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In the era of the Internet of Things (IoT), efficient localization 
is essential for emerging mass-market services and applica-
tions. IoT devices are heterogeneous in signaling, sensing, and 

mobility, and their resources for computation and communica-
tion are typically limited. Therefore, to enable location aware-
ness in large-scale IoT networks, there is a need for efficient, 
scalable, and distributed multisensor fusion algorithms. This 
article presents a framework for designing network localiza-
tion and navigation (NLN) for the IoT. Multisensor localization 
and operation algorithms developed within NLN can exploit 
spatiotemporal cooperation, are suitable for arbitrary, large-
network sizes, and only rely on an information exchange among 
neighboring devices. The advantages of NLN are evaluated in a 
large-scale IoT network with 500 agents. In particular, because 
of multisensor fusion and cooperation, the presented network lo-
calization and operation algorithms can provide attractive local-
ization performance and reduce communication overhead and 
energy consumption.

IoT location awareness
Location awareness [1]–[6] is a cornerstone of the IoT and 
fosters a wide range of emerging applications, such as crowd-
sensing [7], big data analysis [8], environmental monitoring 
[9], and autonomous driving [10]. The position information of 
IoT devices can contribute to connecting and exchanging data 
more efficiently, preserving communication security, and al-
lowing autonomous motion. The increasing number and dif-
ferent types of IoT devices generate scenarios in which hetero-
geneous data are collected distributedly using different sensing 
technologies. Compared to conventional wireless localization 
networks that typically consist of a limited number of homo-
geneous nodes, the scale and heterogeneity of an IoT network 
imposes new challenges that need to be addressed. Specifi-
cally, IoT localization and navigation calls for a new class of 
algorithms tailored to IoT networks.

In IoT networks, the sensing capabilities of the devices can 
vary significantly, providing different kinds of measurements 
carrying positional information such as range, angle of arrival, 

Digital Object Identifier 10.1109/MSP.2018.2845907 
Date of publication: 28 August 2018

Internet OF thIngs—IstOckphOtO.cOm/IaremenkO
cIrcuIts—Image lIcensed by Ingram publIshIng

Efficient Multisensor Localization for the Internet of Things
Exploring a new class of scalable localization algorithms



154 IEEE SIgnal ProcESSIng MagazInE   |   September 2018   |

channel state information, or inertial. Additionally, depending 
on the specific sensing technology used by each device, com-
munication ranges and measurement accuracies are different. 
Since IoT devices are typically equipped only with inexpen-
sive sensors having limited capabilities, high-accuracy local-
ization and navigation usually requires multisensor fusion 
and device cooperation. However, state-of-the-art multisensor 
fusion algorithms based on sequential Bayesian estimation 
(SBE) [11]–[13] are often impractical for IoT applications due 
to their decentralized network topology and the limited pro-
cessing units of IoT devices. Moreover, the high number of 
devices necessitates network operation strategies that provide 
interdevice cooperation for an efficient use of the limited bat-
tery power and spectral resources. For these reasons, the major 
difficulties for efficient multisensor localization and navigation 
in the IoT lie in fusing data and measurements collected from 
heterogeneous sensors with low computation and communica-
tion capabilities and in designing network operation strategies 
that can efficiently allocate resources in scenarios with insuf-
ficient infrastructure and limited battery power. Addressing 
these difficulties can overcome key issues in the current IoT 
networks, including the heterogeneity of sensing technologies 
and the limited capability of devices in terms of computation, 
communication, and battery energy.

The recently introduced paradigm of NLN [1] has impor-
tant characteristics that are favorable for multisensor local-
ization and navigation in IoT networks. In particular, it can 
provide technology-agnostic and low-complexity algorithms 
for heterogeneous multisensor fusion [14] and scalable network 
operation [15], which typically do not require much communi-
cation and computation overhead. An NLN scenario involv-
ing five devices and three anchors is shown in Figure 1(a). 

Figure 1(b) shows devices of Peregrine, a system developed for 
a three-dimensional (3-D) NLN.

This article provides an overview of how IoT location aware-
ness can be enabled by the NLN paradigm.

 ■ We present a framework for developing scalable and distrib-
uted inference algorithms for localization in IoT networks.

 ■ We devise centralized and distributed network operation 
strategies that can increase battery lifetime and localiza-
tion accuracy.

 ■ We demonstrate that multisensor fusion and cooperation 
among devices can dramatically increase localization 
performance in a large-scale scenario with hundreds of 
mobile agents. 

 ■ We quantify how network operation algorithms can reduce 
the communication overhead and energy consumption of 
localization networks.

Notation
Random variables (RVs) are displayed in sans serif, upright 
fonts; their realizations in serif, italic fonts. Vectors and ma-
trices are denoted by bold lowercase and uppercase letters, re-
spectively. Sets are denoted by calligraphic font. For example, 
an RV and its realization are denoted by x and ,x  respectively; 
a random vector and its realization are denoted by x  and ,x  
respectively; a set is denoted by .X  The identity matrix is de-
noted by .I  For the probability distribution function (PDF) of 
the random vector x, at ,x  the short notation ( ) ( )x xf fx=  is 
used. Furthermore, [ ]x xi i I= !  denotes vector that is obtained 
by arranging all the subvectors ,x i Ii !  in an arbitrary but 
known order into a column vector. Finally, the notations of 
important quantities that are used throughout the article are 
summarized in Table 1.

FIGURE 1. (a) A graphical depiction of an NLN scenario involving five devices and three anchors. (b) The devices used in the Peregrine, a system for a  
3-D NLN [16]. 

Mobile Agent with
Time History and Uncertainty
Static Anchor
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Single-node localization for IoT
This section revises localization and navigation algorithms 
for single-node scenarios. First, consider a network of 
IoT devices that consists of a mobile agent (with index set 

{ }1Na = h and of Nb  anchors at known positions (with index 
set { , , ..., } .N2 3 1Nb b= + h  The agents are localized based 
on heterogeneous sensor measurements by using the an-
chors as reference points. Measurements for localization are 
made at discrete time steps indexed by , , ..., .n N1 2=  Let 
x R

( )n D
1 !  be the unknown positional state of the agent at time 

n, which includes the position p( )n
1  and other mobility param-

eters such as velocity, acceleration, orientation, and angular 
velocity. All measurements made at time n are summarized 
in the vector ,z( )n

1  which is the concatenation of all internode 
measurements z( )

j
n

1  with anchors .j Nb!  The localization 
process is essentially the calculation of an estimate x( )n

1t  of 
x( )n

1  from all available measurements up to time n (denoted as 
[ , , , ] .z z z z( : ) ( ) ( ) ( )n n

1
1

1
1

1
2

1
T T T Tf_ h

The relationship of the current state vector with the previ-
ous state vector can be described by the state-evolution model

 x x c, ; ,a u( ) ( ) ( ) ( )n n n n
1 1

1
1 1=

-^ h  (1)

where c( )n
1  is the state-evolution noise vector that is assumed 

independent across time n and u( )n
1  is a known input [17] that 

controls the motion of the agent. Note that the PDF ( )cf ( )n
1  can 

be different for distinct time steps n. From the state-evolution 
model (1) one can directly obtain the state-evolution function 

; .ux xf ( ) ( ) ( )n n n
1 1

1
1

-` j  Note that (1) implies a Markov property, 
i.e., given x,x( ) ( )n n

1
1

1
-  is statistically independent of previous 

x x x, , ,( ) ( ) ( )n
1
0

1
1

1
2

f
-  and future x x, ,( ) ( )n n

1
1

1
2
f

+ +  states. The 
joint prior PDF xf ( )

1
0^ h at time n 0=  is known. The joint 

prior information for all times , , , ,n0 1 f  i.e., all available in-
formation before any measurement is performed, can now be 
expressed as

 ; ( ) ; .x u x x x uf f f( : ) ( : ) ( ) ( ) ( ) ( )n n

k

n
k k k

1
0

1
1

1
0

1
1 1

1
1=

=

-^ `h j%  (2)

The relationship of the current measurements with the cur-
rent state vector is described by the measurement model

 z x v, ,h( ) ( ) ( )n n n
1 1 1= ^ h  (3)

where v( )n
1  is the measurement noise, which is assumed indepen-

dent across times n. Note that the PDF vf ( )n
1^ h can be different 

for distinct time steps n. From the measurement model (3) one 
can directly obtain the likelihood function .z xf ( ) ( )n n

1 1` j  Note 
that (3) implies that given , zx( ) ( )n n

1 1  is statistically independent 
of previous x x, , ,x( ) ( ) ( )n

1
0

1
1

1
1

f
-  and of future x x, ,( ) ( )n n

1
1

1
2
f

+ +  
states, as well as of previous z z, , ,z( ) ( ) ( )n

1
0

1
1

1
1

f
-  and future 

z z, ,( ) ( )n n
1

1
1

2
f

+ +  measurements. Therefore, the likelihood fun -
ction for all times , , ,n1 2 f  (i.e., all available information re-
lated to the performed measurements) can be expressed as

 .z x z xf f( : ) ( : ) ( ) ( )n n

k

n
k k

1
1

1
1

1
1 1=

=

` `j j%  (4)

By using Bayes’ rules, (2) and (4), the joint posterior PDF of 
x( : )n

1
0  given z( : )n

1
1  for n 0>  results in
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(5)

The factor graph [18] representing this joint posterior for SBE 
is shown in Figure 2. For simplicity in notation, the index of 
the agent is dropped in the following, e.g., x( )n

1  is replaced 
by .x n( )

Table 1. Notations of important quantities.

Notation Definition Notation Definition 
Na  The index set of mobile agents Nb  The index set of anchors 

x( )
i
n  The positional state of the i th node at time n p( )

i
n  The position of the i th node at time n 

z( )
ij
n  An internode measurement between i th agent and  

j th node at time n 
z( )

i
n  All the internode measurements of the i th agent  

at time n 
x( : )

i
n0  All the positional states of the i th node up to time n z( : )

i
n1  All the measurements of the i th agent up to time n 

( )x( )
f

na  The message passed from variable node x to  
factor node f 

( )x( )
f

nb  The message passed from factor node f  to variable  
node x 

( )n
pn  The predicted mean vector 

( )n
p/  The predicted covariance matrix 

( )nn  The posterior mean vector ( )n/  The posterior covariance matrix 
x( )

i
nr  The augmented state vector z( )

i
nr  The augmented measurement vector 

Q( )n The localization error matrix J( )n  The Fisher information matrix 

P
( )
NA
n  The optimization problem for node activation P

( )n
NP  The optimization problem for node prioritization 

( )
i
n
g The channel access probability of agent i y( )

ij
n  The amount of resources allocated to the measurement link 

pair (i, j ) 
( )
i
n
|  The potential error reduction of agent i related to  

internode measurements 
( )
ij
n
p  The channel quality between nodes i and j 
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A temporal fusion based on SBE
Temporal multisensor fusion in a Bayesian setting is accom-
plished by determining an estimate of x( )n  from the margin-
al posterior PDF .x zf ( ) ( : )n n1` j  For example, the minimum 
mean-square-error (MMSE) estimate is given by [19]

 ; .x x x z u xf d( ) ( ) ( ) ( : ) ( : ) ( )n n n n n n1 1
MMSE _t ` j#  (6)

The marginal posterior PDF ;x z uf ( ) ( : ) ( : )n n n1 1` j in (6) can be 
obtained from the joint posterior PDF ;x z uf ( : ) ( : ) ( : )n n n1 1 1` j in 
(5) by marginalization. However, direct marginalization of 

;x z uf ( : ) ( : ) ( : )n n n1 1 1` j is unfeasible in general because it relies 
on integration over a state space whose dimension grows with 
the time n.

This problem known as the curse of dimensionality [20], 
can be addressed by SBE [12] if the joint posterior PDF 

;x z uf ( : ) ( : ) ( : )n n n1 1 1` j has a structure like (5). The exact calcu-
lation of ;x z uf ( ) ( : ) ( : )n n n1 1` j is then possible sequentially; at 
each time n, SBE consists of the prediction step

 
;

; ; ,

x z u

x x u x z u x

f

f f d

( ) ( : ) ( : )

( ) ( ) ( ) ( ) ( : ) ( : ) ( )

n n n

n n n n n n n

1 1 1

1 1 1 1 1 1 1=

-

- - - - -

`
` `

j
j j#  

(7)

which is followed by the update step

 ; ; .x z u z x x z uf f f( ) ( : ) ( : ) ( ) ( ) ( ) ( : ) ( : )n n n n n n n n1 1 1 1 1? -` ` `j j j  (8)

Contrary to direct marginalization in which integration is 
performed over an nD-dimensional state space, SBE involves 
only operations in D-dimensional state spaces that are per-
formed n times. As a consequence, the complexity related to 
calculating ;x z uf ( ) ( : ) ( )n n n1 1-` j scales only linearly with the 
number of time steps n. Note that the information acquired 
by all sensors up to time n, is represented by the low-dimen-
sional predicted posterior PDF ;x z uf ( ) ( : ) ( )n n n1 1-` j and tem-
poral fusion is directly performed in the update step accord-
ing to (8).

Message-passing interpretation of SBE
For an arbitrary estimation problem, the sum-product algo-
rithm (SPA) [18] can calculate exact or approximate marginal 
posterior PDFs in an efficient manner. In particular, the SPA 
avoids the curse of dimensionality inherent to direct margin-
alization. Therefore, SPA-based solutions are attractive for 
high-dimensional inference problems. The SPA is a message-
passing algorithm since its basic operations can be interpreted 
as an exchange of statistical information on adjacent nodes 
of a factor graph, i.e., as messages passed along the edges of 
the graph.

If the factor graph is tree structured, such as the one shown 
in Figure 2, message updates are performed only once for each 
node in the graph. The message-passing procedure begins at 
the variable and factor nodes with only one edge (which passes 
a constant message and the corresponding factor, respectively) 
and continues with those nodes where all incoming messages 
are computed already. According to the SPA message-passing 
rules, in a factor graph as shown in Figure 2, the message 
passed from factor node f  to variable node x is obtained as [18]

 ; ,x x x u x xf d( ) ( ) ( ) ( ) ( ) ( )
f

n n n n
f

n n1 1 1b a= - - -^ ` ^h j h#  (9)

where x( )
f

n 1a -^ h is the message passed from variable node 
x- to factor node f. Furthermore, the message passed from 
fz  to x  is given by x z xf( ) ( ) ( )

f
n n n

zb =^ `h j. After these two 
messages are calculated, the belief for x  is finally obtained as

 .x x xb ( ) ( ) ( )n
f

n
f

nz? b b^ ^ ^h h h  (10)

For ,x xb( ) ( )
f

n n1 1a =- -^ ^h h  it can be seen that xb ( )n =^ h  
;x z uf ( ) ( : ) ( : )n n n1 1` j as provided by SBE. Thus, SBE based on 

prediction and update steps, respectively (7) and (8), is equiva-
lent to calculating the belief xb ( )n^ h by running the SPA on the 
factor graph in Figure 2.

Node localization and navigation algorithms
A large variety of filtering algorithms suitable for node local-
ization and navigation are based on SBE according to (7) and 
(8). Here, we focus on two widely adopted techniques: Kalman 
filtering and particle filtering.

The Kalman filter
Consider the case where the state-evolution model and the 
measurement model are linear, i.e., (1) and (3) can be ex-
pressed as

 x x cA Bu( ) ( ) ( ) ( )n n n n1= + +-   (10a)

 x ,z vH( ) ( ) ( )n n n= +  (10b)

where the matrices ,A B, and H  are assumed known. Fur-
thermore, the noise c ~ ( , )0N c

( ) ( )n nR  and v ~ ,0N v
( ) ( )n nR^ h 

is Gaussian distributed with noise covariance matrices c
( )nR  

and .( )
v
nR  In this case, closed-form solutions for the predic-

tion (7) and update step (8) of SBE can be obtained. These 

n – 1 n

f – x– f x

f –
z fz

αf βf

βfz

FIGURE 2. A factor graph for single-node localization representing the factor-
ization in (5). Nodes in green represent factors related to the state-evolution 
function, nodes in red represent factors related to the likelihood function, while 
messages related to the SPA are in blue. The following short notations are used: 

f ,, ,f ffx, | ;x x x x u | ;x x x u( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )n n n n n n n n
1

1
1 1

1
1

2
1

1
1 1

1
1= = = =

T T T T- - - - - - -j` ` j  
| , | , , ,f f f fz x z x x x( ) ( ) ( ) ( ) ( ) ( )n n n n

f f
n

f f
n

z z1
1

1
1

1 1 1
1

1a a b b= = = =
T T T T- - - -^ ^` ` h hj j  

and x ( )
f f

n
1z zb b=

T ^ h.
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closed-from expressions are used within the Kalman filter 
(KF) [19] that represents posterior PDFs ;x z uf ( ) ( : ) ( : )n n n1 1` j 
by second-order statistics, i.e., by means ( )nn  and covariance 
matrices .( )nR  If the prior xf ( )0^ h is also Gaussian, the PDFs 

;x z uf ( ) ( : ) ( : )n n n1 1 1-` j and ;x z uf ( ) ( : ) ( : )n n n1 1` j are Gaussian as 
well for arbitrary n. In that case, the KF can provide the opti-
mum solution and the exact MMSE estimator x( )n

MMSEt  in (6) is 
given by .( )nn  The KF consists of two steps: In the prediction 
step of the KF, the predicted mean ( )n

pn  and covariance matrix 
( )n
pR  that fully characterize ;x z uf ( ) ( : ) ( : )n n n1 1 1-` j are calculat-

ed based on (10a). In the update step of the KF, first the mean 
,z

( )n
n  the covariance matrix ,z

( )nR  and the cross-covariance ma-
trix xz

( )nR  are calculated based on (10b), then the posterior mean 
( )nn  and posterior covariance matrix ( )nR  are obtained using 

the Kalman update equations [19]. For nonlinear non-Gaussian 
models inherent to multisensor localization, computationally 
feasible approximate algorithms include variants of the KF, 
such as the extended KF (EKF) [19] and the unscented KF 
(UKF) [11].

The EKF and the UKF are versions of the KF that are suit-
able for nonlinear state-evolution and measurement models. If 

x( , ; )c ua ( ) ( ) ( )n n n1-  in (1) and x( , )vh ( ) ( )n n  in (3) are nonlinear 
functions, the covariance matrices ( )n

pR  as well as z
( )nR  and 

xz
( )nR  cannot be calculated directly. The EKF and the UKF are 

still based on the Kalman update equations but perform differ-
ent approximations to obtain these matrices.

In the EKF, a multivariate Taylor series expansion of (1) 
and (3) is used to linearize them around [ ( )T T Tn 1- , ]0n  and 
[ , ] ,0( )T T Tn

pn  respectively [19]. In this way, an approximation 
of the matrices ,, z

( ) ( )n n
pR R  and xz

( )nR  is obtained. While the EKF 
is widely adopted, it is accurate only if the system model is 
moderately nonlinear. Furthermore, the EKF is challenging to 
implement and difficult to tune. The UKF is a widely adopted 
solution for applications in which the EKF is not accurate or (1) 
and (3) are not differentiable. The UKF performs approximate 
inference by using a minimal set of deterministically chosen 
samples referred to as sigma points (SPs) [11]. The nonlinear 
model (1) and (3) is evaluated at the SPs and from the resulting 
new SPs, approximate second-order statistics ,( ) ( )n n

p pn R  as well 
as , ,z z

( ) ( )n n
n R  and z

( )
x
nR  are calculated [11]. The UKF can often 

provide approximations of ( )nn  and ( )nR  that are more accu-
rate compared to those provided by the EKF at a comparable 
computational complexity.

The particle filter
The particle filter (PF) is an attractive alternative to the EKF 
and the UKF for applications in which a representation of 

;x z uf ( ) ( : ) ( : )n n n1 1` j using second-order statistics is not accu-
rate. This might be the case if the state-evolution and/or mea-
surement model are highly nonlinear and ;x z uf ( ) ( : ) ( : )n n n1 1` j 
is multimodal. The key idea of PFs is to represent the poste-
rior distribution by a set of samples (particles) with associated 
weights, i.e.,

 ; ,x z u x xf w( ) ( : ) ( : ) ( ) ( ) ( )n n n
l
n

l

n
n

l
n1 1

1

p

. d -
=

u ^` hj /  (11)

where np  is the number of particles, (·)d  is the Dirac delta func-
tion, w 0( )

l
n
H  is the weight of the lth particle x( )

l
n  at time index 

n, and .w 1( )
l
n

l
n

1
pR ==  Note that the number of randomly sam-

pled particles np  is typically significantly larger compared to the 
number of deterministically calculated SPs ns  used in the UKF.

An approximation of the MMSE estimate in (6) is given by 
the mean of ;x z uf ( ) ( : ) ( : )n n n1 1u` j in (11), which is equal to the 
mean of the weighted particles, i.e.,

 ; .x x x z u x xf wd( ) ( ) ( ) ( : ) ( : ) ( ) ( ) ( )n n n n n n
l
n

l

n

l
n1 1

1

p

= =
=

t u` j /#  (12)

A large variety of particle-filtering algorithms have been in-
troduced. In what follows, we review the prominent sequential 
importance resampling filter [12], which consists of three steps 
referred to as sampling, weight update, and resampling.

The sampling step corresponds to the prediction step of SBE 
in (7). For each particle ,x( )

l
n 1-  a new particle x( )

l
n  is drawn 

from the state-evolution PDF ;x x uf ( ) ( ) ( )n n n1-` j evaluated at 
.x( )

l
n 1-  The weight update step corresponds to the update step 

of SBE in (8). For each particle x( )
l
n  the updated weight w( )

l
n  is 

obtained as .z x z xfw f( ) ( ) ( ) ( ) ( )
l
n n

l
n n n n

1
pR= , ,= `` jj  Then, par-

ticle-based state estimation is performed as in (12). The resa-
mpling step is a step that is performed to avoid degeneracy of 
particles. It is typically executed only if an indicator called the 
effective sample size is smaller than a threshold. In the resa-
mpling step, np  resampled particles are obtained by sampling 
from ;x z uf ( ) ( : ) ( : )n n n1 1u` j in (11) and setting the weight of the 
resampled particles to / ,n1 p  with resampled particles used at 
time .n 1+

Remark 1 
Most PFs are optimum in the sense that for np " 3 the esti-
mate x( )nt  in (12) converges to the true MMSE estimate x( )n

MMSEt  
in (6). Contrary to EKF and the UKF, PFs are also suitable for 
highly nonlinear SBE problems. However, their computational 
complexity is significantly increased compared to variants of 
the KF. In certain settings, PFs can avoid the curse of dimen-
sionality [20]. However, they do not scale well with the dimen-
sion of the state to be estimated and are not directly amendable 
for distributed implementations.

Network localization for the IoT
Consider the localization of a network of IoT devices that con-
sists of Na  agents (with index set { , , , })N1 2Na af=  and Nb  
anchors (with index set { , , , }) .N N N N1 2Nb a a a bf= + + +  
Let x R

( )
i
n D!  be the positional state of the node { , , ,i 1 2 f!  

}.N Na b+  The states of all nodes are represented by the joint 
state vector x x x x[ , , , ] .( ) ( ) ( ) ( )T T T Tn n n

N N
n

1 2 a bf_ +  At time n, agent 
i Na!  is able to communicate and perform an internode mea-
surement z( )

ij
n  with nodes j  in its neighbor set .A

( )
i
n  For anchors 

,i Nb!  the neighbor set is empty, i.e., / .0A
( )
i
n
=  Agent com-

munication is symmetric, i.e., for , ,i j jN A
( )
i
n

a! !  implies 
.i A

( )
j
n

!  All measurements performed by all agents i Na!  at 
time n are summarized in the joint measurement vector .z( )n  
Every agents aims to calculate an estimate x( )

i
nt  of x( )

i
n  from 

all available measurements z( : )n1  collected up to time .n
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For node i at time n, the relationship of the current state 
vector x( )

i
n  with the previous state vector x( )

i
n 1-  is given by the 

state-evolution model

 x x c, ;a u( ) ( ) ( ) ( )
i
n

i i
n

i
n

i
n1

=
-^ h (13)

where the state-evolution noise vector c( )
i
n  is assumed inde-

pendent across n  and .i  Note that the PDF cf ( )
i
n^ h can be dif-

ferent for distinct time steps n and agent indexes i. In particu-
lar, for anchors i Nb!  it is assumed that ,c cf ( ) ( )

i
n

i
n

d= ^^ hh  i.e., 
c( )

i
n  is deterministic and equal to zero. From the state-evolution 

model (13) one can directly obtain the state-evolution function 
; .x x uf ( ) ( ) ( )

i
n

i
n

i
n1-` j  At ,n 0=  the prior PDF of the joint state 

vector can be expressed as .x xff ( ) ( )
i
N N

i
0

1
0a bP= =

+ ^^ hh  In partic-
ular, anchors i Nb!  have perfect knowledge of their state, i.e., 
their prior PDFs are given by x x xf ( ) ( ) ( )

i i i
0 0 0

d= - u^^ hh  where 
x( )

i
0u  is the true state. Furthermore, agents have uninformative 

prior information xf ( )
i
0^ h that is assumed known. For ,n 0>  

the joint prior PDF, can be expressed as
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Agents i Na!  performs internode measurements z ,( )
ij
n  

j A
( )
i
n

!  that are related to the states x( )
i
n  and x( )

j
n  as

 z x x v, , ,h( ) ( ) ( ) ( )
ij
n

ij i
n

j
n

ij
n

= ^ h  (15)

where v( )
ij
n  is the internode measurement noise. Note that the 

PDF ( )vf ( )
ij
n  can be different for distinct time steps n and agent 

indexes i, and is typically a function of the channel quality ( )
ij
n
p  

(see the “Node Prioritization” section).
The measurement noise v( )

ij
n  is assumed independent 

across all (i, j) pairs and all times n. From the measurement 
model (15), one can directly obtain the likelihood function 

, .z x xf ( ) ( ) ( )
ij
n

i
n

j
n` j  The joint likelihood function can be ex -

pressed as

 f , .z x z x xf ( : ) ( : ) ( ) ( ) ( )n n

ji

N

k

n

ij
k

i
k

j
k1 1

11 A
( )
i
k

a

=
!==

` `j j%%%  (16)

Using Bayes’ rules together with (14) and (16), the joint pos-
terior PDF of x( : )n0  given z( : )n1  for n 0>  is obtained as
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Remark 2 
Note that the factorization of the marginal posterior in (17) 
has the same temporal structure as the marginal posterior in 
the single-node localization and navigation problem. The factor 
graph representing the factorization of the marginal posterior in 
(18) is shown in Figure 3. The spatiotemporal structure of the 
marginal posterior allows development of distributed-inference 
algorithms that are scalable both in time n and in the number of 
agents Na  as discussed in the next section.

Spatiotemporal fusion based on the SPA
In a network with multiple agents, state estimation is com-
plicated by the fact that, since internode measurements are 
performed, the posterior distributions ;x z uf ( ) ( : ) ( : )

i
n n n1 1` j of 

agents are coupled and thus should be estimated jointly. A na-
ive approach to joint sequential state estimation would be to 
only exploit the temporal structure of the joint posterior PDF 

;x z uf ( : ) ( : ) ( : )n n n0 1 1` j in (17) to obtain a marginal posterior 
PDF ;x z uf ( ) ( : ) ( : )n n n1 1` j by means of an algorithm presented 
in the “Node Localization and Navigation Algorithms” section 
and then calculating an estimate for the joint agent state .x( )n  
However, this approach is not scalable, as the dimension of x( )n  
increases with the number of agents .Na  In addition, it is not 
amenable for a distributed implementation because it neces-
sitates the existence of a fusion center that collects all pairwise 
measurements performed in the network.

Alternatively, distributed and scalable estimation can be per-
formed by running SPA on the factor graph shown in Figure 3. 
In the case of a factor graph with loops, the beliefs produced 
by the SPA are generally only approximations of the marginal 
posterior PDFs and they typically suffer from overconfidence 
(in the sense that the uncertainty of the estimates is underes-
timated by their spread). Furthermore, there is no fixed order 
for message calculation in loopy SPA, and different orders 
may lead to different beliefs. This means that there is a certain 
freedom to design the order of messages in the development of 
SPA algorithms.

The message-passing rules presented next are obtained by 
1) applying SPA [18] to the factor graph in Figure 3, 2) perform-
ing temporal fusion by sending messages only forward in time, 
and 3) performing only a single message-passing iteration in 
the spatial fusion step. In the temporal fusion step at agent i 
and time n, since messages are sent only forward in time, the 
messages x( )

f i
n 1

ia
-^ h are equal to the beliefs computed at ,n 1-  

i.e., [18]

 .x xb( ) ( )
f i

n
i
n1 1

ia =
- -^ ^h h  (19)

Therefore, the messages ( )x( )
f i

n
ib  can be obtained as
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(20)

Note that the calculation of the message x( )
f i

n
ib ^ h in the tem-

poral fusion step is equivalent to the prediction step of SBE in 
(7) and its SPA interpretation in (9).
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In the spatial fusion step, since only a single message-pass-
ing iteration is performed, outgoing messages ,x i A

( )
f i

n
jij !a ^ h  

passed from variable node xi  to factor nodes fij  are directly 
given by x x( ) ( )

f i
n

f i
n

ij ia b=^ ^h h. Furthermore, incoming mes-
sages ,x j A

( )
f i

n
iij !b ^ h  can be obtained as
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(21)

Finally, the belief of an agent i at time n is calculated as

 .x x xb ( ) ( ) ( )
i
n

f i
n

j

f i
n

A
( )

i

i
n

ij? b b
!

^ ^^ h hh %  (22)

The messages x( )
f i

n
ib ^ h in (20) and the belief xb ( )

i
n^ h in (22) 

are PDFs, i.e., they integrate to one. The belief xb ( )
i
n
.^ h  

;x z uf ( ) ( : ) ( : )
i
n n n1 1` j can now be used to calculate an estimate 

x( )
i
nt  of the positional state of agent i  at time .n  Note that for 

anchors ,i Nb!  the belief and the messages are given by 

x x x x xb ( ) ( ) ( ) ( ) ( )
i
n

f i
n

f i
n

i
n

i
n

i ia b d= = = - u^ ^ ^ ^h h h h  and /0A
( )
i
n
=  

for all .n
Contrary to SBE, which only exploits the temporal struc-

ture of the estimation problem, loopy SPA performed on 
the factor graph in Figure 3 also exploits spatial structure. 
Increasing the number of agents leads to additional vari-
able nodes in the factor graph but not to a higher dimen-
sion of the exchanged SPA messages. Therefore, the curse 
of dimensionality in time n and in network size N Na b+  
is avoided. As will be discussed next, message passing ac -
cording to (19)–(22) nearly automatically yields to a distrib-
uted implementation.

Distributed network-localization algorithms
We now present a framework for designing network-localiza-
tion algorithms that is based on a reformulation of SPA for 
spatiotemporal fusion (19)–(22) as local instances of SBE per-
formed on each agent [5], [6]. Within this framework, spatio-
temporal fusion is possible in a scalable and distributed way by 
directly applying arbitrary existing algorithms based on SBE, 

FIGURE 3. Two time steps of the factor graph for network localization corresponding to the factorizes (18). Nodes in green represent factors related to the 
state-evolution function, nodes in red represent factors related to the likelihood function, while SPA messages are in blue. The following short notations are 
used: f, fx ,,x x | ;x x x u( ) ( ) ( ) ( ) ( )
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such as those reviewed in the “Node Localization and Naviga-
tion Algorithms” section. 

Consider the spatiotemporal fusion at agent i, and introduce 
the augmented state vector x( )

i
nr  and the augmented measure-

ment z( )
i
nr  as

x x z z[ ] .( ) ( )
{ }

( ) ( )
i
n

j
n

j i i
n

ij
n

j AA
( )( )

i
n

i
n= =,! !r r6 @

Moreover, the belief xb ( )
i
nr^ h of x( )

i
nr  is introduced as

 ,x z x xb f f( ) ( ) ( ) ( )
i
n

i
n

i
n

i
n

?r r r r^ ` ^h j h  (23)

where the “prior” xf ( )
i
nr^ h  and the “likelihood” function 

z xf ( ) ( )
i
n

i
nr r` j are given by

 xxf ( )

{ }

( )
i
n

j i

f j
n

A
( )
i
n

jb=
,!

r^ ^h h%  (24)

 , .z x z x xf f( ) ( ) ( ) ( ) ( )
i
n

i
n

j

ij
n

i
n

j
n

A
( )
i
n

=
!

r r` `j j%  (25)

Note that here, with an abuse of notation, control inputs 
u( )

i
k  and measurements z( )

ij
k  from previous time steps k !  

{ , , , }n1 2 1f -  are avoided. The expression (23) has the same 
form as the update step of SBE in (8).

By plugging (21) into (22) and subsequently swapping the 
order of multiplication and integration, (22) becomes 

 ,x x xb b d( ) ( )
~
( )

i
n

i
n

i
n

= r r^ ^h h#  (26)

where x~
( )

i
nr  is the vector obtained by removing .x( )

i
n  from .x( )

i
nr

Equations (23) and (26) indicate that xb ( )
i
n^ h can be obtained 

via an update step (8) followed by marginalization. This obser-
vation motivates the following three steps at each agent i Na!  
to perform spatiotemporal fusion by means of SPA.

 ■ Step 1: Local Prediction and Information Exchange. Agent 
i calculates x( )

f i
n

ib ^ h locally according to (20) which is 
equivalent to the prediction step in (7). [The prediction step 
of any algorithm based on SBE, such as those presented in 
the “Message-Passing Interpretation of SBE” section, can 
be used to calculate .x( )

f i
n

ib ^ h@  Then each agent broad-
casts x( )

f i
n

ib ^ h and receives x( )
f j

n
jb ^ h from its neighbors 

j A
( )
i
n

!  so that xf ( )
i
nr^ h  in (24) becomes available at 

agent i.
 ■ Step 2: Measurement Phase and State Update. Agent i 

cooperates with its neighbors j A
( )
i
n

!  to acquire inter-
node measurements .z( )

ij
n  Now the likelihood function 

z xf ( ) ( )
i
n

i
nr r` j in (25) is available at agent i and the belief 

xb ( )
i
nr^ h of x( )

i
nr  can be calculated locally by performing 

the update step in (23). Note that the update step of any 
algorithm based on SBE such as those presented in the 
“Message-Passing Interpretation of SBE” section can be 
used to calculate .xb ( )

i
nr^ h  

 ■ Step 3: Marginalization. In this step, agent i computes the 
belief xb ( )

i
n^ h from .xb ( )

i
nr^ h  This typically incurs no com-

putational overhead. For example, if xb ( )
i
nr^ h is represented 

by the mean vector ( )
i
n

nr  and the covariance matrix ,( )
i
nRr  

then the mean vector ( )
i
n

n  and the covariance matrix ( )
i
nR  

related to xb ( )
i
n^ h can be directly extracted from ( )

i
n

nr  
and ,( )

i
nRr  respectively. In case a particle representation 

,x w,
( )

,
( )

i l
n

i l
n

l
L

1=r^ h" ,  of the belief xb ( )
i
nr^ h is available, a particle 

representation ,x w,
( )

,
( )

i l
n

i l
n

l
L

1=^ h" ,  of the belief xb ( )
i
n^ h can be 

obtained by discarding from the particles x ,
( )
i l
nr  all subvec-

tors x ,
( )
j l
n  with .j i!

Note that the belief xb ( )
i
n^ h  can be calculated by only 

communicating with neighboring agents in the network. For 
accurate localization and navigation of an agent ,i Na!  typi-
cally only a small number of neighbors A( )

i
n  are necessary. 

Therefore, the communication cost related to the information 
exchange in Step 1 as well as the computation cost related to 
calculating the beliefs xb ( )

i
nr^ h remain feasible. More impor-

tantly, for a single agent ,i Na!  these costs only depend on 
the number of neighbors A( )

j
n  but not on the network size 

.N Na b+  An attractive property of calculating xb ( )
i
n^ h  by 

means of Steps 1–3 is that existing techniques for single-node 
localization and navigation can be directly leveraged for scal-
able and distributed network localization. Note that SP belief 
propagation (SPBP) [5] and the network-localization algorithm 
in [6] have been developed according to Steps 1–3.

Efficient network operation
Network-operation strategies [21], [26] are indispensable for 
efficient localization and navigation in IoT scenarios. The net-
work-operation strategies presented in this article focus on the 
coordination of measurements provided by range measurement 
units (RMUs), i.e., the measurement model in (15) is

 z vx x .( ) ( ) ( ) ( )
ij
n

i
n

j
n

ij
n

= - +

The performance of RMUs such as ultrawideband (UWB) ra-
dios is often limited by the fact that [16], [27], [28]:  
1) Agents often make measurements with nodes with low link 

quality or poor geometry.
2) Different agents, which simultaneously transmit ranging 

signals, interfere with each other.
To address these issues, node-activation strategies to reduce 
interference and node prioritization strategies to allocate re-
sources to measurements with neighbor nodes can be em-
ployed. A flowchart that visualizes the interaction of node acti-
vation, node prioritization, network localization, and the RMU 
is shown in Figure 4.

Note that, in what follows, the inverse Fisher information 
matrix [3] is referred to as an error matrix. In particular, all 
strategies developed in this article rely either on the individual 
error matrices Q( )

i
n  related to the positions p( )

i
n  of the agents 

i Na!  or on the joint error matrix Q( )n  related to the indi-
vidual positions of all agents, as defined in [24]. These error 
matrices are not accessible in real-world localization systems 
as they rely on the knowledge of true positions. For this rea-
son, in an implementation of the presented node-operation 
strategies [16], these error matrices are approximated by the 
corresponding covariance matrices, which can be provided by 
network-localization algorithms.
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Node activation
Node-activation strategies enable a significant reduction of 
packet collisions and localization errors in the network. The 
goal of node-activation strategies is to determine a set of nodes 
that are permitted to make range measurements so that packet 
collisions are avoided and the localization error reduction of 
the network is maximized. In what follows, we discuss central-
ized and distributed strategies for node activation.

Centralized node activation
If agent i is selected to make internode measurements with its 
neighbors at time n, the error evolution relationship is given 
by [24]

,Q Q S( ) ( ) ( ) ( )n n
ij
n

j

n1 1 1 1

A
( )
i
n

D= + +
!

+ - - +c^ h m/

where S( )
ij
n  denotes the information matrix corresponding to 

the measurement ,z( )
ij
n 1+  and ( )n 1D +  denotes the matrix cor-

responding to the error introduced in the temporal cooperation 
step. Note that S( )

ij
n  also depends on the amount of resources 

yij  allocated to the measurements link (i, j) that can be deter-
mined by node prioritization discussed in the “Distributed 
node Activation” section [24].

Centralized node activation can be performed by calculat-
ing the agent index in  that is optimum, in the sense that the 
localization error reduction of the network is maximized. The 
optimum index can be obtained as follows:

 .max Q Si tr ( ) ( )
n

n
ij
n

j

1 1

A
( )

i

i
n

Na
= +

!

- -

! c^ h m/  (27)

This node-activation strategy is one-step optimal because 
the active node is selected such that the localization error at 
time n + 1 is minimized. Alternatively, one can also try to 
activate nodes so that the average error over multiple time in-
stants is minimized. Such a problem can be solved through 
dynamic programming, but the computational complexity in-
creases rapidly with the number of time steps. Note that the 
evaluation of (27) relies on the joint error matrix .Q( )n  The 
centralized node-activation strategy is thus not scalable with 
the network size since it necessitates a central controller that 
collects the information of all the agents in the network. For 
this reason, for large-scale NLN, distributed node-activation 
strategies are needed.

Distributed node activation
Consider the case in which the activation set may consist of 
multiple agents. In particular, at time n every agent i tries to 
make distance measurements with its neighbors j A

( )
i
n

!  with 
a certain channel access probability .( )

i
n
g  The one-step optimi-

zation problem that minimizes the localization error over the 
channel access probabilities ( )

i
n
g  is given by

:
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where the expectation in the objective function is over the ran-
domness in the channel access event for all the agents. In [26], 
the optimal channel access probabilities , i N

( )
i
n

a!g  resulting 
from P( )n

NA  can be obtained as
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 (28)

where X( )
i
n  denotes the expected error reduction of agent i, if 

it is activated and successful, makes range measurements with 
its neighbors A( )

i
n  and ,( )

j
nD  and denotes the error increase of 

the agents in the subnetwork { }iA
( )
i
n
,  during the time range 

measurements are performed. Note that X( )
i
n  and ( )

j
nD  are 

functions of Q( )
i
n  and , { },Q j iA

( )
j
n

i ,!  respectively.

Remark 3 
This optimal strategy P( )n

NA  leads to a nonrandom node activa-
tion in the sense that an agent accesses the channel either with 
probability one or with probability zero. Moreover, the optimal 
strategy is distributed because for agent ,i  ( )

i
n
|  and ( )

j
nD  can be 

determined or accurately approximated using information that 
is either locally available or has been received from neighbor-
ing nodes .j A

( )
i
n

!  Unlike the setting in the centralized node 
activation, the distributed strategy may activate multiple nodes 
at the same time and cause packet collisions. The possibility of 
these collision events can be reduced by incorporating channel 
sensing in the presented activation strategy. This results in the 
distributed node-activation strategy presented in Algorithm 1 
that has been successfully verified on-the-field with the Per-
egrine system for 3-D NLN.

Node prioritization
Node-prioritization strategies provide a desirable tradeoff 
between resource consumption and localization accuracy. In 

Node Prioritization

Node Activation

Network Localization

RMU
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Hardware ζ (n)
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b (x (n))i

b (x (n))j

FIGURE 4. A flowchart showing the interaction of node activation, node 
prioritization, network localization, and the RMU.
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what follows, we again discuss centralized and distributed strat-
egies for node prioritization.

Centralized node prioritization
For time n + 1, the error matrix Q( )n 1+  can be obtained [24] as 

,Q Q u uy( ) ( ) ( )

( , )

( ) ( ) ( ) ( )n n
ij
n

i j
ij
n

ij
n

ij
n n1 1 1 1T

E( )n

p D= + +
!

+ - - +c^ h m/

where ( , ) : , ,i j i j i jE N A( ) ( )n
i
n

a 2! != " , is the set of 
candidate measurement link pairs, y( )

ij
n  is the amount of re-

sources allocated to the measurement link pair (i, j), ( )
ij
n
p  rep-

resents the channel quality between nodes i  and ,j  and u( )
ij
n  is 

given in [21] and the “Spatiotemporal Fusion Based on the SPA” 
section and depends on the relative positions of nodes i  and .j  
Furthermore, y( )

ij
n  are the variables to be optimized. As a spe-

cial case, if only node i  is activated, .( , ) :i j j AE( ) ( )n
i
n

!= " ,  
Now the following optimization problem for centralized 

node prioritization can be introduced

:
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where L is the set of linear constraints (·)lk . Due to the special 
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where M  is an auxiliary matrix for the SDP formulation [21]. 
Convex optimization engines [29] can be used to solve the 

SDP in the above equation. Note that similarly to the node-
activation problem, solving the node prioritization problem 
P

( )n
NP C-  requires obtaining the estimates of , ,Q y( ) ( )

,
( )n

ij
n

i j
n
p , and 

U( )
ij
n  for the solution of this SDP. A central controller is needed 

to collect such information. Moreover, the computational com-
plexity of this SDP largely depends on the dimension of ,Q( )n  
which is a DN DNa a#  matrix. For these reasons, centralized 
node prioritization does not scale with the size of the network. 

Distributed node prioritization
Though the centralized formulation can provide better local-
ization performance, in large networks it incurs in extensive 
communication overhead and computational complexity. For 
this reason, fully distributed and thus scalable variants are 
more amenable in practice.

The error matrix for the position of agent i is the ith diagonal 
D × D block of ,Q( )n 1+  denoted by .[ ]Q( )n

i
1+  This error matrix 

depends on the geometry of the network and the accuracies 
of all internode measurements. Therefore, directly optimizing 
this error matrix does not lead to distributed implementation. 
An approximation of [ ]Q( )n

i
1+  that involves only local param-

eters can be introduced as follows:

 [ ] ,Q Q( ) ( )n
i i

n1 1
.+ +u  (29)
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and v R
( )
ij
n D!  is a unit vector representing the direction be-

tween node i  and .j  Note that Q( )
i
n 1+u  involves _ ,, v( ) ( )

ij
n

ij
n  and 

y( )
ij
n  for ,j A

( )
i
n

!  which are either locally available at agent 
i  or can be received by communicating with neighboring 
nodes .j A

( )
i
n

!

Using Qtr ( )
i
n 1+u^ h as the objective function, a distributed 

node-prioritization problem is formulated as
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where (·)lik  are linear constraints [21]. It can be shown that 
P ,

( )
i
n
NP D-  is a convex problem by performing the same steps as 

in [21]. Moreover, for a general D, one can show that P ,
( )
i
n
NP D-  

is an SDP. For D = 2, Q( )
i
n 1+u  is a 2 × 2 matrix and Qtr ( )

i
n 1+u^ h 

has a simpler explicit expression as a function of .y( )
ij
n  As a con-

sequence, P ,
( )
i
n
NP D-  can be further transformed into a second-

order cone program [22], [29].

Algorithm 1. Distributed node-activation strategy.

1: for all i Na!  do
2:   Agent i listens to the channel;
3:   if the channel is busy then
4:     Wait for a certain amount of time;
5:   else
6:     Determine the access probability ( )

i
n
g  from (28);

7:     if 1( )
i
n
g =  then

8:        Access the channel and perform internode mea-
surements;

9:     end if
10:   end if
11:   Broadcast ;( )

j
n
D

12: end for
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So far, we have discussed node prioritization for coopera-
tive IoT networks. In noncooperative scenarios where agents 
only perform agent-anchor range measurements, the approxi-
mation (29) becomes an equality and the error matrix for 
agent i  is
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Remark 4 
The node-prioritization problem in noncooperative scenarios 
is a special case of P ,

( )
i
n
NP D-  that can be solved even more effi-

ciently by using geometric optimization methods [15]. Further-
more, if the constraint (30) can be expressed as follows

 ,  ,y R y j0with N
( ) ( )
ij
n

j
ij
n

tot b
Nb

G H !
!

/

the optimal solution is demonstrated to have a sparsity prop-
erty. Note that here Rtot  is the total amount of available re-
sources. In particular, the optimal set of measurements can be 
performed with at most ( ) /D D 1 2+  anchors. This sparsity 
property provides a theoretical basis for reducing measurement 
links in localization networks.

Case study
In this section, we demonstrate the performance benefits of 
cooperation among devices and multisensor fusion in a large-
scale IoT network using simulated measurements. Some of the 
presented algorithms have also been evaluated in the real-time 
localization system called Peregrine [16]. (A video that dem-
onstrates how this system operates and the performance ad-
vantages related to the proposed algorithms is available online 
at http://winslab.lids.mit.edu/nln-technology-readiness.mp4.) 

Scenario
An IoT network that consists of 512 mobile agents and 27 an-
chors is considered. The anchors form an equally spaced 3-D 
grid, where possible coordinate values on each axis in 3-D 
space are { , , } .60 0 60 m-  Mobile agents are equipped with an 
inertial measurement unit (IMU) and an RMU, and they infer 
navigation information every . .T 0 05 sD =  This scenario is in-
spired by a swarm of micro unmanned aerial vehicles (UAVs) 
that operate in a large building such as a stadium or warehouse.

The state ,x( )
i
n  of agent i Na!  consists of its position 

,p p p p R
( )

,
( )

,
( )

,
( )

i
n

i
n

i
n

i
n

1 2 3
3T

!=6 @  velocity p ,R( )
i
n 3!o  and its orien-

tation represented by an unit quaternion q .R( )
i
n 4!  The initial 

states x , i N
( )
i
1

a!  are chosen as follows. The initial positions 
p( )

i
1  are sampled from the PDF that is uniform on the 3-D cube 

[ , ] [ , ] [ , ] ;60 60 60 60 60 60m m mR # #= - - -  the initial ve -
locity is set to p  0 m/s,( )

i
1
=o  and the initial quaternion is set 

to .q [    ]1 0 0 0( )
i
1 T=  The trajectories of the agents are gener-

ated randomly. The parts of the trajectories that are related to 
the substates s p p: [[ ]  [ ] ]( ) ( ) ( )

i
n

i
n

i
nT T T= o  are generated by means 

of a constant velocity motion model [17]. More specifically, at 
time n  the new substate s( )

i
n  of agent i Na!  is obtained from 

s( )
i
n 1-  as

s s g ,A C( ) ( ) ( )
i
n

i
n

i
n1

= +
-

where matrices A and C  are given as in [17] and g R
( )
i
n 3!  is 

the acceleration vector in the global reference frame.
Vector g( )

i
n  consists of the random driving noise r( )

i
n  and 

the drag force ,f( )
i
n  i.e., .g r f( ) ( ) ( )

i
n

i
n

i
n

= +  In particular, r( )
i
n  is a 

zero-mean Gaussian random vector, i.e., r ~ ( , )I0N r
( )
i
n 2

3v  and 
the drag force is given by f f f f( )
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 The drag force is 
introduced to limit the speed of the agents. The following 
parameters are used: .4 0 m/sr

2v =  and ..0 2 mf
1c = -  These 

values result in trajectories with speeds and maneuverability 
that are reasonable for micro UAVs. In particular, the maxi-
mum speed of each agent typically remains below .5 0 m/s. 
The agent orientation q( )

i
n  evolves as follows: At each time step 

,n  agent i  rotates with random turn rate ~ ( , ),I0N( )
i
n 2

3~ v~  
where ..0 5 s 1v =~

-  Note that ( )
i
n

~  is the turn rate in the local 
reference frame of agent i. The corresponding state evolution 
model is provided in [30].

As in most inertial navigation techniques for multisensor 
fusion, in the simulated algorithm, the measurements provided 
by the IMU are incorporated as deterministic control input 

.u u u( )
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i
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i
nT T T

= { ~6 @  In particular, the IMU measurement u( )
i
n  

consists of an acceleration measurement u ,
( )
i
n
{  and a turn-rate 

measurement ,u ,
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i
n
~  which are realizations of the RVs

u c
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where ( )
i
n

{  is the true acceleration of agent i  in its local refer-
ence frame. The IMU noise c c c[ ]( )

,
( )

,
( )

i
n

i
n

i
nT T T= { ~  consists of ac-

celeration c ~ ( , )I0N,
( )
i
n 2

3v{ {  and turn rate c ~ ( , )I0N,
( )
i
n 2

3v~ ~  
components. The functional form of the resulting state-evolu-
tion model x x c, ; ua( ) ( ) ( ) ( )

i
n

i i
n

i
n

i
n1

=
-^ h is provided in [30].

The range measurement z( )
ij
n  made by agent i Na!  with 

node j  at time step n  is modeled as

,z vp p( ) ( ) ( ) ( )
ij
n

i
n

j
n

ij
n

= - +

where v ~ ( , )0N v
( )
ij
n 2v  is the Gaussian noise with standard 

de  viation . .0 1 mvv =  A more detailed, technology-specific 
model for ranging from wideband radio-frequency signals can 
be found in [27] and [28].

It is assumed that the number of available channels for per-
forming range measurements is limited to 16, which means 
that only a subset of 16 agents can perform range measure-
ments at a specific time step .n  For this reason, time-division 
multiple access (TDMA) is performed by partitioning 512 
agents into 32 disjoint groups, with each group consisting of 
16 agents. At each time step ,n  only the agents in one of the 
32 groups can make range measurements while all the oth-
ers remain idle. At each time step ,n  for those 16 agents that 
perform range measurements, the set A( )

i
n  is given as follows: 

range measurements can only be performed with nodes that 
are located within a communication range of 52 m. More-
over, if there are more than M  potential-neighbor nodes, M  
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of them are randomly selected. This selection of at most M  
neighbor nodes limits the energy consumption. It also reduces 
the number of loops in the factor graph in Figure 3 and thus 
the related negative effects, e.g., overconfident beliefs. Note 
that the communication range of 52 m was chosen so that for 
agents inside the region ,R  there is at least one, and at most, 
four neighbor anchors.

In our simulation, the SPBP algorithm [5] is used, which is 
based on the design framework presented in the “Distributed 
Network-Localization Algorithms” section. Note that, in the 
considered scenario with 512 UAVs, localization algorithms 
based on SBE are unfeasible because they are not scalable in 
the number of agents [6, Sec. VII-C]. To the best of our knowl-
edge, SPBP is the only available algorithm for cooperative 
location and orientation estimation in 3-D. One hundred simu-
lation runs were performed and 1,200 time steps were simu-
lated. Examples of true and estimated trajectories are shown 
in Figure 5. As a metric for localization performance the 3-D 
localization error outage (LEO) was used. The outage is a 
well-established concept in wireless communications; in the 
context of NLN, the LEO is similarly defined as the empirical 
probability that the localization error is above the predefined 
threshold .eth  

Network localization results
To study the impact of cooperation among agents as well as 
the impact related to multisensor fusion, the following con-
figurations are compared: In the “Baseline” configuration, 
an agent makes range measurements only with the anchors 
within its communication range and does not perform IMU 
measurements. In the “Spatial Cooperation” configuration, 
additional range measurements are performed by coopera-
tion among agents. In the “IMU Fusion” configuration, IMU 
measurements are performed but agents do not cooperate. Fi-

nally, in the “Spatial Cooperation + IMU Fusion” configura-
tion, cooperation among agents as well as IMU measurements 
are performed. Note that for the network localization results 
presented in this section the following parameters were used: 

,M 6= ,10 m/s4 2v ={
-  and .5 10 s3 1#v =~

- -

Figure 6 shows the LEOs (obtained by averaging more 
than 100 simulation runs, 512 agents, and 900 time steps) ver-
sus threshold eth  for the four simulated configurations. Since 
SPBP needs a certain number of time steps for initialization, 
for the network localization results, the first 300 time steps 
were not incorporated in the LEOs evaluation. The following 
key observations can be obtained from these results:
1) A very desirable localization performance can be obtain -

ed with “Spatial Cooperation + IMU Fusion.” Specifically, 
the threshold eth  is 0.11 m and 0.17 m at a LEO of 10 1-  
and 10 2- , respectively. Remarkably, for .e 0 3 mth $  the 
LEO is 0.

2) The localization error is significantly reduced by spatial 
cooperation. In particular, by comparing “IMU Fusion” 
with “Spatial Cooperation + IMU Fusion,” it can be seen 
that the eth  is reduced from 0.54 m to 0.11 m (by 79.6%) at 
a LEO of 10 1-  and from 4.21 m to 0.17 m (by 96.0%) at a 
LEO of .10 2-  The reason for the performance gain of 
“Spatial Cooperation + IMU Fusion” with respect to “IMU 
Fusion” is that in the former configuration the agents have 
more neighbor nodes available for localization.

3) Incorporating IMU measurements also significantly 
reduces the localization error. More specifically, by com-
paring “Spatial Cooperation” with “Spatial Cooperation 
+ IMU Fusion” it can be seen that the eth  is reduced 
from 2.92 m to 0.11 m (by 96.2%) at a LEO of 10 1-  and 
from 5.00 m to 0.17 m (by 96.0%) at a LEO of 10 2- . The 
performance benefits “Spatial Cooperation + IMU 
Fusion” can be explained by the fact that the agents only 
makes range measurements every 32 time steps. Using 
“Spatial Cooperation” the localization error accumulates 
rapidly during the time period when no range measure-
ments are performed. In contrast, by incorporating IMU 
measurements as in “Spatial Cooperation + IMU Fu -
sion,” this localization error accumulation can be signif-
icantly reduced.

4) Due to the few neighbor nodes available for localization 
and the high mobility of the agents, the localization perfor-
mance of “Baseline” is very poor.

Network operation results
To demonstrate the benefits of network operation algorithms, 
a heterogeneous network that consists of two UAV classes was 
simulated. There were 256 UAVs in each class. The first class 
performed IMU measurements with noise standard deviations 

.3 3 10 m/s5 2#v ={
-  and . ;1 7 10 s3 1#v =~

- -  the second 
class performed IMU measurements with noise standard de-
viations ,3 10 m/s4 2#v ={

-  and ..1 5 10 s2 1#v =~
- -  All 

other parameters are as described in the “Scenario” section 
and were identical for both classes. For “Node Activation,” 
spatial cooperation and IMU fusion was simulated together 
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FIGURE 5. The trajectories related to eight exemplary agents and one 
simulation run. Colored and black curves represent the estimated and true 
trajectories, respectively. Similarly, colored crosses and black circles rep-
resent the estimated and true positions at the last time step, respectively. 
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with the distributed network activation 
algorithm described in the “Distrib-
uted Node Activation” section to con-
trol the RMU measurements. At each 
time step ,n  every UAV determined 
its channel access probability ( )

i
n
g  ac-

cording to (28) and if ,1( )
i
n
g =  it tried 

to access the channel. In a certain step, 
if multiple UAVs of the same group (see 
the “Case Study” section) that were also 
in the same subnetwork tried to access 
the channel, only one randomly select-
ed UAV was able to perform an RMU 
measurement. As a reference method, 
“TDMA” was simulated where, as in 
the previous “Network Localization Re-
sults” section, spatial cooperation and 
IMU fusion with TDMA for channel 
access was performed. For both “Node 
Activation” and “TDMA,” M 4=  and 
M 6=  were considered.

In the simulated scenario, “Node 
Activation” had a number of commu-
nication links related to RMU mea-
surements that, compared to “TDMA,” 
was reduced by . %14 2  and . %19 9  
for M 4=  and ,M 6=  respectively. 
The average number of measurements 
performed per agent and per time step 
was 0.13 M 4=^ h and 0.19 M 6=^ h 
for “TDMA” and 0.11 M 4=^ h and 
0.15 M 6=^ h for “Node Activation.” 
Furthermore, consider a UWB radio 
that consumes .1 7 10 4# -  J per range 
measurement was used as an RMU 
[16], “Node Activation” can reduce the 
overall energy consumption of the net-
work for all 1,200 time steps by 2.1 J 
for M 4=  and by 4.2 J for .M 6=

Figure 7 shows the LEOs—ob -
tained by averaging more than 100 
simulation runs, 512 agents, and 1,200 
time steps—versus threshold eth  for 
the four simulated configurations. 
Note that the “Spatial Cooperation + 
IMU Fusion” results in Figure 6 cor-
respond to the identical scenario as 
the “TDMA,” M 6=  results in Fig-
ure 7. However, contrary to Figure 6, 
in Figure 7 all 1,200 time steps are 
considered. The following two observations can be made:
1) “Node Activation” can significantly increase localization 

accuracy. In particular, at a LEO of , e10 2
th

-  is reduced 
from 7.18 m to 2.29 m, i.e., by . %68 1  for M 4=  and from 

.6 42  m to .0 85  m, i.e., by . %86 8  for .M 6=  This is 
because with “Node Activation” UAVs in the second class 

tend to perform more range measurements compared to the 
ones in the first class, so they can compensate for their larg-
er IMU noise standard deviation. In this way, “Node 
Activation” can also reduce the overall localization error of 
the network compared to “TDMA,” where the UAVs in 
both classes make the same number of range measurements 

100

10–1

10–2

10–3

10–4

eth (m)

LE
O

Baseline
Spatial Cooperation
IMU Fusion
Spatial Cooperation + IMU Fusion

0 1 2 3 4 5
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100

10–1

10–2

10–3

10–4

LE
O

0 2 4 6 8 10 12 14

eth (m)

TDMA, M = 4
TDMA, M = 6
Node Activation, M = 4
Node Activation, M = 6

FIGURE 7. The LEO versus threshold e th  for the different channel access strategies and different .M



166 IEEE SIgnal ProcESSIng MagazInE   |   September 2018   |

on average. Note that the improvement in localization per-
formance is most significant at the first time steps during 
the initialization phase of the algorithm.

2) Incrementing M  from four to six results is a localization 
error reduction that is small compared to the reduction 
related to performing “Node Activation” instead of 
“TDMA.”
In particular, “Node Activation” for M 4=  performs sig-

nificantly better than “TDMA” for .M 6=  Thus it can be 
noted that a smart activation of agents can compensate for a 
low number of neighboring nodes.

Final remarks
The size and heterogeneity of IoT networks calls for a new class 
of scalable and technology-agnostic localization algorithms. 
In this article, we presented NLN, a paradigm that introduces 
scalable and distributed techniques for multisensor fusion in 
the IoT. NLN can provide technology-agnostic algorithms for 
IoT networks that exploit spatiotemporal cooperation to reduce 
the amount of required infrastructure. It also leads to the devel-
opment of intelligent network operation strategies that allocate 
localization resources (e.g., transmission power and channel 
access opportunity) to extend the energy 
consumption of devices and to increase the 
localization accuracy. Localization perfor-
mance and saving in terms of communica-
tion costs and energy consumption have 
been demonstrated in a case study with 500 
mobile agents that aim to infer their loca-
tion and their orientation in 3-D space. In 
particular, node activation significantly re-
duced energy consumption and, at the same time, increases 
the localization performance of the network. These results 
confirmed that in IoT applications localization and navigation 
performance can be strongly increased by multisensor fusion 
and cooperation among devices. 
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