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Abstract—In this paper, we propose a search technique that
takes advantage of multipath, which has long been considered
deleterious for efficient communication, to aid the sequence
acquisition in dense multipath channels. We consider a class of se-
rial-search strategies and use optimization and convexity theories
to determine fundamental limits of achievable mean acquisition
times (MATs). In particular, we derive closed-form expressions
for both the minimum and maximum MATs and the conditions
for achieving these limits. We prove that a fixed-step serial search,
a form of nonconsecutive serial search, achieves a near-optimal
MAT. We also prove that the conventional serial search, in which
consecutive cells are tested serially, should be avoided as it results
in the maximum MAT. Our results are valid for all signal-to-noise
ratio (SNR) values, regardless of the specifics of the detection layer
and the fading distributions.

Index Terms—Acquisition, dense multipath channels, noncon-
secutive serial search, spread spectrum.

I. INTRODUCTION

SEQUENCE synchronization is an important task for a
spread spectrum receiver. Before communication com-

mences, the receiver must search for a location of sequence
phase within a required accuracy. The synchronization process
occurs in two stages: the acquisition stage (the focus of this
paper) and the tracking stage [1]–[4]. During the acquisition
stage, the receiver coarsely aligns the sequence of the locally
generated reference (LGR) with that of the received signal. The
receiver then enters the tracking stage to finely align the two
sequences and maintain the synchronization throughout the
communication. It has been shown that an acquisition problem
is a hypothesis testing problem [5].

The total number of phases or cells that the receiver
needs to test depends on the temporal uncertainty range

of a phase delay and the resolution to
resolve the phase delay.1 The expression for is given by

(1)
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1Subscript “unc” stands for uncertainty.

which can range from a few cells to several thousand cells, de-
pending on the application [6]. Without loss of generality, we
index the cells from to . Cell , , cor-
responds to a hypothesized phase delay in the range

. An uncertainty index set

(2)

denotes a collection of cells to test. Because the ratio is
proportional to the transmission bandwidth, can be very
large, especially, for a wide-bandwidth transmission system [7].
In that scenario, acquisition of a received signal in a reasonable
amount of time is a challenging task.

Unlike an additive white Gaussian noise (AWGN) channel,
a dense urban or indoor channel provides us with multiple
propagation paths, which can be resolved via the use of
wide-bandwidth signals [8], [9]. The number of correct phases
or in-phase cells, denoted by , in a dense multipath channel
is proportional to the number of resolvable paths. Multiple
resolvable paths tend to arrive in a cluster in dense multipath
channels [10]–[15], giving rise to consecutive in-phase cells,
modulo- , in the uncertainty index set.

Designing an acquisition system involves two broad design
aspects. One deals with how the decision is made at the detec-
tion layer. Examples of the relevant issues at this layer include
combining methods for decision variables, the number of stages
in a multidwell detector, a design choice for decision thresholds,
and the evaluation of the detection and false-alarm probabilities.
The other aspect deals with the procedure for finding a correct
cell at the search layer. Examples of the relevant issues include:

• the choice of search strategy (e.g., serial search [6], fully
parallel search [16], or hybrid search [17]), and

• the selection of efficient search order (the sequence in
which cells are tested).

In general, the goal of the acquisition receiver is to find a correct
sequence phase as fast as possible.

The performance of the acquisition system is measured typi-
cally by the mean acquisition time (MAT), the average duration
required for the receiver to achieve acquisition. A common
method for finding the MAT is to use a flow diagram. A flow
diagram that describes the acquisition procedure in AWGN
channels [18]–[20] or in frequency-nonselective fading chan-
nels [21]–[27] simply has one in-phase cell. On the other hand,
in multipath fading channels, the flow diagram has multiple
in-phase cells corresponding to the multiple resolvable paths
[28]–[35].

There are two major approaches to improve the MAT. The
first approach improves the MAT at the detection layer. For ex-
ample, a receiver may dedicate more resources, such as correla-
tors, to form a decision variable [33]–[38], use passive correla-
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Fig. 1. A correlator output x(t) contains several resolvable peaks. (a) An ide-
alized scenario in the absence of fading and noise. (b) A realistic scenario in the
presence of fading and noise.

tors to increase a decision rate [19], use an appropriate decision
rule [39], [40], or employ sequential techniques [41]–[45]. The
second approach improves the MAT at the search layer. For ex-
ample, a receiver may perform a hybrid search by using multiple
correlators [46]–[49] or use a special search pattern such as an
expanding zig-zag window [2], [20], [50], [51] or a nonconsec-
utive [29]–[33] serial search.

In a few special cases, the MAT of the conventional serial
search (CSS)2 is shown to be longer than that of a nonconsecu-
tive serial search (see also [29]–[33]). To gain some insight into
this behavior, let us consider an idealized scenario in the absence
of fading and noise. In this hypothetical scenario (see Fig. 1(a)),
a receiver that skips some cells after each test will reach and find
an in-phase cell faster than does the receiver that uses the CSS.
This example indicates that multipath helps the signal acquisi-
tion.

While the idealized scenario in the previous example gives
credence to the idea that multipath can be useful, the intuition
gained from the example becomes questionable in a realistic
scenario. In the presence of fading and noise (see Fig. 1(b)),
the receiver makes erroneous decisions when testing an in-phase
or a non-in-phase cell. It is unclear whether the nonconsecutive
serial search outperforms the conventional serial search in every
operating environment.

This paper will focus on search techniques that exploit
multipath to aid acquisition in dense urban or indoor channels.
We consider acquisition receivers that can test cells in arbitrary
orders using active correlators.3 Our goal is to investigate the
following questions.

• What are the fundamental limits of the achievable MATs?
In other words, what are the minimum and maximum
MATs over all possible search orders?

• What are the search orders that achieve the minimum
MAT?

• What are the search orders that result in the maximum
MAT?

2The CSS is a search order that tests consecutive cells serially.
3Note that the inability of passive correlators to test cells in arbitrary orders

excludes them from this study.

We focus on the most commonly used search strategy, namely,
the serial search [18]–[21], [32]–[35], and our analysis employs
a nonpreferential flow diagram.4 The key contributions of this
paper are as follows.

• We introduce the concept of a spacing rule, which de-
scribes the structure of the flow diagram, and derive the
absorption time5 expression as an implicit function of a
spacing rule. We then derive the optimal spacing rule by
using convexity and optimization theories.

• We derive bounds for the minimum MAT and find a search
order that yields a near-optimal MAT.

• We derive the explicit expression for the maximum MAT
and show that the CSS yields this maximum.

Our results are valid for all values of signal-to-noise ratio (SNR),
regardless of the decision rules of the detection layer or the op-
erating environments.

This paper is organized as follows. In Section II, we present
the system model and basic definitions for the acquisition
system. In Section III, we derive the absorption time as a
function of the spacing rule and prove important properties
of the absorption time. In Section IV, we derive the explicit
expression of a lower bound for the MAT and find the search
order that yields the near-optimal MAT. In Section V, we derive
the explicit expression for the maximum MAT and prove that
the CSS results in the maximum MAT. Finally, the important
findings are summarized in Section VI.

II. SYSTEM MODEL AND BASIC DEFINITIONS

The set of all possible search orders is denoted by

is a permutation function and

(3)

An element of is called a search order, which will be some-
times written as an -tuple

This -tuple emphasizes the order

in which the receiver tests the cells, where is the first
cell to be interrogated. We note that can be any cell and the
search order itself does not specify which cell to test first. Some
common search orders that have been used in the literature are
shown in Fig. 2.

The CSS [34], [35], where the consecutive cells are tested
serially, yields the -tuple with the cor-
responding search order

(4)

4The definition of a nonpreferential flow diagram is given in Section II
5The absorption time is the average time to transit from a start state to an

absorbing state in a Markov flow diagram.
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Fig. 2. A receiver tests the cells according to the search order. (a) A generic
search order �. (b) The search order � of the CSS. (c) The search order � of
the fixed-step serial search (FSSS) with the step size N = 2. (d) The search
order � of the bit-reversal serial search.

The fixed-step serial search (FSSS) [32], [33], [52], where
the receiver skips cells before it performs the next test,
yields the -tuple6

with the corresponding search order

(5)

To ensure that the mapping is a bijection, we
require that and be relatively prime. Clearly, the CSS

is a special case of the FSSS with the step size .
The bit-reversal serial search is proposed in [32] and corre-

sponds to

where elements are defined relatively to one another as
follows. For

(6)

where is the reversal of the binary digit rep-
resentation of the integer . Equation (6) specifies the unique
order of cells in the uncertainty index set: assigning the
cost to cell and arranging the cells in ascending order
according to their costs.

In general, there are different search orders, and
it is imperative to find the one that minimizes the MAT. For a

6The symbol� denotes the modulo-N addition defined by x� y x+
y � lN , for some unique integer l such that x + y � lN 2 U . We will
write x 	 y for x � (�y).

given search order, the MAT can be evaluated by using a flow
diagram.

Fig. 3 depicts a flow diagram, which corresponds to a serial-
search strategy with a generic search order . There are
states totally: one absorbing state (ACQ), states of type ,
and states of type . The ACQ state represents the
event of successful acquisition. Each of the states of type

corresponds to an in-phase cell, while each of the remaining
states of type corresponds to a non-in-phase

cell. The disjoint union of the in-phase and non-in-phase cells
forms an uncertainty index set .

The location of the first in-phase cell is unknown to the re-
ceiver.7 We treat as a random variable, uniformly distributed
on . In dense multipath environments, such as ultra-wide band-
width (UWB) indoor or urban channels, multipath tends to ar-
rive in a cluster [10]–[15]. In this case, conditioned on ,
the index set corresponding to the in-phase cells
is8

(7)

Since there is no a priori knowledge of , the receiver may begin
the search at any cell . Therefore, we also consider to be a
uniform random variable over .

The bijective property of implies that there are exactly
unique integers such that

In a flow diagram, those in-phase cells have paths to the
absorbing state.

Let , , and , respectively, denote generic
path gains from an -state to ACQ, from an -state to the ad-
jacent nonabsorbing state, and from an -state to the adjacent
nonabsorbing state. These path gains can be determined from
the details in the detection layer [18]–[20]. It was shown in [18,
eq (7b)] that the absorption time depends on the detection layer
through and , for . This result implies
that, for the purpose of MAT calculation, a path gain can
be replaced by an equivalent path gain, say , as long as

and . Therefore, the path gains
, , and can be represented equivalently by
, , and , respectively, where

(8)

The parameters , , and can be interpreted
as effective detection layer parameters. Specifically, the receiver

7A sanserif font denotes a random variable.
8In some scenarios, multiple clusters of propagation paths are observed at the

receiver. We will discuss such cases in the conclusion section.
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Fig. 3. A flow diagram for the serial search with the search order � contains N + 1 states. The state labeled ACQ is the absorbing state. The states in thick
circles are H -states. The remaining states are H -states.

spends time units and makes the correct decision with prob-
ability when testing an in-phase cell. The receiver spends

time units and makes the incorrect decision with probability
when testing an in-phase cell. The receiver

spends time units to eventually make the correct decision
when testing a non-in-phase cell.

The structure of the flow diagram describes the arrangement
of the in-phase and non-in-phase cells. This structure plays an
important role in the acquisition system as it strongly influences
the absorption time and the MAT. The structure of a flow dia-
gram can be described by its description.

Definition 1 (Description): A description is a tuple of
the search order and the location of the first in-phase cell.
The set of all possible descriptions is denoted by

(9)

The description characterizes the structure of a flow di-
agram. In particular, specifies the order of the nonabsorbing
states, while determines the set of states that have tran-
sition edges to the absorbing state. We now focus our attention
on a widely used class of flow diagrams [18]–[20], [32], [33],
which we refer to as a nonpreferential flow diagram (see Fig. 3).

Definition 2 (Nonpreferential Flow Diagram): The flow dia-
gram is nonpreferential if it has the following properties:

1) the probability of starting the search at any nonabsorbing
state is equally likely;

2) every path to the absorbing state has the same path gain;
3) every path from an -state has the same path gain; and
4) every path from an -state to the adjacent nonabsorbing

state has the same path gain.

The use of a nonpreferential flow diagram is reasonable when
the power dispersion profile (PDP) is decaying slowly or con-
stant over an interval. Indeed, constant PDPs have been used
to study various aspects of spread spectrum systems [8], [9],
[53]–[56]. Propagation measurements in urban and suburban
environments [57]–[59] and mountainous terrain [60] exhibit
characteristics supporting such a PDP since they show channels
with energy spread over a continuum of arrival times. Thus, a
nonpreferential flow diagram serves as a basic model for ana-
lyzing the performance of an acquisition system operating in
dense multipath environments.

III. THE ABSORPTION TIME

A. Conventional Approach

For a given search order , the MAT is given by

(10)
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Fig. 4. Each flow diagrams corresponds to the bit-reversal search and has the following parameters: N = 4, N = 2, P = 0:5, � = � = 1, and
� = 2. The structure of the flow diagram varies with the location of the first in-phase cell. (a) = 1. (b) = 2. (c) = 3. (d) = 4.

Here, is the absorption time of the flow diagram corre-
sponding to the description

(11)

where

otherwise
and

otherwise.

The equality follows from a loop-reduction technique,
which is used to find the MATs in [18]–[20], [32], [33].

Remark 1: In general, averaging over in (10) is required.
Consider, for example, the flow diagrams in Fig. 4, corre-
sponding to the bit reversal search with different values of

. Equation (11) implies that the absorption time for each flow
diagram is

.

Averaging over gives the MAT of , which is distinct from
any . The example shows that in general the absorp-
tion time is a function of a particular value of , and that the
MAT calculation of [32], [33] under the assumption of
may only give an approximation. In some special cases, aver-
aging over is unnecessary. For example, when the FSSS is
employed, the absorption time does not depend on , regard-
less of the step size (see [61] for the proof).

From (10), the MAT satisfies

(12)

for any given search order . The above inequalities seem
to give useful bounds on the MAT. However, the expres-
sion in (11) does not reveal its dependence on the
search order explicitly. As a result, it is unclear how one
can solve efficiently—if at all—the optimization problems

and .
To accentuate the need for more innovative and clever solu-

tions to the optimization problem, we note that the direct ap-
proach that exhaustively searches over for the best and worst
search orders is impractical. Evaluation of the right-hand side
of (10) for a given search order requires at least arithmetic
operations to calculate absorption times. While the eval-
uation of (10) for a given is feasible, the exhaustive search
over all on requires at least arithmetic
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Fig. 5. The spacing rule mmm = (m ;m ; . . . ;m ) characterizes the structure of the flow diagram.

operations. For a small cardinality of the uncer-
tainty index set and a fictional machine that has a clock speed
of 10 Hz and performs one arithmetic operation per cycle, the
exhaustive search requires more than 10 years to complete.
Clearly, the direct approach is extremely inefficient.

B. Transforming Into the Spacing Rule Domain

The difficulty associated with direct optimization can be al-
leviated by transforming the descriptions into the domain of
spacing rules.9

Definition 3 (Spacing Rule): A spacing rule
of a nonpreferential flow diagram with

-states and -states is an element of
the set10

(13)

The spacing rule characterizes the structure of a nonpref-
erential flow diagram. In particular, the flow diagram has an

-state, which is followed by -states, which are fol-
lowed by another -state, which is followed by -states,
and so on. The sum must equal the number

of -states. Fig. 5 is the flow diagram with the spacing
rule .

9Our approach follows the general philosophy of solving difficult problems
in the transform domain [62], [63].

10The symbol denotes the set of nonnegative integers, f0; 1; 2; 3; . . .g.

Given the description , one can find the spacing rule via
the mapping , such that

(14)

where , for the unique integers

that satisfy . See Fig. 3
for illustration.

Fig. 6 shows the flow diagrams of the CSS when the
first in-phase cells are and .
The spacing rule corresponding to the description
is , while the spacing rule cor-
responding to the description is

. The set of spacing rules associated
with the CSS is given by

(15)

where

(16)

denotes an -dimensional vector with only one nonzero el-
ement at the th component, . Note that ,
and each element of describes the flow diagram with consec-
utive -states and consecutive -states.

Let be the absorption time for the flow diagram corre-
sponding to a spacing rule . Since both description
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Fig. 6. Flow diagrams for the conventional serial search correspond to the different locations of the first in-phase cell. (a) = 1. (b) = N �N + 1.

and spacing rule characterize the structure of the flow
diagram, which determines the absorption time, we have

(17)

Therefore, (12) is equivalent to

(18)

Note that and are integer pro-
gramming problems [64], [65].

C. Closed-Form Expression of

The goal of this subsection is to derive the explicit absorption
time expression for . Finding the absorption time
reduces to simply solving a system of linear equations because
the flow diagram has one absorbing state. The closed-form ex-
pression of is given explicitly by the following theorem.

Theorem 1 (Absorption Time): The absorption time of the
flow diagram with the spacing rule is given by

(19a)

(19b)

where

(20)

(21)

(22)

(23)

with and .
Proof: Let denote the conditional absorption time, con-

ditioned on the start location of the search at the -state
. The states are labeled according to the convention in

Fig. 5. Define and . We have
the relationship

...

Solving the above system of equations yields

for and where .
For , , let denote the conditional

absorption time, conditioned on the start location of the search
at the -state . Then

with .



SUWANSANTISUK AND WIN: MULTIPATH AIDED RAPID ACQUISITION 181

Once we have the expressions for and , the expression
of the absorption time is available:

The simplification in uses the constraint

The proof is completed.

In the subsequent analysis, we will allow in (19) to take
noninteger values. In particular, let

(24)
denote the convex hull of and consider the function

to be the natural extension of . That is, we evaluate
by simply allowing in (19) to take the values .

Because , the MAT for any search order satisfies the
following bounds:

(25)

Also, it can be shown that the set of extreme points of is given
by , defined in (15) (see Lemma 1 in Appendix I).

Before delving into the derivations of the bounds in (25) ex-
plicitly, we first examine the properties of . In the next sub-
section, we use the explicit expression of the absorption time in
Theorem 1 to prove important properties of .

D. Properties of

In this subsection, we prove three important properties of
for . These properties are crucial for the develop-

ment of the forthcoming sections. The three properties are the
results of the theorem below.

Theorem 2 (Convexity, Rotational Invariance, and Reversal
Invariance): Assume that , so that is finite.

1) Function is strictly convex on .
2)

3)

Proof:
1) Let any elements and be given. For any

, we want to show that

Because and is a positive definite matrix
(see Appendix II), we conclude that

We expand the appropriate terms in the above inequality
and have the following results:

Therefore, is strictly convex on .
2) Let be given. Then

The equality follows from and
.
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Fig. 7. The three flow diagrams have the same absorption time, but they have different spacing rules. (a) A flow diagram with the spacing rule
(m ;m ; . . . ;m ). (b) A rotated flow diagram with the spacing rule (m ;m ; . . . ;m ;m ). (c) A reversed flow diagram with the spacing rule
(m ;m ; . . . ;m ). To simplify the drawing, we show the case when N = 5, N = 3, and (m ;m ;m ) = (1; 1; 0).

3) Let be given. Then

The equality follows from

That completes the proof.

We provide an interpretation of the second and third proper-
ties associated with nonpreferential flow diagrams. The second
property states that the absorption time is invariant when every
state in the flow diagram is rotated to the left. Applying the
second property to the flow diagram several times, we can show
that the absorption time is also invariant when the flow diagram
is rotated to the right. Thus, the absorption time is rotationally
invariant. The third property states that the absorption time is in-
variant when the flow diagram is viewed in a reverse direction.
See Fig. 7 for an illustration.

The rotational and reversal invariance implies that the search
orders and give the same MAT for the following
reason. The search order tests cells in the reverse order of
the search order . Thus, if

for some is the spacing rule associated with the descrip-
tion then

otherwise

is the spacing rule associated with the description
. The spacing rules

, and
result in the same absorption time by the rotational

and reversal invariance. Hence the MATs associated with the
search orders and are equal

(26)

Remark 2: Although is convex on , it is not
Schur convex. Consider a simple counterexample, in which

, , , , and
. Then, , , and

. Because is not permutational
invariant, it is not Schur convex. Therefore, optimizing
is not a straightforward task. In the next section, we will use
the explicit expression and its properties to minimize the
absorption time and bound the minimum MAT.

IV. THE MINIMUM MAT

In this section, we find the upper and lower bounds for the
minimum MAT

We will show that for certain values of , there exists a search
order that achieves the lower bound. Furthermore, we will ob-
tain a “near-optimal” search order that results in the MAT rea-
sonably close to the minimum one. The lower bound of is
given in the following theorem.

Theorem 3 (Minimum MAT): The optimal mean acquisition
time satisfies

(27)
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where is defined to be

(28)
Moreover, the equality in (27) is achieved if and only if
or .

Proof: is lower-bounded by

(29)

The equality follows from part two of Lemma 3 in Ap-
pendix III, which shows that

(30)

Therefore, we have the bound .
Now, we show that the equality in (27) is achieved if and only

if or .
Assume that there is only one in-phase cell ( ).

Then, for any description , the spacing rule satis-
fies and the absorption time

is a constant for all .11 The optimal MAT
satisfies

Next, assume that all cells are in-phase cells ( ).
Then, for any description , the spacing rule satisfies

and the absorption time
is again a constant for all . Using similar

steps to the case for shows that the optimal MAT
satisfies . Therefore, if or ,
the equality in (27) is achieved.

11When N = 1, the spacing rule contains only one element.

We will give a contrapositive proof to show that the equality
in (27) implies or . Assume that
and . Lemma 4 in Appendix IV implies that for the
optimal search order

there exists such that

(31)

Part one of Lemma 3 in Appendix III shows that the right-
hand side of (31) is the unique minimizer of . As a result,
the absorption time satisfies the following strict in-
equality:

(32)

Then, the minimum MAT is strictly greater than its lower bound

(33)

The inequality follows from (32). Therefore, the equality in
(27) is not achieved. This completes the proof.

Next, we introduce the concept of the -optimal search order
and -optimal spacing rule. We then show that if and
are relatively prime, the MAT achieved by
the search order is -optimal.

Definition 4 ( -Optimal Search Order): Let be
a function only of and . A search order is -optimal
if

(34)

and as the ratio .

Note that if is an -optimal search order, then

where is an optimal search order that minimizes the MAT
and as the ratio . There-
fore, an -optimal search order can achieve a MAT arbitrarily
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Fig. 8. The search order � is �-optimal, because the spacing rules sss(� ; 1); sss(� ; 2); . . . ; sss(� ;N ) are members of an �-optimal subset S � S .

close to that of the optimal search order as the ratio
approaches zero.

Recall that signal acquisition is a challenging task when the
total number of in-phase cells is significantly smaller than the
total number of cells. In this situation, which is typical for UWB
systems, the acquisition time can be intolerably long and there
are many scenarios and applications that necessitate the use of
faster acquisition techniques. Note that is small and
approaches zero as the demand for faster acquisition is intensi-
fied. Our goal is to find -optimal solutions, because they are
almost as good as the optimal in a situation where rapid acqui-
sition is of upmost importance.

Definition 5 ( -Optimal Subset of Spacing Rules): Let
be a function only of and . A subset

is -optimal, if for every

(35)

and as the ratio .

The relationship between the -optimal search order and the
-optimal spacing rules (see Fig. 8) is established by the -Isom-

etry Property (Lemma 5 in Appendix V).
In particular, the lemma states that if the search order sat-

isfies

for some -optimal subset , then is -optimal. In the
next theorem, we use this relationship to prove that the search
order is -optimal with .

Theorem 4 (Near-Optimality): If and are relatively
prime, then the search order is -optimal with

Furthermore, we have the inequalities

(36)

in which denotes an optimal search order that minimizes the
MAT.

Proof: Let

and (37)

be a subset of . Lemma 6 in Appendix VI shows that is
-optimal with . Lemma 7 in Appendix VII

shows that

for all

Therefore, by Lemma 5, the search order is -optimal with
.

The first inequality in (36) follows from a lower bound of the
minimum MAT in (27). The second inequality follows from the
definition of an optimal search order . The third inequality
follows from the definition of -optimality. That completes the
proof.

In the next section, we derive the search orders that result in
the maximum MAT.

V. THE MAXIMUM MAT

In this section, we show that the CSS and the FSSS with the
step size both yield the maximum MAT, and thus
should be avoided for signal acquisition in multipath environ-
ments.

Theorem 5 (Maximum MAT):
1) The expression for the maximum MAT is given by

(38)
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If the receiver uses the CSS or the FSSS , it will
result in the maximum MAT.

2) If the number of in-phase cells satisfies
and the receiver’s MAT is equal to in (38),

then the receiver must have used the CSS or the FSSS
.

Proof:
1) The search orders and correspond to the

-tuples and
, respectively. For any , careful thought

will reveal that the spacing rules and
satisfy

(39)

(40)

where is defined in (15). As a result

The equality follows from (39) and part one of Lemma
8 of Appendix VIII, which shows that elements of are so-
lutions of . The equality follows from
part two of Lemma 8, which gives the explicit closed-form
expression for the maximum absorption time. Similar steps
also reveal that . Therefore,
the search orders and maximize the MAT.

2) Let satisfy . Let be a
search order that maximizes the MAT. The Strong Clus-
tering Property (Lemma 10 of Appendix IX) implies that

for some . Note that
by the definition of a search order.

If , then . On
the other hand, if , then

. Therefore, or . We
consider these two cases separately.
• .

The Strong Clustering Property (Lemma 10) implies that
for some . If

, then , and we have a
contradiction: . Therefore,

and . A similar argument
shows that

Therefore, is the CSS: .
• .

The Strong Clustering Property (Lemma 10) implies that
for some . If

, then ,
and we have a contradiction: . Therefore,

and .
A similar argument shows that

Therefore, is the FSSS with the step size :
.

These two cases imply that is or . That com-
pletes the proof.

Remark 3: Before we end this section, we note that the range
in Theorem 5 cannot be expanded. In

particular, for , the search order
that maximizes the MAT is not necessarily the search order
or . This is trivial when or

because every search order results in the same MAT. For
, we provide a simple counterexample, in which

, , and corresponds to the -tuple .
As shown in Fig. 9, the corresponding flow diagram for each

gives

and

Note that Lemma 8 implies that these spacing rules result in the
maximum absorption time, and thus

As a result, yields the maximum MAT. Evidently, this search
order is not the search order or .

In typical scenarios, is in the range .
In these scenarios, the receiver exhibits the maximum MAT if
and only if it uses the CSS or the FSSS with the step size

. Therefore, the receiver can immediately improve the MAT
by choosing another search order, other than the worst search
orders and .

VI. CONCLUSION

This paper provides a methodology for exploiting multipath,
typically considered deleterious for efficient communications,
to aid the sequence acquisition. We consider a class of serial
search strategies and model each search procedure by a non-
preferential flow diagram, containing total cells and
in-phase cells.

We first demonstrate the difficulty associated with direct op-
timization of the MAT over a set of descriptions. This difficulty
is alleviated by transforming the descriptions into the spacing
rules and deriving the expression of the MAT as an explicit func-
tion of the spacing rule. In this new framework, finding the fun-
damental limits of the achievable MATs is equivalent to solving
convex optimization problems. Solutions to those optimization
problems give insights into the minimum and maximum MATs.

We derive a lower bound and an upper bound on the minimum
MAT. The lower bound is achieved with equality if and only if
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Fig. 9. When N = 3 and N = 4, the search order [1; 3; 4; 2] maximizes the MAT because the H -states in H (b) are clustering for every location
= b of the first in-phase cell. (a) = 1 and H (1) = f1;2; 3g. (b) = 2 and H (2) = f2;3; 4g. (c) = 3 and H (3) = f3;4; 1g. (d) = 4 and

H (4) = f4;1; 2g.

there is one in-phase cell ( ) or there are in-phase
cells ( ). We introduce the notion of -optimality
and prove that the fixed-step serial search (FSSS) with the step
size is -optimal. As a consequence, the FSSS with the
step size can be effectively used to achieve the near-op-
timal MAT in wide-bandwidth transmission systems operating
in dense multipath channels.

We also investigate the search orders that result in the max-
imum MAT. It turns out that the conventional serial search
(CSS) and the FSSS with step size exhibit the max-
imum MAT. For a typical scenario with ,
we further show that only those two search orders result in
the maximum MAT. Therefore, the receiver can immediately
improve the MAT by avoiding the CSS or the FSSS with the
step size . Our results are valid for all SNR values,
detection layer decision rules, and fading distributions.

We note that the -optimal search order requires knowl-
edge of the multipath dispersion interval. When the exact disper-
sion interval is unknown or changing, a receiver may employ the
FSSS with the step size as a conservative choice, where

denotes a lower bound on . In addition, we note that
the proofs of the lower bound (Theorem 3) and the upper bound
((38), Theorem 5) on the MATs do not require propagation paths
to arrive in a single cluster. Hence, these bounds are valid for an
environment in which multiple clusters of propagation paths are
observed at the receiver. We have deliberately focused our at-
tention in this paper on search-layer issues and have abstracted

details of the decision layer into a few parameters , , ,
, and . Future extensions of this work include a study of

the implication of various fading statistics as well as a study of
detection-layer strategies such as a MAX/TC criterion, the op-
timal decision rules, and multipath combining methods, in con-
junction with the optimal and near-optimal search strategies.

APPENDIX I
EXTREME POINTS

This appendix shows an important relationship between the
set of spacing rules associated with the CSS and the convex
hull of the spacing rules. Sets and are defined in (15)
and (24), respectively.

Lemma 1 (Extreme Points): Set is the set of extreme
points of .

Proof: Let any index be given. There are
linearly independent constraints of (listed below) that

are active at

one constraint (41)

for and

constraints (42)

Thus, is an extreme point, and , where denotes
the set of extreme points of .
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Conversely, let any extreme point be given. Then,
linearly independent constraints of are active at . By

definition of , the active constraints must be the following:

one constraint (43)

for and

constraints (44)

for some . Thus, , and .
Therefore, . That completes the proof.

APPENDIX II
POSITIVE DEFINITENESS OF THE HESSIAN MATRIX

The goal of this appendix is to show that an matrix

is positive definite, where and . The result in
this appendix is used in Theorem 2 to prove the strict convexity
of function .

When , the absorption time in Theorem 1 becomes
infinite, and the receiver will never find an in-phase cell. When

, the matrix is clearly positive definite since

where is the identity matrix. Therefore, we will consider the
case when .

We rewrite as

where

(45)

Note that the coefficient of is positive. Therefore, it is suf-
ficient to show that is positive definite.

Lemma 2 (Positive-Definite Matrix): For any ,
matrix defined in (45) is positive definite.

Proof: From the definition of matrix , it is easy to verify
that is circulant, symmetric, and Toeplitz for .
Therefore, the Fourier matrix

(46)

with diagonalizes [66, p. 268], implying
that the columns of are the eigenvectors of .

Note that the first element of every eigenvector is one. There-
fore, the th eigenvector is equal to the inner product of the first
row of and the th column of :

(47)

Substituting and in (47) and simplifying terms, we
have

(48)

The equality follows from the geometric sum formula and
the fact that . The equality follows from the fact
that the denominator contains the product of a complex conju-
gate pair.

It is clear from (48) that for

Since every eigenvalue of is positive, the matrix is positive
definite [67, Theorem 7.2.1, p. 402]. That completes the proof.

APPENDIX III
SOLUTION TO THE MINIMIZATION PROBLEM

The proof of Theorem 3 requires the fact that solution
to the relaxation problem has equal components. The precise
statement of this fact is given in the following lemma.

Lemma 3 (Optimal Solution to Relaxation Problem):
1) The unique solution to the optimization problem

is

(49)

2) The optimal cost satisfies

(50)

(51)
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3) If is an integer, is also the unique solution
to the integer programming problem .
Proof:

1) By Weierstrass’ theorem [67, p. 541], there exists
such that , for all . By strict convexity
of , is the unique optimal solution to the relaxation
problem. Furthermore, by rotational invariance (property 2
of Theorem 2), any satisfies

...

Applying the above property to the unique solution , we
have . Since the sum of its
components is , the optimal solution satisfies

2) Equation (50) follows immediately from part one of this
lemma. Equation (51) follows from the explicit expression
of in Theorem 1.

3) Since , we have the relationship

If is an integer, then , and the above
inequality is satisfied with equality. Therefore, is also
the unique solution to the integer programming problem.

That completes the proof.

APPENDIX IV
ANTI-SYMMETRIC PROPERTY

The proof of Theorem 3 requires the fact that the receiver
cannot always distribute evenly the non-in-phase cells in the
search sequence. Thus, the MAT is not always possible
to achieve.

Lemma 4 (Anti-Symmetric Property): If
, then for every , there is such that

(52)

Proof: We will show that

or

Assume to the contrary that

(53)

Fig. 10. The set of in-phase cells is H (1) = f1; 2; . . . ; N g, and there
are ( � 1)H -states between two neighboring in-phase cells.

and

(54)

Equation (53) implies that elements of

(55)

are equally spaced in the flow diagram (see Fig. 10). Similarly,
(54) implies that elements of

(56)

are equally spaced in the flow diagram. Because , we
have . Then, (53) implies that the
elements of are as follows:

Similarly, (54) implies that the elements of are as
follows:

Therefore, .
Comparing elements of the two sets in (55) and (56), we have

(57)

Equation (57) implies that is divisible by , or equiv-
alently, . This is a contradiction since

by the hypothesis of the lemma. That com-
pletes the proof.
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APPENDIX V
RELATIONSHIP BETWEEN -OPTIMAL SEARCH ORDERS AND

-OPTIMAL SPACING RULES

This appendix investigates an approach for proving that a
given search order is -optimal. The result in this appendix is
used to justify the proof statement of Theorem 4.

Lemma 5 ( -Isometry Property): If the search order sat-
isfies

for all

for some -optimal subset , then is -optimal.
Proof: Let be a search order that satisfies

for all

which implies that

(58)

and as . Then

where follows from (58). Therefore, the search order is
-optimal. That completes the proof.

APPENDIX VI
-OPTIMAL SPACING RULES

A spacing rule has components that are “almost equal
to one another,” where is defined in (37). In this appendix, we
show that is -optimal. The result in this appendix is used to
prove Theorem 4.

Lemma 6 ( -Optimal Spacing Rules): For every ,

Thus, is -optimal with .
Proof: Let

denote the solution of the relaxation problem in (49). That is,
. For any spacing rule , we have

(59)

The last equality follows from (19a). For a spacing rule ,
(37) and (59) imply that

(60)

The inequality follows from the explicit expression for
in (28). We note that

as . Thus, the set is -optimal with

. That completes the proof.

APPENDIX VII
THE SEARCH ORDER AND THE CORRESPONDING

SPACING RULES

The result in this appendix is used to prove Theorem 4. The
goal here is to show that for every , the description

maps to the spacing rule , where is
defined in (37).

Lemma 7 (Spacing Rules of ): If and are
relatively prime, then

for all (61)
Proof: Let any be given, and let be any

in-phase cell. A receiver that employs the search order
tests the cells in the order

(62)

where in (62) denote the smallest integer such that
is an in-phase cell.12 Thus, in the flow dia-

gram corresponding to , the number of non-in-phase cells
between two neighboring in-phase cells and
is equal to . Since is arbitrary, it is sufficient to prove the
lemma by showing that .

Consider the periodic sequence (with the period ) of
consecutive cells in the uncertainty index set as shown in
Fig. 11(a), where

(63)

12Note that j is written explicitly with the subscript a to indicate its depen-
dence on the specific in-phase cell a.
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Fig. 11. SequencesS andS are sequences of cells in the uncertainty index sets. (a) The set of non-in-phase cells is partitioned intom subsets:B ;B ; . . . ; B .
(b) The number (j or j ) of non-in-phase cells between two neighboring in-phase cells cannot exceed the number m of subsets: j � m and j � m.

and

(64)

The sequences and correspond to the sequence of
in-phase cells and the sequence of non-in-phase cells, re-
spectively. We partition into nonempty subsets

, with

and

(65)

Because there are non-in-phase cells, the number
of subsets is

(66)

(67)

The last equality follows from the fact that and are
relatively prime.

There are two possible cases for the cell . In the first
case, the cell is an in-phase cell. Then, and the
inequality is immediately satisfied. In the
second case, the cell is a non-in-phase cell. It is not
hard to verify that

(68)

where is either or (see Fig. 11(b)). In other words,
when the receiver advances its cell by steps, it “moves”
from the current subset , for some , to the adjacent subset

or to the set . Equation (68) and the fact that
imply that . Substituting the expression

for in (67), we have the inequality . That
completes the proof.

APPENDIX VIII
SOLUTION TO THE MAXIMIZATION PROBLEM

The proof of Theorem 5 requires the fact that consecutive
non-in-phase cells in the flow diagram results in the maximum
absorption time. The precise statement of this fact is given in
the next lemma.

Lemma 8 (Maximum Absorption Time):
1) The complete solutions to the integer programming

problem are elements of , where is
defined in (15).

2) The maximum absorption time is equal to

(69)

Proof:
1) Let any spacing rule be

given. Note that is a set of extreme points of the bounded
polyhedron (see Lemma 1 in Appendix I). By the Reso-
lution Theorem [64, p. 179], the spacing rule
can be written as a convex combination of the extreme
points of

where , , and is defined in (16).
Then

The inequality follows from strict convexity of .
The equality follows from rotational invariance of
(the second property of Theorem 2):

. Notice that any spacing rule satisfies
. Thus, for any

(70)

Therefore, contains all solutions to the maximization
problem.
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2) This part of the lemma follows immediately from part one
and the explicit expression of in Theorem 1.

That completes the proof.

APPENDIX IX
PROPERTIES OF SEARCH ORDERS THAT ACHIEVE THE

MAXIMUM MAT

In this appendix, we prove two important properties of a
search order that exhibits the maximum MAT. These prop-
erties are used in Theorem 5 to find search orders that result in
the maximum MAT.

Definition 6 ( -Cluster): A set of cells is called a -cluster
if its elements are adjacent to each other in the flow diagram
corresponding to .

Lemma 9 (Weak Clustering Property): Let any and
be given. Let denote any search order that maximizes

the MAT. Then, for every , there exists some such
that

Proof: Let , , and that satisfy the lemma state-
ment be given. Let be given. Then

(71)

The last equality follows from part two of Lemma 8 and (38).
Therefore, the inequality is satisfied with equality

In other words, the average of absorption times is equal
to the maximum absorption time. Thus, every absorption time
must equal the maximum one, and, in particular

(72)

By part one of Lemma 8, (72) implies that .
Recall that every spacing rule in corresponds to a flow diagram
with consecutive in-phase cells. Therefore, there exits
such that

That completes the proof.

Lemma 10 (Strong Clustering Property): Let and
satisfy . Let denote any search

order that maximizes the MAT. Then, for every cluster size

satisfying and for every , there
exists some such that

Proof: Let , , , , and satisfy statement in
the lemma. We will show that

(73)

by induction on .
• Base case ( ).

The condition (73) is satisfied by Weak Clustering Property
(Lemma 9).

• Inductive step.
Let any be given. Assume that the condition (73)
is satisfied for some . The inductive
hypothesis implies that there exists such that

(74)

It is sufficient to show the condition (73) for by
proving that or

.
Assume to the contrary that and

. Then, there exists
such that .

Removing from both sides of (74) yields

(75)

Since , the sets and are nonempty.
Inserting to both sides of (75) yields

(76)

Note that the left-hand side of (76) is a set of consec-
utive numbers (in -arithmetic sense). Therefore, the
inductive hypothesis implies that there exists

(77)

Equating right-hand sides of (76) and (77) gives

(78)
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Fig. 12. Set C is a � -cluster. Therefore, the cell b� (N � 1) must follow cells in B and precede cells in A.

By the hypothesis of the lemma and by the range of ,
we have and , which imply that

. Substituting
, we have (see Fig. 12)

Note that the sets in both sides of (78) are -clusters.
Thus, cell must follow those cells in and precede
those cells in in the search sequence

follow

precede (79)

Bijectivity of , together with (79), gives
, which implies that is divisible by .

Thus, . This is a contradiction, because
the hypotheses for the ranges of in the inductive step
and in the lemma imply that

. That completes the proof.
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