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Performance of Rake Reception in Dense Multipath
Channels: Implications of Spreading Bandwidth

and Selection Diversity Order
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Abstract—In this paper, we develop an analytical framework to
quantify the effects of the spreading bandwidth (BW) on spread
spectrum systems operating in dense multipath environments in
terms of the receiver performance, the receiver complexity, and
the multipath channel parameters. The focus of the paper is to
characterize the symbol error probability (SEP) performance of
a Rake receiver tracking the strongest multipath components in
wide-sense stationary uncorrelated scattering (WSSUS) Gaussian
channels with frequency-selective fading. Analytical SEP expres-
sions of the Rake receiver are derived in terms of the number of
combined paths, the spreading BW, and the multipath spread of
the channel. The proposed problem is made analytically tractable
by transforming the physical Rake paths, which are correlated and
ordered, into the domain of a “virtual Rake” receiver with indepen-
dent virtual paths. This results in a simple derivation of the SEP for
a given spreading BW and anarbitrary number of combined paths.

Index Terms—Dispersive channels, diversity methods, fading
channels, maximal ratio combining, Rake receiver, selection
diversity, spreading bandwidth, spread spectrum techniques,
virtual path technique.

I. INTRODUCTION

M ULTIPLE access systems, based on spread spectrum
(SS) signaling properties, are suitable for dealing

with fading multipath channels [1], [2]. These SS multiple
access techniques have recently seen significant deployment
in wireless communications systems, and they have also been
proposed for third-generation wireless access [3]. One benefit
of SS systems is that with a sufficiently wide transmission
bandwidth (BW), it is possible to resolve the closely spaced
multipath components encountered in the channel. Alterna-
tively, systems using narrowband transmissions perceive most
of the closely spaced multipath components as a single faded
signal.

The detection of signals in a multipath environment leads to a
Rake receiver, which is based on optimality theory tempered by
some heuristic ideas. Rake receivers resolve the components of
a received signal (arriving at different times) and combine them
to provide diversity. Discussions on classical Rake receivers can
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be found in [4]–[7]. One version of the Rake receiver consists
of multiple correlators (fingers) where each of the fingers can
detect/extract the signal from one of the multipath components
created by the channel. The outputs of the fingers are combined
to reap the benefits of Rake diversity.

The equivalent matched filter version of the receiver involves
a matched front-end processor (MFEP) (matchedonly to the
transmitted signature waveform) followed by a tapped delay
line and a combiner. Multipath components with delays greater
than the chip time (approximately equal to the inverse of
the spreading BW) apart are resolved by the MFEP, which is
synchronized with the initial path of the received signal. The
MFEP output is passed through a tapped delay line filter with

taps, where is the maximum excess delay from
the first arriving path. The output of the taps providediver-
sity paths, all of which must be combined for the best possible
performance.

We introduce the termall Rake (ARake)receiver to describe
the receiver with unlimited resources (taps or correlators) and
instant adaptability, so that it can, in principle, combineall of the
resolved multipath components. For a dense multipath channel
with a fixed , the number of resolvable multipath compo-
nents increases with the spreading BW. However, the number
of multipath components that can be utilized in a typical Rake
combiner is limited by power consumption issues, design com-
plexity, and the channel estimation [8].

Complexity and performance issues have motivated studies of
multipath combining receivers that process only asubsetof the
available resolved multipath components, but achieve better
performance than a single path (SP) receiver. We will refer to
such receivers asselective Rake (SRake)receivers. This paper
considers the SRake receiver that selects thebest paths with
the largest signal-to-noise ratio (SNR) (from available diver-
sity paths) and combines them using maximal-ratio combining
(MRC) [7].

For a given transmission BW and for a typical power delay
profile (PDP), a fundamental question related to the SRake re-
ceiver design is the impact of the number of combined paths
on the symbol error probability (SEP) performance, and what
is the performance improvement versus complexity tradeoff.
From the receiver complexity point of view, the question can
be rephrased: For a fixed complexity receiver operating in an
environment with a given PDP, what is the optimal spreading
BW to be used.
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The design of receivers for code division multiple access
(CDMA) systems, and in particular the choice of the number
of combined paths, is often based on simulations and empirical
knowledge [3], [9], [10]. Recently, some theoretical and simu-
lation-based efforts have been made to investigate the effects of
multipath fading [11]–[13]. Typical studies on the performance
of direct sequence code division multiply access (DS-CDMA)
as a function of the number of Rake fingers assume an ARake
model ( ) [14], [15]. In [16] and [17], the channel
is modeled to consist of several groups of paths, where one
dominant path per group is combined in the receiver.

However, as pointed out in [15], a more realistic model is
the Rake receiver tracking the strongest out of paths.
In fact, quasianalytical/experimental analysis of the ultra-wide
BW SRake receiver (with large ) in [18] shows that an
acceptable level of SEP performance can be achieved even
with and . This indicates that a high diversity
order can be achieved even with a selection diversity (SD) or
SP receiver. If one were to use an ARake model to analyze
such a system, the results would be misleading in that it
would suggest requiring more fingers. In [19], only
and out of paths were analyzed. The dependence of
the signal power variance on the receiver processing in terms
of parameters such as chip rate, processing gain, and number
of multipath components tracked is investigated for ,
2, 4, and 8 through simulations in [13]. The bit error rate
performance of an SRake receiver was analyzed in [20] for
binary differential phase shift-keying modulation.1 A closely
related problem of hybrid selection/maximal-ratio combining
(H-S/MRC) receivers in a more general diversity setting was
considered in [21] and [22].

The principal contributions of this paper are in discovering a
methodology and deriving exact SEP expressions of the SRake
receiver for arbitrary and (i.e., arbitrary spreading BW).
We develop an analytical framework to quantify the effects
of spreading BW on SS systems operating in dense multipath
environments in terms of the receiver complexity and multipath
channel parameters. We assume that instantaneous estimation
of all possible multipaths is feasible, such as with slow fading.
However, SRake combining also offers improvement in fast
fading conditions, and our results serve as a bound on the
performance when ideal channel estimates are not available.
The proposed problem is made analytically tractable by trans-
forming the physical Rake paths into the domain of a “virtual
Rake” receiver, which results in a simple derivation of the
SEP for a given spreading BW and anarbitrary number of
combined paths.

We first derive general expressions, and then focus on the spe-
cial case of constant PDP over an interval. Several researchers
have previously considered this type of PDP [23]–[25], [15] to
study various aspects of DS-CDMA systems. Propagation mea-

1In [20], the probability density function (p.d.f.) of the sum of the signals
with the L strongest path SNR’s was obtained as a convolution of the
p.d.f.’s of the strongest, the second strongest,. . ., and theL strongest
paths. We remark that, in general, the p.d.f. of the sum of the random
variables is the convolution of the individual p.d.f.’s only if the random
variables are independent.

surements in urban and suburban environments [26]–[28] and
mountainous terrain [29] exhibit characteristics supporting such
a PDP since they show channels with energy spread over a con-
tinuum of arrival times. Thus, the use of this PDP serves as a
basic model for analyzing the performance of Rake receivers
operating in dense multipath environments. We plot the SEP
results obtained and observe the property of diminishing re-
turns with an increase in the number of combined paths. The
well-known results for the SP receiver and the ARake receiver
can be obtained as special cases of the SRake receiver results.

Second-generation cellular systems which are based on
CDMA (IS-95) operate at a chip rate of 1.2288 Mchips/s,
and the third-generation (e.g., IMT-2000) systems will most
probably operate at 3.84 Mchips/s. To support higher bit
rates, larger spreading BW’s have been proposed [3]. As the
third-generation activities progress, the designers of receivers
will face the question of how many fingers should be included
in Rake receivers, and/or how many fingers should be active
at any one time. The results of this paper provide part of the
necessary inputs for making those decisions.

II. SYSTEM MODEL

A. Signal and Channel Models

The output of the channel is modeled as2

(1)

where is the equivalent lowpass (ELP) output signal. The
ELP channel output can be expressed in terms of the ELP
transmitted signal , with energy , in the time domain as

(2)

where is the ELP time-variant channel impulse re-
sponse, with and denoting the time and delay variables,
respectively. For a physical channel, must have finite
support over the positive values of, satisfying the causality
condition. The function is typically referred to as the
input-delay spread function representing the response of the
channel at time due to an impulse applied at time [30],
[31].

The ELP received signal can be modeled as

(3)

where is an additive white Gaussian noise (AWGN) process
with two-sided power spectral density .3 The additive noise
process is independent of the channel and therefore
independent of the process [see (2)].

B. Matched Front-End Processor

Consider a matched front-end processor (MFEP) with ELP
impulse response

otherwise
(4)

2The notation<f�g denotes the real-part operator.
3The term “Gaussian” is used to denote “ELP complex circular Gaussian.”
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where is the symbol duration. The MFEP output can be
written as4

(5)

Substituting (3) into (5), the MFEP output can be written as

(6)

where and are the contributions of the signal and
noise, respectively, to the MFEP output.

Using (2), the process can be written as

(7)

The noise process is given by

(8)

III. SRAKE RECEIVER PERFORMANCEANALYSIS

In this section, the theory developed in [22] for a more general
diversity setting is applied to the study of an SRake receiver with
an arbitrary number of combined paths in a frequency-selective
dense multipath channel.

A. The SRake Receiver

Let denote the instantaneous SNR of the MFEP output
samples defined by

(9)

where ’s are the sampling instants. We model the’s as con-
tinuous random variables with p.d.f. and mean

(10)

The instantaneous output SNR of the SRake receiver is

(11)

where is the ordered , i.e., ,
and is the number of resolvable multipath components. As
pointed out in the prequel, increases with the spreading BW.
It is apparent that several multipath combining receivers such as
the SP and ARake receivers turn out to be special cases of (11).

We model the time-varying channel as a two-dimen-
sional complex circular Gaussian process with zero mean. Since

is a linear transformation of [cf. (7)], it is also a
complex Gaussian process with zero mean and correlation func-
tion . For a wide-sense stationary uncorrelated scat-
tering (WSSUS) channel with constant PDP, it can be shown

4Since the rest of the paper deals with the ELP notation, we shall drop the term
ELP in the sequel. Here, and throughout the paper, the range of the integration
is determined by the support of the integrand.

using (43) of the Appendix that the correlation function of the
MFEP output samples is5

(12)

The coefficients and depend on the specific chip pulse
shape. We consider three types of pulse shapes in this paper,
namely the rectangular, half-sine, and raised cosine pulse
shapes. Each pulse shape has finite support over the interval

and is normalized to constant energy. Such time lim-
ited pulse shapes have been used previously in the literature
[32]. The rectangular pulse shape is defined by ,

. Similarly, the expressions for the half-sine and
raised cosine pulse shapes are given by
and , respectively. The coeffi-
cients and are straightforward to compute and are given by
the following expressions:

rectangular pulse

half-sine pulse

raised cosine pulse

(13)

and
rectangular pulse

half-sine pulse

raised cosine pulse.

(14)

Numerically, , 0.5866, 0.4811 and ,
, for the rectangular, half-sine, and

raised cosine pulses, respectively.
The correlation function given in (12) implies that

samples of the MFEP output are uncorrelated as long as they
are not adjacent to each other. It also implies that even the ad-
jacent samples are “weakly correlated” with correlation coeffi-
cient equal to 0.25, 0.07386, and 0.01965 for the rectangular,
half-sine, and raised cosine pulse shapes, respectively. Moti-
vated further by analytical tractability, the MFEP output sam-
ples are modeled to be uncorrelated. Therefore, they are inde-
pendent since is a complex Gaussian process.6

Denoting , it was shown in
[22] that the joint p.d.f. of is, see (15) at
the bottom of the next page. The parameteris the mean SNR
of the MFEP output given by

(16)

5Although we are concerned only with the values ofjt � t j at integer mul-
tiples ofT in (12),R (t ; t ) is in general a continuous function ofjt � t j
as can be seen in (43).

6This justifies the standard assumption of “independent MFEP output sam-
ples” made in typical studies concerning Rake receivers (e.g., [7], [14]).
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where is given by (45) of the Appendix. It is im-
portant to note that the ’s areno longer independent, even
though the underlying ’s are independent.

B. Error Probability Analysis in Virtual Rake Framework

The SEP for an SRake receiver in a multipath fading environ-
ment can be written as

Pr (17)

where Pr is the conditional SEP, conditioned on
the random quantity . For coherent detection of -ary
phase-shift keying (MPSK), an alternative representation for
Pr involving a definite integral withfinite limits, is
given by [33] and [34] as

Pr (18)

where and . Of course,
for BPSK, and . Substituting (18) into
(17), the SEP of the SRake receiver becomes

(19)
Substituting the expression for directly in terms of the
physical branch variables given in (11) by using the technique
of [35], we obtain

(20)

(21)

Since the statistics of the ordered paths areno longer indepen-
dent, the evaluation of (21) involves -fold nested integrals,
which are in general cumbersome and complicated to evaluate.
This can be alleviated by transforming the instantaneous SNR’s
of the ordered multipath components into a new set ofvirtual
pathinstantaneous SNR’s, , using the following relationship:

(22)

Let , then the joint p.d.f. of
can be obtained as [36]

(23)

where is the Jacobian of the transformation.
First note that the recursion formula for the virtual path trans-

formation is

(24)

where . This implies that the virtual path transforma-
tion decouples the range of ’s, and . Since the
transformation is linear, the Jacobian of the transformation can
be calculated as

(25)

Substituting (25) into (23), it can be verified after some algebra
that the joint p.d.f. of is

otherwise.
(26)

Therefore, the instantaneous SNR’s of the virtual paths are in-
dependent and identically distributed (i.i.d.) normalized expo-
nential random variables with p.d.f. given by

otherwise.
(27)

The instantaneous SNR of the combiner output can now be
expressed in terms of the instantaneous SNR’s of the virtual
paths as

(28)

where the coefficients are given by

otherwise.

(29)

otherwise

(15)
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Note that in (28) is now expressed in terms of i.i.d.
virtual path variables as opposed to (11) where it was written in
terms of dependent physical path variables.

Now the SEP for the SRake receiver can be reformulated in
terms of i.i.d. virtual path variables by substituting (28) into (19)
as

(30)

Exploiting the fact that the ’s are independent, (30) becomes

(31)

where is the characteristic function (c.f.) of and is
given by

(32)

The effectiveness of the virtual path technique is apparent by
observing that the expectation operation in (20) no longer re-
quires an -fold nested integration.

Substituting (32) into (31), the SEP for the SRake receiver be-
comes (33) shown at the bottom of the page. Thus, the derivation
of the SEP for the SRake receiver involving the-fold nested
integrals in (21) essentially reduces to a single integral over
involving trigonometric functions with finite limits. Note that
the independence of the virtual path variables plays a key role
in simplifying the derivations.

C. Special Case 1: The Single Path Receiver

The SP receiver, also known as the selection diversity re-
ceiver, is the simplest form of diversity system whereby the re-
ceived signal is selected fromoneof diversity paths. The
output SNR of the SP receiver is

(34)

This is a special case of the SRake receiver with . Substi-
tuting into (33), the SEP for the SP receiver becomes

(35)

D. Special Case 2: The ARake Receiver

For the ARake receiver, the signals fromall Rake paths are
weighted and combined to maximize the SNR at the combiner
output. The output SNR of the ARake receiver is given by

(36)

Note again that the result for the ARake receiver can be obtained
from the SRake results given in (33) by setting , since
ARake is a special case of SRake with . Therefore, the
SEP for the ARake receiver becomes

(37)

IV. NUMERICAL EXAMPLES

In this section, the results derived in the previous section for
the SRake receiver are illustrated using specific examples. Figs.
1–4 show the SEP versus the SNR, , for various spreading
BW’s or, equivalently, for various chip rates . We
depict , 5, and 10 MHz with maximum excess channel
delay s for BPSK modulation using rectangular chip
pulse waveforms.7

In Figs. 1 and 2, the curves are parameterized by the number
of paths with the highest curve representing , or the
single path (SP) receiver, in each graph. Each successively lower
curve corresponds to an increasingup to the maximum de-
noted by , or the ARake receiver performance. We see that
an increase in the number of combined paths produces a lower
SEP, but the improvement diminishes as the number of com-
bined paths approaches. For example, with 5 MHz spreading
BW, Fig. 1 suggests that at an SEP of , there is a 2.5 dB

7The SEP using other chip pulse waveforms, such as the half-sine and the
raised cosine, is not significantly different from that obtained with the rectan-
gular pulse shape. The difference is in the attenuation of the mean SNR, and for
comparison purposes, the rectangular pulse suffices.

(33)
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Fig. 1. The symbol error probability of the SRake receiver versus the SNRE =N as a function ofL for R = 5 MHz andT = 2 �s. The upper curve is for
L = 1 and the successively lower curves are for increasingL up toL = N = 10.

Fig. 2. The symbol error probability of the SRake receiver versus the SNRE =N as a function ofL for R = 10 MHz andT = 2 �s. The upper curve is for
L = 1 and the successively lower curves are for increasingL up toL = N = 20.

gain in using paths from , but only over a 1 dB
gain from 2 to 3. The gain in decibels diminishes further
when is increased from 3 to 4 and beyond. This trend is also

observed in Fig. 2 for the spreading BW of 10 MHz. The di-
minishing returns suggest that only asubsetof paths need to be
combined to give an acceptable level of performance.
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Fig. 3. The symbol error probability of the SRake receiver versus the SNRE =N as a function ofL with T = 2 �s. The dashed curves are forR = 1 MHz
and the solid curves are forR = 5 MHz. The solid curves depictL = 1, 2, 4, 8, and 10 in successively lower positions. The dashed curves showL = 1 to
L = N = 2.

Fig. 4. The symbol error probability of the SRake receiver versus the SNRE =N as a function ofL with T = 2 �s. The dashed curves are forR = 1 MHz
and the solid curves are forR = 10 MHz. The solid curves depictL = 1, 2, 4, 8, 16, and 20 in successively lower positions. The dashed curves showL = 1 to
L = N = 2.

Figs. 3 and 4 compare the SEP of systems with MHz
and the case with and 10 MHz. The dotted lines for

MHz are shown for through 2. The solid lines
depict the larger BW signals with the number of pathsin-
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creasing in powers of 2 up to , i.e., , 2, 4, 8, 16, and
20 in Fig. 4. The effects of the diminishing returns and the wide
range in SEP is evident as discussed above. It is also interesting
to note the crossover in the curves between the two sets of’s.
For example, it can be seen in Fig. 4 that at SNR’s above 8.5
dB, the SEP for MHz with is lower than the

MHz with curve. But at SNR’s below 8.5 dB,
the MHz with curve gives a higher SEP than

MHz with . We see that at low SNR’s, more
paths need to be combined in the SRake receiver with larger
BW’s in order to achieve better performance than the SRake
receiver with smaller BW’s. For instance,would have to be
increased to about 8 in Fig. 4 for the MHz case in order
to achieve comparable performance with the MHz with

case for low SNR’s.
It is also observed that the larger the chip rate, the lower

the achievable SEP. With MHz, the ARake receiver can
only achieve an SEP of about at an SNR of 10 dB. For

MHz, the ARake receiver can achieve an SEP of better
than at the same SNR. Alternatively, the ARake receiver
with 10 MHz can achieve SEP at about 10 dB, or a gain
of 8 dB over the system with 1 MHz. The drawback in using a
larger spreading BW is that a greater number of paths need to be
combined to get better performance. If only one path is selected
( ), then the system with a smaller BW has a lower SEP
over some range of SNR. This can be seen in Fig. 4 at 14 dB,
for example.

It is apparent that a specified SEP can be achieved, in prin-
ciple, with different combinations of receiver complexity (the
number of combined paths), spreading BW of the signals
( ), and the transmitted power (SNR). For example, Fig. 3
shows that an SEP of can be achieved with the combi-
nation of MHz and , or with MHz and

. The performance difference between these cases is about
6 dB. Other combinations are also evident from the graphs. In
general, larger spreading BW’s reduce the power requirements
as long as a sufficient number of paths are combined.

V. CONCLUSIONS ANDCOMMENTS

We derived exact SEP expressions for a selective Rake
(SRake) receiver in a multipath fading environment. In partic-
ular, we considered frequency-selective wide-sense stationary
uncorrelated scattering (WSSUS) Gaussian channels with
constant power delay profile. We analyzed this system in
the virtual Rake receiver domain which resulted in a simple
derivation and formula of the SEP for a given spreading BW
and anarbitrary number of combined paths. The key idea was
to transform the dependent ordered-path variables into a new
set of i.i.d.virtual paths, and express the combiner output SNR
as a linear combination of the i.i.d. virtual path SNR variables.
In this framework, the derivation of the SEP involving the
evaluation of nested -fold integrals, essentially reduces to the
evaluation of a single integral.

For a fixed BW, the SEP decreases with an increase in the
number of combined paths in the SRake receiver. The decrease
in the achievable SEP is much greater for larger BW signals
at the expense of the receiver complexity. As the number of

combined paths increases, the incremental gain in performance
diminishes which suggest that only asubsetof paths need to be
combined to give an acceptable level of performance. In general,
larger spreading BW’s reduce the required power as long as
a sufficient number of paths are combined. The results of this
paper enable tradeoffs to be made between power, complexity,
and BW to provide a specified SEP performance.

APPENDIX

STATISTICAL PROPERTIES OF THEMFEP OUTPUT

Statistical properties of can be written in terms of
the statistical properties of the random time-variant channel

, and the additive noise . Using the fact that
is a zero-mean process, the mean value of the MFEP output
process can be written as

(38)

Note that is zero-mean if the two dimensional process
is zero-mean.

The correlation function of is given by

(39)

Since the noise is zero mean and is independent of the
time-variant channel , becomes

(40)

where and are correlation functions of
and , respectively.

It can be shown, using (7), that the correlation function of
is

(41)

where is defined to be

(42)

Many wireless communications channels can be modeled to
possess channel statistics that remain “stationary” over short
time intervals (or over small spatial distances). To be precise,
these channels are not necessarily stationary in a “strict-sense”
nor in the “second-order.” However, under translations over
short time intervals, their second-order statistics are invariant,
and can be approximated as being wide-sense stationary
(WSS).8 For a slowly varying WSSUS channel, the correlation

8Definitions for different kinds of stationary can be found in [37].
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otherwise

(43)

function of the MFEP output is derived in [38] as (43) shown
at the top of the page, where is the PDP, also known
as the multipath intensity profile, and

(44)

In SS parlance, is the periodic time autocorrelation func-
tion of the baseband spread signature sequence. For sequence
designs as in [39], the function possesses small sidelobes
and has a narrow peak over the interval , where
denotes the spreading BW which is roughly equal to the chip
rate defined by . The symbol time is equal to
the chip duration times the processing gain of the SS system. In
deriving (43), we have assumed that the sidelobes of are
zero.

The correlation function of can be derived similarly as

(45)

In deriving (45), we have used the property that
δ , whereδ is

the Dirac delta function.
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