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Abstract—This paper investigates important properties of acqui-
sition receivers that employ commonly used serial-search strate-
gies. In particular, we focus on the properties of the mean acqui-
sition time (MAT) for wide bandwidth signals in dense multipath
channels. We show that a lower bound of the MAT over all pos-
sible search strategies is the solution to an integer programming
problem with a convex objective function. We also give an upper
bound expression for the MAT over all possible search strategies.
We demonstrate that the MAT of the fixed-step serial search (FSSS)
does not depend on the timing delay of the first resolvable path,
thereby simplifying the evaluation of the MAT of the FSSS. The
results in this paper can be applied to design and analysis of fast
acquisition systems in various wideband scenarios.

Index Terms—Acquisition, dense multipath channels, non-
consecutive serial search, spread-spectrum.

I. INTRODUCTION

W IDE BANDWIDTH transmission systems have
emerged as a ubiquitous wireless technology due to

their advantages over traditional narrowband systems, and have
received considerable attention from the military, commercial,
and scientific sectors [1]–[4]. Wide bandwidth transmission sys-
tems provide low probability of detection and interception, and
allow secure communication in wireless networks. They operate
well in extremely challenging environments such as confined,
dense urban, and dense multipath areas, where ordinary com-
munication systems may fail to provide reliable transmission.
Due primarily to their fine delay resolution properties, wide
bandwidth signals are robust against fading and are able to pro-
vide accurate positioning. Wide bandwidth systems also allow
multiple access communication.

One of the most common forms of wide bandwidth signal-
ing employs spread-spectrum techniques. A spread-spectrum
receiver must perform a sequence synchronization, which is re-
quired before initiating any communication between the end

Manuscript received March 9, 2005; revised June 24, 2005. This research
was supported, in part, by the Office of Naval Research Young Investigator
Award N00014-03-1-0489, the National Science Foundation under Grant ANI-
0335256, and the Charles Stark Draper Endowment. This paper was presented,
in part, at the Conference on Information Sciences and Systems, Baltimore, MD,
March 2005, and at the Third SPIE International Symposium on Fluctuations
and Noise in Communications, Austin, TX, May 2005. The review of this paper
was coordinated by Prof. R. Qiu.

W. Suwansantisuk and M. Z. Win are with the Laboratory for Information and
Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge,
MA 02139 USA (e-mail: wsk@mit.edu; moewin@mit.edu).

L. A. Shepp is with the Department of Statistics, Rutgers University,
Piscataway, NJ 08854 USA (e-mail: shepp@stat.rutgers.edu).

Digital Object Identifier 10.1109/TVT.2005.856196

points. The synchronization process occurs in two stages: the
acquisition stage and the tracking stage [5]–[8]. Synchronization
time greatly depends on how the receiver performs the acquisi-
tion stage, and the acquisition requirement may even limit the
capacity of a wireless network [9]. Thus, this paper focuses on
the issues related to acquisition.

During the acquisition stage, a receiver performs several
tasks. It coarsely aligns the locally generated reference (LGR)
sequence with the received signal sequence by testing whether
the LGR phase is within the required accuracy of the received
signal sequence phase. If not, the receiver will set the new LGR
phase according to some prescribed strategy. If the LGR phase is
within the required accuracy, the receiver will enter the tracking
stage, finely align the two sequences, and maintain the synchro-
nization throughout the communication. In general, the goal of
the acquisition system is to minimize the mean acquisition time
(MAT); i.e., the average time to achieve the acquisition.

Important parameters associated with the acquisition stage
are the total number Nunc of phases (cells) to be tested and the
number Nhit of correct phases (in-phase cells). The expression
for Nunc is given by

Nunc = Tunc/Tres (1)

where Tunc is the range of the phase delay’s uncertainty and
Tres is the accuracy with which the receiver needs to resolve the
phase delay. Without loss of generality, cells are indexed from
1 to Nunc, and the uncertainty index set

U �
={1, 2, 3, . . . , Nunc} (2)

denotes a collection of cells to test. Among these Nunc cells,
Nhit cells correspond to the in-phase cells. The quantity Nunc

is proportional to the number of resolvable paths and is given
by

Nhit = Tspread/Tres (3)

where Tspread denotes spread of the multipath dispersion. The
set Hhit ⊂ U of in-phase cells depends on the timing delays of
the resolvable paths, associated with the operating environment.

The set of in-phase cells for a dense multipath channel can be
characterized as follows. In such a channel, propagation paths
tend to arrive in a cluster [3], [10]–[12]. As a result, if a random
variable B ∈ U denotes the cell that corresponds to the delay of
the first propagation path, the set of in-phase cells conditioned
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on B = b is given by1

Hhit(b)
�
={b, b ⊕ 1, . . . , b ⊕ (Nhit − 1)}. (4)

Here, the symbol ⊕ denotes the modulo Nunc addition defined
by x ⊕ y

�
=x + y − lNunc for a unique integer l such that x +

y − lNunc ∈ U .2

For wide bandwidth transmission systems, achieving acqui-
sition in a reasonable amount of time can be a challenging task.
In particular, the number Nunc of cells that the receiver needs to
test can be very large since the quantity 1/Tres in (1) is propor-
tional to the transmission bandwidth. This challenge demands a
strategy for improving the MAT.

One important approach to improving the MAT is to use
an intelligent search order to test cells. A search order can be
described by a permutation function π on a set U . The set of all
possible search orders is given by

P = {π |π : U → U is a permutation function and π(1) = 1}
(5)

where the condition π(1) = 1 simply removes some redundant
permutations from P .

The requirement for a search order to be a permutation func-
tion, or equivalently a bijection, is important. If the range of a
mapping π were not equal to U , the receiver could omit some in-
phase cells from the search.3 To avoid that scenario, we require
a search order to be a bijection.

Search orders that have been used in the literature include the
conventional serial search (CSS) [13], [14], the fixed-step serial
search (FSSS) [15], [16], and the bit-reversal search [16], [17].
In general, search orders affect the MAT, and the notation
E{TACQ(π)} denotes the MAT as a function of a search or-
der π.4 For a given π, the MAT can be evaluated by using flow
diagrams [15], [16], [18]–[20], each corresponding to a different
possible position B = b of the first resolvable path. The tuple
(π, b) ∈ P × U characterizes the structure of the flow diagram,
and we refer to this tuple as a description. Note that the flow
diagram has one absorption state representing the event of suc-
cessful acquisition. The average time to arrive at the absorption
state is known as the absorption time. This quantity is important
and closely related to the MAT.

Although the expression for the MAT, E{TACQ(π)}, can be
evaluated for a given π [15], [16], [18]–[20], important proper-
ties of the MAT cannot be derived easily. For example, bounds
on the minimum MAT, minπ∈P E{TACQ(π)}, are difficult to
obtain from the direct optimization over the set of search or-
ders P . The difficulty arises from the fact that the conventional
expression of the MAT does not reveal its dependence on the
search order π explicitly. To alleviate this difficulty, we propose

1To emphasize the dependence of Hhit on B = b, we will explicitly write

Hhit(b) as a function of b.
2When x and y belongs to U , an integer l is clearly equal to either zero or

one.
3If all in-phase cells were omitted altogether from the search, the receiver

would never acquire the signal.
4The acquisition time is a random variable, and the randomness arises from

noise, fading, and, possibly, a randomized decision rule at the detection layer.

to transform the set of descriptions into the set of spacing rules.5

It will be apparent that this transformation reveals important
properties of the absorption time and enables the investigation
of the implications of the absorption time’s properties on the
MAT. The contributions of this paper are as follows:

• A transformation of a set of descriptions into a set of
spacing rules;

• a proof that the absorption time expression in the transform
domain is of a quadratic form with a non-negative definite
Hessian matrix;

• a proof that the MAT is lower bounded by the solution of
an optimization problem, which can be solved algorithmi-
cally using well-known methods in convex optimization;

• an explicit upper bound expression for the MAT; and
• a simplification of the MAT expression when the FSSS is

employed.
The results here are valid for a broad class of fading conditions,
receiver implementations, and operating environments.

This paper is organized as follows. Section II outlines the sys-
tem model. Section III derives the absorption time expression in
a transform domain. Important properties of the absorption time
and of the MAT are proved in Sections IV and V, respectively.
Section VI concludes the paper and summarizes important find-
ings.

II. SYSTEM MODEL

We consider a receiver that employs a widely used serial-
search strategy [13]–[16], [18]–[20], [22], [23]. The sequence
of phases or cells that the receiver tests during the acquisition
stage is given by

π(k), π(k + 1), . . . , π(Nunc),

π(1), π(2), . . . , π(Nunc), π(1), π(2), . . . (6)

where π(k) is the first cell that the receiver examines. The
subsequence {π(i)}i=1...Nunc in (6) is repeated to illustrate the
fact that, due to noise and fading, the receiver may take several
rounds to test the cells before it finds a correct cell.

Search orders that have been used in the literature are shown
in Fig. 1. Note from the figure that a search order controls
the arrangement of nonabsorbing states in a flow diagram. The
CSS [13], [14], where the consecutive cells are tested serially,
corresponds to the search order

π1(i) = i, 1 ≤ i ≤ Nunc. (7)

The FSSS [15], [16], which skips NJ ≥ 1 cells after each test,
corresponds to the search order

πNJ(i) = 1 ⊕ (i − 1)NJ, 1 ≤ i ≤ Nunc. (8)

Note that NJ and Nunc are required to be relatively prime, so
that πNJ( · ) in (8) is a permutation function and, consequently, a

5Our approach follows the general philosophy of solving difficult problems
in the transform domains [21].
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Fig. 1. A receiver tests the cells according to the search order: (a) a generic
search order π; (b) the search order π1 of the CSS; (c) the search order π2 of
the FSSS with the step size NJ = 2; (d) the search order πR of the bit-reversal
serial search.

member of P . Clearly, the CSS π1 is a special case of the FSSS
πNJ with the step size NJ = 1. The bit-reversal serial search
[16], [17], where the receiver tests the cells in a random-like
order, corresponds to the search order πR, defined as follows.6

For 1 ≤ i �= j ≤ Nunc

πR(i) < πR(j) ⇔ rev(i) < rev(j) (9)

where rev(i) is the reversal of the 
log2 Nunc� binary digit
representation of the integer i − 1. Equation (9) specifies the
unique order of Nunc cells in the uncertainty index set: assigning
the cost rev(i) to cell i and arranging the cells in ascending order
according to their costs.

A flow diagram represents the details of the acquisition stage,
such as the set Hhit( · ) of correct cells, the search order being
employed, and the durations and the probabilities associated
with the signal detection procedure. Fig. 2 depicts a flow diagram
with a generic search order π. The important details of the flow
diagram are as follows. The flow diagram contains Nunc + 1
states: one absorbing state, Nhit states of type H1, and Nunc −
Nhit states of type H0. The absorbing state, labeled ACQ in the
figure, represents the event of successful acquisition. Each H1-
type state corresponds to an in-phase cell, while each H0-type
state corresponds to a non-in-phase cell. Conditioned on B = b,
the set of H1 states in (4) can be written in terms of π as

{π(k1), π(k2), . . . , π(kNhit)} = Hhit(b) (10)

6 The definition of a bit-reversal search in this paper is a generalization of
the definition of a bit-reversal search in [16]. In [16], the authors consider cases
when Nunc is a power of 2. Here, we allow Nunc to be arbitrary.

Fig. 2. A generic flow diagram for the serial search with an arbitrary search
order π contains Nunc + 1 states. The state labeled ACQ is the absorbing state.
The states in thick circles are H1-states, corresponding to the in-phase cells.
The remaining states are H0-states, corresponding to the non-in-phase cells.

for some unique integers 1 ≤ k1 < k2 < · · · < kNhit ≤ Nunc.
In a flow diagram, those H1-states π(ki) have transition paths
to the absorbing state.

The probability that the receiver begins a test at any cell is
equal to 1/Nunc. This uniform probability indicates that the re-
ceiver has no a priori knowledge of the location of a correct cell.
The path gain parameters PD, PM

�
= 1 − PD, τD, τM, and τP are

effective probabilities and durations associated with the signal
detection procedure.7 For the purpose of MAT calculation, these
parameters can be derived from a generic path gain HD(z) from
an H1-state to ACQ, a generic path gain HM(z) from an H1-
state to the adjacent non-absorbing state, and a generic path gain
H0(z) from an H0-state to the adjacent non-absorbing state [23].
In turn, the details of the signal detection procedure determine
HD(z),HM(z), and H0(z) [18]–[20]. With all these features, a
flow diagram is a single-absorbing-state Markov chain, having
transition probabilities and transition times written in polyno-
mial forms.

The model under consideration is suitable when the power
dispersion profile (PDP) is slowly decaying or constant over an
interval. Indeed, constant PDPs have been used to study vari-
ous aspects of spread spectrum systems [24]–[29]. Propagation
measurements in urban and suburban environments [30]–[32]
and mountainous terrain [33] support such a PDP, since they
show that these channels spread the energy over a continuum of
arrival times. Thus, this paper employs a basic model to analyze
the performance of an acquisition system operating in dense
multipath environments.

7These parameters are transformations of quantities, such as probabilities of
detections, probabilities of false alarms, dwell times, and penalty times.
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Flow diagrams are used to find the absorption times and the
MAT. The MAT is given by

E{TACQ(π)} =
Nunc∑
b=1

E{TACQ(π) |B = b}︸ ︷︷ ︸
�
= f(π, b)

·Pr{B = b}

=
Nunc∑
b=1

f(π, b) · Pr{B = b} (11)

where f(π, b) denotes the absorption time of the flow diagram
with a search order π and the set Hhit(b) of in-phase cells. The
expression in (11) indicates that the MAT is a convex combina-
tion of the absorption times, where the weights are simply the
probabilities Pr{B = b}. A conventional approach for finding
the absorption time yields the absorption time expression

f(π, b)

=
1

Nunc

d

dz

×
(∑Nunc

k=1

∑Nunc−1
i=0 Hb

π (i⊕k)(z)
∏i−1

j=0 Hb
π (j⊕k)(z)

1 −
∏Nunc

i=1 Gb
i (z)

)∣∣∣∣∣
z=1

(12)

where the polynomials Hb
i (z) and Gb

i (z) depend on the path
gains and equal

Hb
i (z) =

{
PDzτD i ∈ Hhit(b)
0 otherwise,

and

Gb
i (z) =

{
PMzτM i ∈ Hhit(b)
zτP otherwise.

Equation (12) follows from a loop-reduction technique, which
has been used to find the MATs in [15], [16], [18]–[20].

Although (11) and (12) are suitable for finding the MAT for
a given search order, they are not suitable for deriving some
important properties of the MAT. Note that the expression (12)
does not reveal how the absorption time depends on π explic-
itly. Thus, it is unclear how one can derive or bound the min-
imum MAT, minπ∈P E{TACQ(π)}, and the maximum MAT,
maxπ∈P E{TACQ(π)}, using (11) and (12). To alleviate this
difficulty, we transform the set of descriptions into a set of spac-
ing rules, following the general philosophy of solving difficult
problems in the transform domains [21]. It will be apparent in
the following sections that the transformation provides us with
important properties of the MAT, E{TACQ(π)}.

A spacing rule is an element of the set,8 shown in (13) at
the bottom of the page. A flow diagram with a spacing rule

8The symbol N denotes a set {0, 1, 2, . . .} of natural numbers.

Fig. 3. Spacing rule m = [m1 m2 · · · mNhit ]
T characterizes the structure

of the flow diagram.

m
�
=[m1 m2 · · · mNhit ]

T has an H1-state, which is followed
by m1 H0-states, which are followed by another H1-state, which
is followed by m2 H0-states, and so on (see Fig. 3). Clearly,
the sum

∑Nhit
i=1 mi must equal the number Nunc − Nhit of H0-

states. Like a description (π, b), a spacing rule characterizes the
structure of a flow diagram and strongly affects the absorption
time.

A relationship between a description (π, b) and the spacing
rule exists. In particular, a flow diagram with a search order
π and the set Hhit(b) of in-phase cells has the spacing rule
[m1 m2 · · · mNhit ]

T , defined as follows:

mi
�
=

{
ki+1 − ki − 1 i = 1, 2, . . . , Nhit − 1
k1 + Nunc − kNhit − 1 i = Nhit

(14)

for the unique integers 1 ≤ k1 < k2 < · · · < kNhit ≤ Nunc sat-
isfying (10). A mapping from a description (π, b) to the corre-
sponding spacing rule is denoted by s : P × U → S.

Transforming a description (π, b) into a spacing rule provides
us with some important properties of the MAT. For example, we
will see in Section V that if v( · ) denotes the absorption time as
a function of a spacing rule, the MAT will be lower bounded and
upper bounded respectively by the integer programming prob-
lems minm∈S v(m) and maxm∈S v(m). There are well-known
techniques to solve such problems [34]–[36]. In Section III, we
derive the explicit expression of v( · ).

S =

{
[m1 m2 · · · mNhit ]

T

∣∣∣∣∣
Nhit∑
i=1

mi = Nunc − Nhit;∀i,mi ∈ N

}
. (13)
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III. ABSORPTION TIME EXPRESSION

The goal of this section is to derive the explicit absorption
time expression v(m) as a function of m ∈ S.

Theorem 1 (Absorption Time): The absorption time of the
flow diagram with the spacing rule m ∈ S is given by

v(m) =
1
2
mT Hm + c (15)

where, for 1 ≤ i, j ≤ Nhit,

Hij =
τP

Nunc

(
1 − PNhit

M

) [
P

Nhit−|i−j |
M + P

|i−j |
M

]
(16)

and

c =
(

1 − Nhit

Nunc

)
·
(

1 + PM

1 − PM

)
τP

2
+

PM

1 − PM
τM + τD

(17)

with 00 �
= 1.

The details of the proof can be found in [17], [23]. In essence,
the proof uses the fact that the flow diagram has one absorption
state, and thus finding the absorption time is reduced to solving
a system of linear equations.

Note that when PM = 1, i.e., the acquisition receiver misses
the correct cell with probability one, the absorption time is
unbounded. In the following sections, we will assume that PM ∈
[0, 1).

IV. ABSORPTION TIME PROPERTIES

The goal of Section IV is to prove properties of the absorption
time.

Theorem 2 (Convexity): The function v( · ) is convex on
R

Nhit .
Proof: Since the coefficient τP/(Nunc(1 − PNhit

M )) in (16)
is positive for PM ∈ [0, 1), it is sufficient to prove that the Nhit ×
Nhit matrix A, in which the ijth entries are given by

Aij
�
=

[
P

Nhit−|i−j |
M + P

|i−j |
M

]
,

is nonnegative definite. When PM = 0, the matrix A is an iden-

tity matrix since 00 �
= 1 (see Theorem 1), and thus A is nonneg-

ative definite. Therefore, we will consider only PM in the range
0 < PM < 1.

The matrix A can be generated from the kernel

K(s, t) = θe|s−t| + e−|s−t|, −T ≤ s, t ≤ T

where T
�
=−(Nhit/2 − 1/4) ln PM and θ

�
= PNhit

M . In particu-
lar, the ijth entries of A are given by Aij = K(ti , tj ), where

tk
�
=−

(
2k − Nhit − 1

2

)
ln PM, k = 1, 2, 3, . . . , Nhit.

Note that tk ∈ (−T, T ) is in a valid range. See Fig. 4 for an
illustration.

Fig. 4. Entries of matrix A are generated from the nonnegative definite kernel
K(s, t). We show the case when A is Nhit × Nhit = 6 × 6.

Fig. 5. For n ≥ 1, the pulse train xn (t) is constructed from the vector
[x1 x2 · · · xNhit ]

T .

Next, we show that A is nonnegative definite.9 Assume, to
the contrary, that there exists x = [x1 x2 · · · xNhit ]

T ∈ R
Nhit

such that xT Ax < 0. For an integer n ≥ 1, let

pn (t) =




n2t + n if t ∈
[
− 1

n , 0
]

−n2t + n if t ∈
(
0, 1

n

]
0 otherwise.

Define xn (t)
�
=

Nhit∑
i=1

xipn (t − ti) (see Fig. 5 for an illustration)

and consider a sequence {yn}, where

yn
�
=

∫ T

−T

∫ T

−T

xn (s)K(s, t)xn (t) ds dt.

Since limn→∞ yn = xT Ax, we can select m large enough so
that ym < 0.

It is easy to verify that T > 0 and−e−2T < θ < e−2T . There-
fore, by Lemma 1 in Appendix I, K(s, t) is nonnegative defi-
nite. Note that xm (t) ∈ L2, and, thus, ym ≥ 0. Hence, we have
a contradiction. That completes the proof. �

9Our proof will show the nonnegative definiteness of A from the nonnega-
tive definiteness of K(s, t). It is interesting to further investigate the positive
definiteness of our matrix A.
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The next theorem deals with rotational invariance and reversal
invariance. Let the rotation and the reversal of any x ∈ R

Nhit

be defined respectively as follows:

rot{[x1 x2 · · · xNhit ]
T } �

= [x2 x3 . . . xNhit x1]T

(18)

rev{[x1 x2 · · · xNhit ]
T } �

= [xNhit xNhit−1 . . . x1]T .

(19)

Notice that if m is a spacing rule, then rot{m} and rev{m} are
also spacing rules. The next theorem establishes the relationship
among the absorption times corresponding to the spacing rules
m, rot{m}, and rev{m}.

Theorem 3 (Rotational Invariance, Reversal Invariance): For
every m ∈ S,

v(m) = v(rot{m}) = v(rev{m}).

Proof: For 1 ≤ i, j ≤ Nhit, let hi,j denote the ijth entry
of matrix H and hi denote the ith column of H. Let any spacing
rule m be given.

To prove the rotational invariance property, we note that we
have the first equation at the bottom of the page. The equality
(a) follows from the fact that

xT y = rotT {x} rot{y}, for any x,y ∈ R
Nhit .

The equality (b) follows from the fact that 10 hi,j = hi�1,j�1

for any 1 ≤ i, j ≤ Nhit, which implies that rot{hi} = hi�1 for
any 1 ≤ i ≤ Nhit. Therefore, v(m) = v(rot{m}).

To prove the reversal invariance property, we note that we
have the second equation at the bottom of the page. The equality

10The symbol �denotes the modulo Nhit addition defined by a � b =� a +
b − lNhit for a unique integer l such that 1 ≤ a + b − lNhit ≤ Nhit. We write
a � b for a � (−b).

(a) follows from the fact that

xT y = revT {x} rev{y}, for any x,y ∈ R
Nhit .

The equality (b) follows from the fact that hi,j =
h(Nhit−i+1),(Nhit−j+1) for any 1 ≤ i, j ≤ Nhit, which implies
that hi = rev{hNhit−i+1} for any 1 ≤ i ≤ Nhit. Therefore,
v(m) = v(rev{m}). That completes the proof. �

V. MAT PROPERTIES

In Section V, we will use the absorption time’s properties to
derive important properties of the MAT.

Theorem 4 (Lower Bound): The MAT of any search order π
satisfies

min
m∈S

v(m) ≤ E{TACQ(π)}.

Proof: Using the expression for the MAT yields

E{TACQ(π)} =
Nunc∑
b=1

f(π, b) · Pr{B = b}

=
Nunc∑
b=1

v(s(π, b)) · Pr{B = b}

≥
Nunc∑
b=1

min
(π̃ ,b̃)∈P×U

v(s(π̃, b̃)) · Pr{B = b}

=
Nunc∑
b=1

min
m∈S

v(m) · Pr{B = b}

= min
m∈S

v(m).

That completes the proof. �
Note that the objective function v( · ) is convex on R

Nhit

by Theorem 2, and well known techniques for solving

mT Hm = mT


 | | | |

h2 h3 · · · hNhit h1

| | | |


 rot{m}

(a)
= rotT {m}


 | | | |

rot{h2} rot{h3} · · · rot{hNhit} rot{h1}
| | | |


 rot{m}

(b)
= rotT {m}Hrot{m}.

mT Hm = mT


 | | | |

hNhit hNhit−1 · · · h2 h1

| | | |


 rev{m}

(a)
= revT {m}


 | | | |

rev{hNhit} rev{hNhit−1} · · · rev{h2} rev{h1}
| | | |


 rev{m}

(b)
= revT {m}Hrev{m}.
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integer programming problems with convex objective functions
are available [34]–[36].

Theorem 5 (Upper Bound): The MAT of any search order π
satisfies

E{TACQ(π)} ≤ Tmax

where

Tmax
�
= v([Nunc − Nhit 0 0 . . . 0]T )

=
(Nunc − Nhit)2

Nunc
·
(

1 + PNhit
M

1 − PNhit
M

)
τP

2

+
(

1 − Nhit

Nunc

)
·
(

1 + PM

1 − PM

)
τP

2
+

PM

1 − PM
τM + τD.

Proof: For 1 ≤ i ≤ Nhit, let ei = [0 . . . 0 1 0 . . . 0]T

denote a standard basis vector in R
Nhit with one and only

one nonzero element at the ith component. Let E �
={(Nunc −

Nhit)ei , for all 1 ≤ i ≤ Nhit} denote a subset of S. Clearly, E
forms a basis for R

Nhit .
Any spacing rule m = [m1 m2 · · · mNhit ]

T ∈ S ⊂ R
Nhit

can be written as

m =
Nhit∑
i=1

λi · [(Nunc − Nhit)ei ] (20)

where

λi =
mi

Nunc − Nhit
i = 1, 2, . . . , Nhit. (21)

Note that λi ≥ 0, for i = 1, 2, . . . , Nhit and
∑Nhit

i=1 λi = 1.
Thus, m in (20) is written as a convex combination of the
spacing rules in E .

Recall that v( · ) is convex on R
Nhit (Theorem 2). Then, we

have

v(m) ≤
Nhit∑
i=1

λi · v((Nunc − Nhit)ei

(a)
=

Nhit∑
i=1

λi · v((Nunc − Nhit)e1)

= v((Nunc − Nhit)e1)

(b)
= Tmax

where the equality (a) follows from the rotational invariance
property (Theorem 3), and the equality (b) follows directly from
the absorption time expression (Theorem 1). That completes the
proof. �

The next theorem implies that the MAT of a receiver em-
ploying the FSSS does not depend on the location of the first
in-phase cell. Thus, the MAT expression can be simplified for
the case of FSSS.

Theorem 6 (Simplification): Let s(πNJ , b) denote the spacing
rule for the description (πNJ , b) corresponding to the FSSS and
the location 1 ≤ b ≤ Nunc of the first in-phase cell. Then

v(s(πNJ , 1)) = v(s(πNJ , 2)) = · · · = v(s(πNJ , Nhit))

and the MAT expression for the FSSS is equal to

E{TACQ(πNJ)} = v(s(πNJ , 1)).

Proof: Let the step size NJ be given. Conditioned on B =
1, the set of in-phase cells is given by

Hhit(1) = {1, 2, . . . , Nhit}
= {πNJ(k1), πNJ(k2), . . . , πNJ(kNhit)} (22)

for some unique integers 1 = k1 < k2 < · · · < kNhit . We now
transform the description (πNJ , 1) into the spacing rule m,
where the components mi are given in (14). For any j ≥ 1,
let

rotj{x}
�
= rot{rot{· · · {rot︸ ︷︷ ︸

jtimes

{x}} · · ·}}

denote a vector obtained from the rotations of x ∈ R
Nhit for j

times. Let

R �
={m, rot{m}, rot2{m}, . . . , rotNhit−1{m}}

denote a set of all rotations of the spacing rule m. By construc-
tion, s(πNJ , 1) = m ∈ R.

Let any b with 2 ≤ b ≤ Nunc be given. We want to show that
s(πNJ , b) ∈ R.

Consider a flow diagram with the description (πNJ , b). Then,
the set of in-phase cells is11

Hhit(b) = Hhit(1) ⊕ (b − 1)

= {1 ⊕ (k1 − 1)NJ, 1 ⊕ (k2 − 1)NJ, . . . ,

1 ⊕ (kNhit − 1)NJ} ⊕ (b − 1)

= {b ⊕ (k1−1)NJ, b ⊕ (k2−1), . . . , b ⊕ (kNhit−1)}
(23)

where the second equality follows from the last equality of (22)
and from the definition of the FSSS in (8).

Let x=� b ⊕ (k1 − 1)NJ and y =� b ⊕ (k2 − 1)NJ denote
elements of Hhit(b). Then, x and y are H1-states. For any
k1 < j < k2, we have b ⊕ (j − 1)NJ /∈ Hhit(b) since k2 <
k3 < · · · < kNhit . Thus, k2 − k1 + 1 = m1 states in {b ⊕ (j −
1)NJ | k1 < j < k2} are complete H0-states between the two
neighboring H1-states x and y. A similar argument will show
that, for 1 ≤ i ≤ Nhit, the quantity mi in (14) is the number of
H0-states between two neighboring states b ⊕ (ki − 1)NJ and
b ⊕ (ki�1 − 1)NJ. Therefore,

s(πNJ , b) = rotl{m} ∈ R, for some l ≥ 1.

All spacing rules in R have the same absorption time by
the rotational invariance property (Theorem 3). Therefore,
v(s(πNJ , 1)) = v(s(πNJ , 2)) = · · · = v(s(πNJ , Nhit)), which
implies that the MAT expression for the FSSS is
E{TACQ(πNJ)} = v(s(πNJ , 1)). That completes the proof. �

The next theorem is an application of the reversal invariance
property and the simplification theorem.

11For a set A of integers and a fixed integer n, define A⊕ n
�
={m ⊕ n |m ∈

A}.
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Theorem 7 (Equivalent Pair): For any step size NJ,
the FSSS’s πNJ and πNunc−NJ yield an identical MAT:
E{TACQ(πNJ)} = E{TACQ(πNunc−NJ)}.

Proof: The definition of the FSSS indicates that

πNJ(1) = πNunc−NJ(1)

πNJ(k) = πNunc−NJ(Nunc + k − 2), 2 ≤ k ≤ Nunc.

In other words, the FSSS πNJ yields the search sequence, for
some cells {ci},
. . . , c1, c2, . . . , cNunc−1, cNunc , c1, c2, . . . , cNunc−1, cNunc , . . .

if and only if the FSSS πNunc−NJ yields the search sequence

. . . , c1, cNunc , cNunc−1, . . . , c2, c1, cNunc , cNunc−1, . . . , c2, . . . .

Therefore, the spacing rule s(πNJ , 1) that corresponds to
the description (πNJ , 1) is the reversal of the spacing rule
s(πNunc−NJ , 1):

rev{s(πNJ , 1)} = s(πNunc−NJ , 1).

The theorem’s statement then follows from the reversal invari-
ance (Theorem 3) and the simplification theorem (Theorem 6).

VI. CONCLUSION

This paper investigates the properties of acquisition receivers
that employ serial-search strategies. We begin by noting that
the mean acquisition time (MAT) is a convex combination of
the absorption times. We point out the difficulty in establishing
the important properties of the MAT directly from the absorption
time expression, obtained by using a conventional method. This
difficulty is then alleviated by transforming the absorption time
into the spacing rule domain. The transformation offers insights
into the properties of the absorption time and the MAT.

We first derive an explicit expression for the absorption time
in the spacing rule domain. We then show that the absorption
time is convex in R

Nhit , rotation invariant, and reversal invariant.
We show that the minimum MAT over all possible search orders
is lower bounded by the solution to an integer programming
problem whose fluid approximation (or relaxation) has a con-
vex objective function. Thus, well known techniques in convex
optimization can be used to find the explicit solution algorith-
mically. We also derive the upper bound on the MAT over all
possible search orders. The upper bound expression is explicit
and depends on the details of the signal detection procedure.
We further show that the MAT of the FSSS does not depend on
the location of the first in-phase cell. Thus, the evaluation of the
MAT for the FSSS can be simplified significantly.

Note that the proofs of the lower bound (Theorem 4) and
the upper bound (Theorem 5) on the MATs do not require the
fact that propagation paths arrive in a single cluster. Hence, these
bounds are valid for an environment in which multiple clusters of
propagation paths are observed at the receiver. In our approach,
we deliberately represent the details, such as the fading statistic,
the receiver’s architecture, and the design choice of decision
variables, by a few parameters in order to gain insights into
important properties of acquisition receivers. The results in this
paper can be applied to the design and analysis of fast acquisition

systems in various wideband scenarios, including a broad class
of fading conditions, hardware implementations, and operating
environments.

APPENDIX I

NONNEGATIVE DEFINITENESS OF THE HESSIAN MATRIX H

Lemma 1 (Nonnegative Definite Kernel): Let T > 0 and
−e−2T < θ < e−2T be given. Define a kernel

K(s, t)
�
= θe|s−t| + e−|s−t| (24)

for −T ≤ s, t ≤ T . Then, K(s, t) is nonnegative
definite on the space [−T, T ] × [−T, T ]. That is,∫ T

−T

∫ T

−T f(s)K(s, t)f(t) ds dt ≥ 0 for any function f(t) ∈ L2.
Proof: For any s, t ∈ [−T, T ],K(s, t) = K(t, s) and

|K(s, t)| ≤ 2. Thus, K(s, t) is symmetric and square-integrable
(i.e.,

∫ T

−T

∫ T

−T |K(s, t)|2 ds dt < ∞). By [ [37], Thm 7.71, p.
127], K(s, t) is nonnegative definite on [−T, T ] × [−T, T ] iff
all eigenvalues of K(s, t) are positive. We will now derive a
complete set of eigenvalues of K(s, t) and show that they are
positive.

The eigenvalues λi satisfy the following integral equation

λiϕi(s) =
∫ T

−T

K(s, t)ϕi(t) dt, −T ≤ s ≤ T (25)

where ϕi(t) are orthonormal eigenfunctions corresponding to
the eigenvalues λi .12 Substituting K(s, t) and separating the
integral into the sum of two integrals, we have

λϕ(s) =
∫ s

−T

(θes−t + et−s)ϕ(t) dt

+
∫ T

s

(θet−s + es−t)ϕ(t) dt. (26)

Using Leibniz’s Rule to differentiate (26) with respect to s once,
we have

λϕ′(s) =
∫ s

−T

(θes−t − et−s)ϕ(t) dt

+
∫ T

s

(−θet−s + es−t)ϕ(t) dt. (27)

Differentiating (26) twice, we have

λϕ′′(s) =
[∫ s

−T

(θes−t + et−s)ϕ(t) dt

+
∫ T

s

(θet−s + es−t)ϕ(t) dt

]
− 2(1 − θ)ϕ(s). (28)

The sum of the above two integrals in the brackets is simply
λϕ(s). Therefore, the eigenfunction satisfies the second order
differential equation

λϕ′′(s) = [λ − 2(1 − θ)]ϕ(s). (29)

We consider four separate cases.

12The existence of countably many eigenvalues of K(s, t) follows from the
theorem of Hilbert and Schmidt [ [38], p. 243].
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1) The eigenvalue is zero: λ = 0.
Equation (29) implies that ϕ(s) = 0, for s ∈ [−T, T ],
which is not an eigenfunction. Therefore, this case is im-
possible.

2) The eigenvalue is nonzero and the coefficient satisfies(
λ − 2(1 − θ)

λ

)
> 0. (30)

In this case, solutions to the differential equation (29) are
of the form

ϕ(s) = Aeνs + Be−ν s (31)

where ν is defined to be ν
�
=

√
(λ − 2(1 − θ))/λ. Substi-

tuting (31) into the integral equation in (25), we have

λAeνs + λBe−ν s

=
[
2(1 − θ)A

1 − ν2

]
· eνs +

[
2(1 − θ)B

1 − ν2

]
· e−ν s

+
1

1 − ν2
· [A(1 + ν)(θeT −νT − e−T +νT )

+ B(1 − ν)(θeT +νT − e−T −νT )] · es

+
1

1 − ν2
· [A(1 − ν)(θeT +νT − e−T −νT )

+ B(1 + ν)(θeT −νT − e−T +νT )] · e−s .

(32)

Because the functions {es, e−s , eνs , e−ν s} are linearly in-
dependent, we compare their coefficients on the left- and
right-hand sides of (32) and conclude that

λ =
2(1 − θ)
1 − ν2

, (33a)

0 = A(1 + ν)(θeT −νT − e−T +νT )

+ B(1 − ν)(θeT +νT − e−T −νT ) (33b)

0 = B(1 + ν)(θeT −νT − e−T +νT )

+ A(1 − ν)(θeT +νT − e−T −νT ). (33c)

The unknowns A and B can be solved for fixed T, θ, and
ν using the linear equations (33b) and (33c).
Adding (33b) and (33c) yields, after some algebra,

0 = (A + B) · [ν(θeT + e−T )(e2νT − 1)

+ (e−T − θeT )(e2νT + 1)]. (34)

Subtracting (33c) from (33b) yields, after some algebra,

0 = (A − B) · [(θeT + e−T )(e2νT − 1)

+ν(e−T − θeT )(e2νT + 1)]. (35)

Recall that T, θ, and ν satisfy the conditions T >
0,−e−2T < θ < e−2T , and ν > 0, implying that the quan-
tities in the square brackets of (34) and (35) are strictly
positive. Thus, (34) and (35) reduce to the system of equa-
tions

0 = A + B

0 = A − B

which has the solution A = B = 0. Substituting the values
of A and B into (31) yields ϕ(s) = 0, for s ∈ [−T, T ],
which is an invalid eigenfunction. Therefore, the case in
(30) is impossible.

3) The eigenvalue is nonzero and the coefficient satisfies(
λ − 2(1 − θ)

λ

)
= 0. (36)

Thus, solutions to (29) are of the form

ϕ(s) = As + B. (37)

Substituting (31) into the integral equation in (25), we
have

λAs + λB

= [2(1 − θ)A] · s + [2(1 − θ)B]

+[θeT (A + B − AT ) + e−T (−A − B − AT )] · es

+[θeT (−A + B +AT ) +e−T(A − B + AT )] · e−s .

(38)

Because the functions {1, s, es , e−s} are linearly inde-
pendent, we compare their coefficients on the left- and
right-hand sides of (38) and conclude that

λ = 2(1 − θ) (39a)

0 = θeT (A + B − AT ) + e−T (−A − B − AT ) (39b)

0 = θeT (−A + B + AT ) + e−T (A − B + AT ). (39c)

Equations (39b) and (39c) are linear in A and B and have
two unknowns A and B. Adding (39b) and (39c) yields
the condition

0 = B(e−T − θeT ).

Since −e−2T < θ < e−2T , the quantity in the parentheses
is strictly positive, and thus B = 0. Equating (39b) and
(39c) and substituting B = 0 yield the condition

0 = A(e−T (1 + T ) − eT θ(1 − T )).

Considering (1 − T ) ≤ 0 and (1 − T ) > 0 separately, we
can easily verify that the quantity in the parentheses is
positive, and thus A = 0. As a result, (39b) and (39c) have
a unique solution A = B = 0. Then the function ϕ( · )
becomes ϕ(s) = 0, for s ∈ [−T, T ], which is an invalid
eigenfunction. Therefore, the case in (36) is impossible.

4) The eigenvalue is nonzero and the coefficient satisfies(
λ − 2(1 − θ)

λ

)
< 0. (40)

Thus, solutions to (29) are of the form

ϕ(s) = A cos(µs) + B sin(µs) (41)

where µ is defined to be µ
�
=

√
−(λ − 2(1 − θ))/λ. Sub-

stituting (31) into the integral equation in (25), we have

λA cos(µs) + λB sin(µs)
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Fig. 6. The solutions µi > 0 to the transcendental equation can be found
graphically.

=
[
2(1 − θ)
1 + µ2

A

]
· cos(µs) +

[
2(1 − θ)
1 + µ2

B

]
· sin(µs)

+ [(sin µT )(B − µA)(θeT + e−T )

− (cos µT )(Bµ + A)(θeT − e−T )] · es

+ [(cos µT )(Bµ − A)(θeT − e−T )

− (sin µT )(B + µA)(θeT + e−T )] · e−s .

(42)

Comparing the coefficients of cos(µs), sin(µs), es , and
e−s on the left- and right-hand sides, we have the con-
straints

λ =
2(1 − θ)
1 + µ2

(43a)

tan µT = −
(

Bµ + A

B − Aµ

)
κ (43b)

tan µT = −
(

Bµ − A

B + Aµ

)
κ (43c)

in which κ =�(e−T − θeT )/(e−T + θeT ) > 0. By equat-
ing the expressions for tan µT in (43), we conclude that
AB = 0. Therefore, the eigenvalues are given by

λi =
2(1 − θ)
1 + µ2

i

, i = 1, 2, 3, . . . (44)

in which µi are solutions to the transcendental equation

(tan µT + κµ)
(

tan µT − κ

µ

)
= 0.

We note that the solution µi > 0 can be found graphically
(see Fig. 6). Clearly, the eigenvalues in (44) are positive.

Because all eigenvalues of K(s, t) are strictly positive,
K(s, t) is a nonnegative definite kernel. That completes the
proof. �
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