = R−1 (t)
dn−1R(1) (t)

dtn−1

(a)
= R−1 (t)

n∑
�=1

(
n− 1
	− 1

)
dn−�R (t)
dtn−�

d�−1R[1] (t)
dt�−1

(b)
=

n∑
�=1

(
n− 1
	− 1

)
R[n−�] (t)R

(�−1)
[1] (t)

where (a) follows from the Leibniz’s identity [26, p. 21] and
(b) follows from (11). Also, (13) follows immediately from
(10), (11), and by interchanging the order of differentiation
and trace operators.

This lemma says that the 	th logarithmic derivative of the
determinant of a matrix can be determined by its first 	
polymatrices. For example, the second, third, and fourth order
logarithmic derivatives of detR (t) are given respectively by

d2 ln detR (t)
dt2

= tr
{
R[2] (t) − R2

[1] (t)
}

(14)

d3 ln detR (t)
dt3

= tr
{
2R3

[1] (t) − 3R[1] (t)R[2] (t) + R[3] (t)
}

(15)

and

d4 ln detR (t)
dt4

= tr
{
−6R4

[1] (t) + 12R2
[1] (t)R[2] (t)

−3R2
[2] (t) − 4R[1] (t)R[3] (t) + R[4] (t)

}
.

(16)

Using the explicit determinantal CF’s in Section III-A and
Lemma 1, we now derive statistical moments of C, which
requires determining the polymatrices

Ω[n] (ν) = Ω−1 (ν)Ω(n) (ν) , Ω[0] (ν) = InS (17)

Λ[n] (ν) = Λ−1 (ν)Λ(n) (ν) , Λ[0] (ν) = InL (18)

for i.i.d. and doubly correlated MIMO channels, respectively,
where the (i, j)th entries of Ω(n) (ν) and Λ(n) (ν) for n ∈ N

are given in Table I.
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2) Cumulants: The nth cumulant of C is by definition
expressed as

κn � dn

dνn
KC (ν)

∣∣∣∣
ν=0

(19)

where KC (ν) � ln ΦC (ν) is the CGF of C. Note that the
first and second cumulants are the mean and variance of the
capacity, respectively.

Theorem 2: Let H ∼ ÑnR,nT (0, InR , InT), i.e., Θ ∼
W̃nS (nL, InS) (nR×nT i.i.d. MIMO channel). Then, the nth
cumulant of the capacity C in nats/s/Hz is

κn = tr
{
Ω(n−1)

[1] (0)
}
. (20)

Proof: It follows immediately from (9), (19), and
Lemma 1.

Theorem 3: Let H ∼ ÑnR,nT (0,ΨR,ΨT), i.e., Θ ∼
Q̃nS,nL (InL ,ΨS,ΨL) (nR × nT doubly correlated MIMO
channel). Then, the nth cumulant of the capacity C in
nats/s/Hz is

κn = tr
{
Λ(n−1)

[1] (0)
}

+ (−1)n (n− 1)!
nS−1∑
�=1

	−n+1. (21)

Proof: It follows immediately from Theorem 1, (19), and
Lemma 1.

Using the relationship (12), the matrices Ω(n−1)
[1] (ν) and

Λ(n−1)
[1] (ν) in Theorems 2 and 3 can be determined by the

polymatrices in (17) and (18), respectively.

3) Raw and Central Moments: The nth raw and central
moments (i.e., moments about the origin and the mean, re-
spectively) of C can be obtained from the general relationships
between moments and cumulants [27]:

mn � E {Cn} =
n∑
�=1

(
n− 1
	− 1

)
mn−� κ� (22)

and

μn � E {(C −m1)
n} =

n∑
�=0

(
n

	

)
mn−� (−m1)

� (23)

where mn and μn are the nth raw and central moments of
C, respectively. In particular, the ergodic capacity is given by
m1 = E {C}.

4) Skewness and Kurtosis: The skewness characterizes the
degree of asymmetry of a distribution around its mean, and the
kurtosis measures the peakedness or flatness of a distribution
relative to a Gaussian distribution. The skewness and (excess)
kurtosis of C, denoted by β1 and β2, respectively, can be
obtained from the cumulants in Theorems 2 and 3 for i.i.d.
and doubly correlated cases as

β1 � μ3

μ
3/2
2

=
κ3

κ
3/2
2

(24)

and

β2 � μ4

μ2
2

− 3 =
κ4

κ2
2

. (25)

Using (14)–(16), (20), (21), (24), and (25), the trace repre-
sentations for the mean, variance, skewness, and kurtosis of
the capacity are tabulated in Tables II and III for i.i.d. and
doubly correlated MIMO channels, respectively.4 Since the
skewness and kurtosis of a Gaussian distribution are equal to
zero, nonzero values of these quantities indicate the degree of
deviation from the Gaussian distribution.5

IV. EFFECT OF CORRELATION AT HIGH SNR

The effect of fading correlation on the behavior of capacity
is not immediately apparent from the exact analytical expres-
sions such as the CF in (6) and the moments in Table III.
Therefore, we resort to the asymptotic analysis to investigate
such an effect in the following. In particular, we consider a
high-SNR regime, since the benefits of the use of multiple
antennas are more pronounced at high SNR. In this case, the
capacity (5) can be written as

C = nS ln (η/nT) + ln det (Θ) +O (1/η) , (26)

which reveals that at high SNR, the capacity is characterized
by the logarithmic generalized variance ln det (Θ) of Θ ∼
Q̃nS,nL (InL ,ΨS,ΨL). Note in (26) that min {nT, nR} (more
precisely, the rank of H) determines the spatial multiplexing
gain of a MIMO channel, while the logarithmic generalized
variance ln det (Θ) determines the diversity gain in capacity
point of view. Consequently, if the correlation matrices have
full rank, then the channel matrix H in (4) has full rank
with probability one. In this case, antenna correlation does
not diminish the spatial multiplexing gain and only decreases
the diversity gain [6].

Starting with (26) and using similar steps in the proof of
Theorem 1, the CF of the capacity in the high-SNR regime
can be written as

ΦC (jω)
∣∣
η high

= A

∫
0<z1≤···≤znS<∞

nS∏
�=1

zjω�

nS∏
i<j

(zj − zi)

× det (Ξ) dz1 · · · dznS

= A

{
nS∏
�=1

Γ (jω + 	)

}
detK (jω) (27)

where

A =
(η/nT)jωnS det (ΨS)jω∏nS
�=1 Γ (	)

∏nL
i<j (λL,j − λL,i)

(28)

and K (jω) is the nL×nL matrix whose (i, j)th entry is given
by

{K (jω)}i,j

=

{
λi−1

L,j , i = 1, . . . , nL − nS, j = 1, . . . , nL

λjω+i−1
L,j , i = nL − nS + 1, . . . , nL, j = 1, . . . , nL.

(29)

4Alternative expressions for the ergodic capacity and capacity variance of
the i.i.d. case, in terms of integrals involving the Laguerre polynomials, can
be found in [3] and [16], respectively.

5The skewness and kurtosis of the capacity have been used in conjunction
with the Gram-Charlier expansion to estimate the Kullback-Leiblier diver-
gence, as a measure of non-Gaussianity, between the capacity distribution
and its Gaussian approximation [24].
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TABLE II

MEAN, VARIANCE, SKEWNESS, AND KURTOSIS OF THE CAPACITY IN NATS/S/HZ FOR I.I.D. MIMO CHANNELS, H ∼ ÑnR,nT (0, InR , InT ) . DENOTE

Ωn = Ω[n] (0).

m1 (mean) tr (Ω1)

μ2 (variance) tr
�
Ω2 − Ω2

1

�

β1 (skewness)
tr
�
2 Ω3

1 − 3Ω1Ω2 + Ω3
�

�
tr
�
Ω2 − Ω2

1

�
3/2

β2 (kurtosis)
tr
�−6Ω4

1 + 12Ω2
1 Ω2 − 3Ω2

2 − 4Ω1Ω3 + Ω4
�

�
tr
�
Ω2 − Ω2

1

�
2

TABLE III

MEAN, VARIANCE, SKEWNESS, AND KURTOSIS OF THE CAPACITY IN NATS/S/HZ FOR DOUBLY CORRELATED MIMO CHANNELS,

H ∼ ÑnR,nT (0,ΨR, ΨT) . DENOTE Λn = Λ[n] (0).

m1 (mean) tr (Λ1) − (nS − 1)

μ2 (variance) tr
�
Λ2 − Λ2

1

�
+

nS−1	
�=1

�−1

β1 (skewness)
tr
�
2Λ3

1 − 3Λ1Λ2 + Λ3

�−�nS−1
�=1 2�−2�

tr
�
Λ2 − Λ2

1

�
+
�nS−1

�=1 �−1
�3/2

β2 (kurtosis)
tr
�−6Λ4

1 + 12Λ2
1Λ2 − 3Λ2

2 − 4Λ1Λ3 + Λ4

�
+
�nS−1

�=1 6�−3�
tr
�
Λ2 − Λ2

1

�
+
�nS−1

�=1 �−1
�2

Also, from Lemma 1, (19), and (27), the nth cumulant of the
capacity in nats/s/Hz at high SNR becomes

κn
∣∣
η high

= tr
{
K(n−1)

[1] (0)
}

+ δ1n ·
[
nS ln

(
η

nT

)
+ ln det (ΨS)

]

+
nS∑
�=1

ψ(n−1) (	) (30)

where

δij =

{
1, i = j

0, i �= j

is the Kronecker delta and

ψ(n) (z) =
dn+1 ln Γ (z)

dzn+1

is the polygamma function.6 In particular, if nR = nT, (30)

6For z ∈ N, the digamma function ψ(0) (z), trigamma function ψ(1) (z),
tetragamma function ψ(2) (z), and pentagamma function ψ(3) (z) can be
expressed as, respectively,

ψ(0) (z) = −γ +

z−1	
n=1

1

n

ψ(1) (z) =
π2

6
−

z−1	
n=1

1

n2

reduces to

κn
∣∣
η high

= δ1n ·
[
nT ln

(
η

nT

)
+ ln det (ΨTΨR)

]

+
nT∑
�=1

ψ(n−1) (	) . (31)

From (30) and (31), we have the following observations.

• At high SNR, the mean capacity decreases by the amount
of ln det (ΨS) due to correlation at the side with the
smaller number of antennas and by the amount of
tr
{
K[1](0)

}
due to correlation at the side with the larger

number of antennas.
• The variance, skewness, kurtosis, and other HOS of the

capacity depend only on correlation at the side with the
larger number of antennas and they converge to finite
quantities determined by (22)–(25) and (30), as η → ∞.

• When nR = nT, fading correlation at any side does not
affect the variance and HOS in the high-SNR regime,
while the mean capacity decreases by the amount of

ψ(2) (z) = −2ζ (3) +

z−1	
n=1

2

n3

ψ(3) (z) =
π4

15
−

z−1	
n=1

6

n4

where γ ≈ 0.5772156649 is the Euler-Mascheroni constant and ζ (3) ≈
1.2020569 is Apéry’s constant.



SHIN et al.: ON THE CAPACITY OF DOUBLY CORRELATED MIMO CHANNELS 2259

3 5 7 9 11 13
0.0

0.1

0.2

0.3

0.4

0.5
analysis
simulation

P
ro

ba
bi

lit
y 

D
en

si
ty

Capacity (nats/s/Hz)

nT = nR = 3ρT = 0.5, ρR = 0.7
S N R =15dB

Exponential correlation

iid

Fig. 1. PDF of the capacity for i.i.d. and exponentially correlated (ρT = 0.5,
ρR = 0.7) MIMO channels. nT = nR = 3 and η = 15 dB.

ln det (ΨTΨR). Moreover, it follows from (24), (25), and
(31) that

−12
√

6 · ζ (3)
π3

≤ β1

∣∣
η high

< 0

and

0 < β2

∣∣
η high

≤ 2.4

which imply that the capacity distribution has an asym-
metric tail extending out more to the left of its mean
and is leptokurtic (i.e., more peaked than a Gaussian
distribution) in the high-SNR regime.

• For a single-input single-output (SISO) case (nT = nR =
1), we have

m1

∣∣
η high

= ln (η) − γ

μ2

∣∣
η high

=
π2

6

β1

∣∣
η high

= −12
√

6 · ζ (3)
π3

β2

∣∣
η high

= 2.4

which reveal that −C at high SNR follows the extreme
value distribution [27].

V. NUMERICAL AND SIMULATION RESULTS

To illustrate our analytical results, we consider the expo-
nential correlation model

Φ(exp)
n (ρ) =

[
ρ|i−j|

]
i,j=1,2,...,n

, ρ ∈ [0, 1)

as well as the multiple element transmit receive antennas
(METRA) model [17] in our numerical examples. The former
model is reasonable in the case of the equally-spaced linear
array. The latter model characterizes the correlation properties
of MIMO channels using a reduced set of physical parameters
such as antenna spacing, power angular spectrum, azimuth
spread, and angle of arrival. This model was validated based
on measured data collected in both picocell and microcell
environments [17], and also has been proposed recently for
mobile broadband wireless access (MBWA) MIMO channels
[18].
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Fig. 2. CDF of the capacity for exponentially correlated MIMO channels
with ρT = 0.5 and ρR = 0.7. nT = nR = 2, 3, 4, 5 and η = 15 dB.
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with ρT = ρR = 0 (i.i.d.), 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9.
nT = nR = 3 and η = 15 dB.

A. Exponential Correlation Model

In all examples for exponential correlation, we set ΨT =
Φ(exp)
nT (ρT) and ΨR = Φ(exp)

nR (ρR). Fig. 1 shows the PDF
of C for i.i.d. and exponentially correlated (ρT = 0.5, ρR =
0.7) MIMO channels at η = 15 dB when nT = nR = 3.
The analytical curves are plotted by using (6), (9), and [24,
eq. (4.33)]. We also compare our analytical results with the
simulated PDF obtained by generating 100 000 realizations of
H. It can be seen that analytical and simulated curves match
exactly. The figure also shows that the mass of the PDF is
mostly above a certain level due to the spatial multiplexing
gain (for example, 4 nats/s/Hz for the exponentially correlated
case and 5 nats/s/Hz for the i.i.d. case).

Fig. 2 shows the CDF of C for exponentially correlated
MIMO channels with ρT = 0.5 and ρR = 0.7 at η = 15
dB when nT = nR = 2, 3, 4, and 5. The analytical curves
are plotted by using (6) and [24, eq. (4.34)], and they agree
exactly with the simulated ones. It can be seen that the
capacity increases linearly with the number of antennas for the
entire range of cumulative probability, despite the presence of
correlation. This can be attributed to the spatial multiplexing
gain achieved by increasing the number of antennas at both
sides. For example, the capacity at the cumulative probability
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of 0.1 (i.e., 10% outage capacity) is about 3.76, 5.95, 8.12, and
10.30 nats/s/Hz for nT = nR = 2, 3, 4, and 5, respectively; we
can gain approximately 2.18 nats/s/Hz of additional capacity
for each increase in the number of antennas at both the
transmitter and the receiver. Also, the spatial multiplexing
gain of MIMO systems guarantees a certain transmission
rate at arbitrarily low outage probability (e.g., 2.00, 4.18,
6.36, and 8.54 nats/s/Hz for nT = nR = 2, 3, 4, and
5, respectively). Fig. 3 illustrates the effect of exponential
fading correlation on the capacity distribution for the case of
nT = nR = 3 and η = 15 dB, where ρT and ρR range
from 0 to 0.9. It can be seen that the decrease in capacity due
to exponential correlation is negligible for a small amount of
correlation, but it becomes more significant as the correlation
coefficient increases. Moreover, the capacity reduction is more
pronounced at high cumulative (or outage) probability.

Fig. 4 shows the analytical and simulated mean, variance,
skewness, and kurtosis of C for exponentially correlated
MIMO channels as a function of correlation coefficient ρ for
ρT = ρR = ρ, nT = nR = 3, and η = 15 dB. Again,
our analytical results are in excellent agreement with Monte
Carlo simulations that are carried out by generating 100 000
realizations of H. Fig. 5 shows the mean, variance, skewness,
and kurtosis of C versus SNR for i.i.d. and doubly correlated
(ρT = 0.5, ρR = 0.7) MIMO channels when nT = nR =
2. It can be seen that as the SNR increases, the variance,
skewness, and kurtosis for both i.i.d. and doubly correlated
cases converge to 2.290, −0.810, and 1.333 according to (24),
(25), and (31), respectively, and the effect of fading correlation
on these statistics diminishes.
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channels. nT = nR = 2.
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Fig. 6. Ergodic capacity of doubly correlated MIMO channels with nT =
nR = 4 and METRA correlation matrices given in [17, p. 82] for picocell
and microcell environments. For comparison, the ergodic capacity of the 4×4
i.i.d. MIMO channel is also plotted.

B. METRA Correlation Model

We now consider 4 × 4 MIMO channels with correlation
matrices obtained by the METRA model [17], [18]. In all ex-
amples, it can be observed that our analytical results agree ex-
actly with Monte Carlo simulations. Fig. 6 shows the ergodic
capacity for METRA correlation matrices, given in [17, p. 82],
for picocell and microcell environments. The picocell example
is a partially decorrelated scenario selected from a small
office environment, whereas the microcell case corresponds
to an environment where the receiver (base station) is highly
correlated (see [17] for details on the antenna configurations
and environment setups). We can see from Fig. 6 that the
ergodic capacity at η = 15 dB is 11.25, 9.44, and 6.22
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Fig. 8. Ergodic capacity of doubly correlated MIMO channels with nT =
nR = 4 and METRA correlation matrices given in [18] for macrocell ITU
Pedestrian A and Vehicular A environments. For comparison, the ergodic
capacity of the 4 × 4 i.i.d. MIMO channel is also plotted.

nats/s/Hz for i.i.d., picocell, and microcell cases respectively.
The reduction in ergodic capacity due to spatial correlation is
about 16% for picocell and 45% for microcell environments,
respectively. Fig. 7 shows the CDF of the capacity at η = 15
dB in the same environments as in Fig. 6. The 10% outage
capacity is 9.82, 8.21, and 5.33 nats/s/Hz for i.i.d., picocell,
and microcell scenarios respectively. The reduction in 10%
outage capacity due to spatial correlation is about 16% for
picocell and 46% for microcell environments, which is similar
to the amount of reduction in ergodic capacity.

We next consider the METRA correlation matrices, given
in [18], for 4 × 4 MIMO channels in macrocell Pedestrian A
and Vehicular A environments of the international telecommu-
nication union (ITU) standard. For these correlation matrices,
the ergodic capacity is shown in Fig. 8 and the CDF of the
capacity at η = 15 dB is shown in Fig. 9. The ergodic capacity
at η = 15 dB is 6.64 nats/s/Hz for the ITU Pedestrian A
and 7.11 nats/s/Hz for the ITU Vehicular A, respectively (see
Fig. 8). Also, 10% outage capacity is 5.67 and 6.01 nats/s/Hz
for each environment (see Fig. 9). The reduction in ergodic
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Fig. 9. CDF of the capacity for doubly correlated MIMO channels with
nT = nR = 4 and METRA correlation matrices given in [18] for macrocell
ITU Pedestrian A and Vehicular A environments. For comparison, the CDF
of capacity for the 4 × 4 i.i.d. MIMO channel is also plotted. η = 15 dB.

capacity and 10% outage capacity due to spatial correlation is
about 40% in both environments.

VI. CONCLUSIONS

In this paper, we derived closed-form formulas for the exact
capacity statistics of Rayleigh-fading MIMO channels in the
presence of spatial fading correlation at both the transmitter
and the receiver. In particular, we derived the determinant
representation for the characteristic function (Theorem 1)
and the trace representations for the cumulants (Theorems 2
and 3) of MIMO capacity as well as the mean, variance,
skewness, and kurtosis (Tables II and III). These results
are valid for arbitrary numbers of antennas, enabling us to
calculate both the ergodic capacity and the outage capacity
without any approximation and generalizing the previous
results for i.i.d. and one-sided correlated MIMO channels.
We also showed that in a high-SNR regime, the variance,
skewness, kurtosis, and other higher-order statistics of the
capacity depend only on correlation at the side with the larger
number of antennas. Moreover, when the antenna topology is
symmetric (i.e., nT = nR), these statistics are not affected by
fading correlation at any side and the capacity distribution has
negative skewness greater than or equal to −12

√
6 · ζ (3) /π3,

where ζ (3) ≈ 1.2020569 is Apéry’s constant, and positive
(excess) kurtosis less than or equal to 2.4. This implies that
the capacity distribution has an asymmetric tail extending out
more to the left of the ergodic capacity and a leptokurtic shape
more peaked than a Gaussian one. To illustrate our analytical
results, we presented numerical examples using the correlation
model based on realistic channel measurements as well as
the classical exponential correlation model. These examples
showed that our analytical results are in excellent agreement
with Monte Carlo simulations and that a considerable decrease
in capacity, due to spatial fading correlation, can be observed
in realistic MIMO channels.
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APPENDIX A
INTEGRAL IDENTITIES

Let us define the integrals Gn (a, b, ξ) and Jn,� (a, b, ξ) for
a, b > 0, n ∈ N and ξ ∈ C as

Gn (a, b, ξ) �
∫ ∞

0

(1 + ax)ξ−1 xn−1e−x/bdx (32)

and

Jn,� (a, b, ξ) � ∂�Gn (a, b, ξ)
∂ξ�

=
∫ ∞

0

(1 + ax)ξ−1 ln� (1 + ax) xn−1e−x/bdx (33)

which appear in deriving the analytical expressions for the
capacity statistics in Section III.

From the integral representation of the confluent hyper-
geometric function Ψ (a, b; z) in [26, eq. (9.211.4)] and the
identity 2F0

(
a, b;−z−1

)
= zaΨ (a, a− b+ 1; z), the integral

Gn (a, b, ξ) can be evaluated as

Gn (a, b, ξ) = a−n (n− 1)! Ψ
(
n, n+ ξ;

1
ab

)
= bn (n− 1)! 2F0 (n,−ξ + 1;−ab) (34)

where pFq (a1, a2, . . . , ap; b1, b2, . . . , bq; z) is the generalized
hypergeometric function [26, eq. (9.14.1)]. In particular, for
ξ ∈ N, (34) reduces to a finite sum of elementary functions
as

Gn (a, b, ξ) = bn
ξ−1∑
k=0

{(
ξ − 1
k

)
(ab)k (n+ k − 1)!

}
. (35)

Since the derivatives of the generalized hypergeometric
function with respect to its parameters are not known, in
general, the integral Jn,� (a, b, ξ) cannot be evaluated directly
from (34). However, Gn (a, b, ξ) for a, b > 0, n ∈ N and ξ ∈ C

can be expressed in an alternate form

Gn (a, b, ξ)

=
e1/(ab)

an

n−1∑
k=0

{(
n− 1
k

)
(−1)n−k−1 (ab)ξ+k Γ

(
ξ + k,

1
ab

)}
(36)

where Γ (α, z) =
∫∞
z
e−xxα−1dx is the complementary in-

complete gamma function [26, eq. (8.350.2)]. Then, using (36)
and Leibniz’s identity [26, p. 21], the integral Jn,� (a, b, ξ)
defined in (33) can be evaluated as

Jn,� (a, b, ξ)

=
e1/(ab)

an

n−1∑
k=0

[
(−1)n−k−1

(
n− 1
k

)
(ab)ξ+k

×
�∑
i=0

{(
	

i

)
ln�−i (ab) ·

[
∂i

∂αi Γ
(
α, 1

ab

)]∣∣∣
α=ξ+k

}]

=
	! e1/(ab)

an

n−1∑
k=0

[
(−1)n−k−1

(
n− 1
k

)
(ab)ξ+k

×G�+2,0
�+1,�+2

(
1
ab

∣∣∣
�+1 1’s︷ ︸︸ ︷

1, 1, . . . , 1
0, 0, . . . , 0︸ ︷︷ ︸

�+1 0’s

, ξ + k

)]
(37)

where Gm,np,q (·) is the Meijer G-function [26, eq. (9.301)]. In
particular, for 	 = ξ = 1, (37) reduces to

Jn,1 (a, b, 1) = bn (n− 1)!e1/(ab)
n−1∑
k=0

(ab)−k Γ
(
−k, 1

ab

)
.

(38)

APPENDIX B
PROOF OF THEOREM 1

To proceed with the proof of Theorem 1, we begin by eval-
uating an integral involving matrix determinants, which is a
continuous analogue of the well-known results in multivariate
analysis [28]. The next lemma adds a new identity to the
list of the generalized Cauchy-Binet formulas derived in [7,
Appendix].

Lemma 2: Suppose that fi and gj , i = 1, 2, . . . ,m, j =
1, 2, . . . , n, m ≤ n, are arbitrary integrable functions over D.
Let F (�1, �2, . . . , �m) and G (�1, �2, . . . , �m) be m×m and
n×n matrices whose entries depend on �1, �2, . . . , �m, given
by

{F (�1, �2, . . . , �m)}i,j = fj (�i) , i, j = 1, 2, . . . ,m (39)

and

{G (�1, �2, . . . , �m)}i,j

=

{
ci,j , i = 1, . . . , n−m, j = 1, . . . , n
gj (�i−n+m) , i = n−m+ 1, . . . , n, j = 1, . . . , n,

(40)

where ci,j are scalar constants. Then,∫
D

· · ·
∫

D

detF (�1, �2, . . . , �m) detG (�1, �2, . . . , �m)

×
m∏
�=1

h (��) d�1d�2 · · · d�m

= m! det (Φ) (41)

where h (·) is an arbitrary function and Φ is the n×n matrix
with (i, j)th entry φi,j given by

φi,j =

⎧⎪⎨
⎪⎩
ci,j , i = 1, . . . , n−m, j = 1, . . . , n∫

D
fi−n+m (�) gj (�)h (�) d�,

i = n−m+ 1, . . . , n, j = 1, . . . , n.
(42)

Proof: Let

a = (a1, a2, . . . , an)

and
b = (b1, b2, . . . , bm)

be the permutations of integers 1, 2, . . . , n and 1, 2, . . . ,m,
respectively. Then, the integration of the left-hand side of (41)
becomes∑

a

∑
b

sgn (a) sgn (b)
n−m∏
i=1

ci,ai

m∏
j=1

φn−m+bj ,an−m+j

=
∑
a

sgn (a)
∑
b

sgn2 (b)
n∏
i=1

φi,ai

= m! det (Φ)
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where sgn (·) denotes the sign of the permutation.

Proof of Theorem 1: The CF of C can be written as

ΦC (jω) =
∫
Θ=Θ†>0

det (InS + η̄Θ)jω pΘ (Θ) dΘ (43)

where η̄ = η/nT and from (2), the PDF of Θ ∼
Q̃nS,nL (InL ,ΨS,ΨL) is given by

pΘ (Θ) =
1

Γ̃nS (nL)
det (ΨS)−nL det (ΨL)−nS

× det (Θ)nL−nS
0F̃

(nL)
0

(−Ψ−1
S Θ,Ψ−1

L

)
. (44)

The typical approach for the evaluation of the integral in
(43) is to perform eigenvalue decomposition using the unitary
transformation of Θ and to exploit the knowledge of the joint
eigenvalue distribution of Θ. However, the correlation matrix
ΨS in the argument of the hypergeometric function in (44)
prevents the removal of the unitary matrix from its arguments
after the eigenvalue decomposition, which makes it difficult to
directly use the joint eigenvalue distribution of Θ. We alleviate
this difficulty by performing two successive transformations as
follows. The first transformation is given by

Z = Ψ−1/2
S ΘΨ−1/2

S (45)

with Jacobian

dΘ = det (ΨS)nS dZ. (46)

Using the fact that

0F̃
(nL)
0

(−Ψ−1
S Θ,Ψ−1

L

)
= 0F̃

(nL)
0

(
−Ψ−1/2

S ΘΨ−1/2
S ,Ψ−1

L

)
, (47)

we have

ΦC (jω) =
det (ΨL)−nS

Γ̃nS (nL)

∫
Z=Z†>0

det (InS + η̄ΨSZ)jω

× det (Z)nL−nS
0F̃

(nL)
0

(−Z,Ψ−1
L

)
dZ. (48)

Let us denote a unitary manifold of nS×nS unitary matrices
with real diagonal elements by Ũ (nS). Since Z is Hermitian,
there exists U ∈ Ũ (nS) such that Z = UDU† and D =
diag (z1, z2, . . . , znS) where 0 < z1 ≤ z2 ≤ · · · ≤ znS

are ordered eigenvalues of Z. We then make the second
transformation

Z = UDU† (49)

with Jacobian [29, Theorem 3.1], [30, Theorem 4.4]

dZ =
nS∏
i<j

(zj − zi)
2
dUdD, (50)

yielding

ΦC (jω) =
det (ΨL)−nS

Γ̃nS (nL)

∫
D

∫
U∈Ũ(nS)

det (D)nL−nS

× det
(
InS + η̄ΨSUDU†

)jω
0F̃

(nL)
0

(−D,Ψ−1
L

)
×

nS∏
i<j

(zj − zi)
2 dUdD (51)

where we have used the fact that the hypergeometric function
with matrix arguments is invariant under unitary transforma-
tions of its arguments.7 It is now apparent that the above two
transformations enable us to remove the dependence of U on
the hypergeometric function. Recall that the total volume of
Ũ (nS) is [30, Corollary 4.3.1]∫

U∈Ũ(nS)

dU =
πnS(nS−1)

Γ̃nS (nS)
. (52)

We can now carry out the integration with respect to U using
[30, eq. (6.1.19)] and [21, eq. (52)] as∫

U∈Ũ(nS)

det
(
InS + η̄ΨSUDU†

)jω
dU

=
∫
U∈Ũ(nS)

1F̃0

(
−jω;−η̄ΨSUDU†

)
dU

=
πnS(nS−1)

Γ̃nS (nS)
1F̃

(nS)
0 (−jω;D,−η̄ΨS) . (53)

Substituting (53) into (51) gives

ΦC (jω) =
πnS(nS−1) det (ΨL)−nS

Γ̃nS (nL) Γ̃nS (nS)

×
∫

0<z1≤···≤znS<∞

nS∏
�=1

znL−nS
�

× 1F̃
(nS)
0 (−jω;D,−η̄ΨS) 0F̃

(nL)
0

(
D,−Ψ−1

L

)
×

nS∏
i<j

(zj − zi)
2 dz1dz2 · · · dznS . (54)

Using the results in [23, Lemma 3] and [20], the hyper-
geometric functions with matrix arguments in the integrand
of (54) can be expressed in terms of determinants as (55)
and (56), shown at the top of the page, where (α)n =
α (α+ 1) · · · (α+ n− 1), (α)0 = 1, is the Pochhammer
symbol and Ξ is the nL × nL matrix whose (i, j)th entry
is given by

{Ξ}i,j =

⎧⎪⎪⎨
⎪⎪⎩
λi−1

L,j , i = 1, . . . , nL − nS, j = 1, . . . , nL

λnL−nS−1
L,j exp

(
− zi−nL+nS

λL,j

)
,

i = nL − nS + 1, . . . , nL, j = 1, . . . , nL.

(57)

Combining (54)–(57) together with

(−1)nS(nS−1)/2
nS∏
�=1

(−jω − nS + 1)�−1 =
nS−1∏
�=1

(jω + 	)� ,

(58)

we get the CF as (59), shown at the top of the page, where
the last equality follows from the fact that the integrand is
symmetric in z1, z2, . . . , znS . Finally, applying the integral-
type Cauchy-Binet formula in Lemma 2 to (59) and using the
identity (34) complete the proof.

7Note that
�nS

i<j (zj − zi) is the nS × nS Vandermonde determinant of
z1, z2, . . . , znS , i.e.,

nS�
i<j

(zj − zi) = det
��

zi−1
j

��
.
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1F̃
(nS)
0 (−jω;D,−η̄ΨS) =

(−η̄π)−nS(nS−1)/2 Γ̃nS (nS) det
[
(1 + η̄λS,jzi)

jω+nS−1
]
i,j=1,2,...,nS∏nS

�=1 (−jω − nS + 1)�−1

∏nS
i<j (zj − zi)

∏nS
i<j (λS,j − λS,i)

(55)

0F̃
(nL)
0

(
D,−Ψ−1

L

)
=

π−nS(nS−1)/2Γ̃nS (nL) det (ΨL)nS det (Ξ)∏nS
�=1 z

nL−nS
�

∏nS
i<j (zj − zi)

∏nL
i<j (λL,j − λL,i)

(56)

ΦC (jω) =
ΥnS (jω)
Kcor

∫
0<z1≤···≤znS<∞

det
[
(1 + η̄λS,jzi)

jω+nS−1
]
i,j=1,2,...,nS

det (Ξ) dz1dz2 · · ·dznS

=
ΥnS (jω)
nS!Kcor

∫ ∞

0

· · ·
∫ ∞

0

det
[
(1 + η̄λS,jzi)

jω+nS−1
]
i,j=1,2,...,nS

det (Ξ) dz1dz2 · · · dznS (59)
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